Biodiv Sci ›› 2012, Vol. 20 ›› Issue (2): 199-206. DOI: 10.3724/SP.J.1003.2012.08159
• Original Papers • Previous Articles Next Articles
Xiaohong He1,2, Xiuli Han1,2, Weijun Guan1,2, Kechuan Tian3, Wenbin Zhang4, Yuehui Ma1,2,*()
Received:
2011-09-09
Accepted:
2012-03-27
Online:
2012-03-20
Published:
2012-04-09
Contact:
Yuehui Ma
Xiaohong He, Xiuli Han, Weijun Guan, Kechuan Tian, Wenbin Zhang, Yuehui Ma. Genetic variability and relationship of 10 Bactrian camel populations revealed by microsatellite markers[J]. Biodiv Sci, 2012, 20(2): 199-206.
代码 Code | 群体名称 Population name | 样本数 Sample size | 采集地 Sampling location |
---|---|---|---|
QH | 青海双峰驼 Qinghai Bactrian camel | 95 | 青海省海西州 Haixi Autonomous Prefecture, Qinghai, China |
AS | 阿拉善双峰驼-沙漠型 Alashan Bactrian camel-desert type | 50 | 内蒙古阿拉善左旗 Alashan Prefecture, Inner Mongolia, China |
AG | 阿拉善双峰驼-戈壁型 Alashan Bactrian camel-Gobi type | 50 | 内蒙古阿拉善左旗 Alashan Prefecture, Inner Mongolia, China |
GS | 甘肃双峰驼 Gansu Bactrian camel | 51 | 甘肃省酒泉 Jiuquan city, Gansu, China |
SU | 苏尼特双峰驼 Sunite Bactrian camel | 27 | 内蒙古锡林郭勒盟 Silinghol League, Inner Mongolia, China |
ALT | 阿勒泰双峰驼 Altay Bactrian camel | 46 | 新疆阿勒泰市 Altay City, Xinjiang, China |
KKZ | 柯尔克孜双峰驼 Kirgizi Bactrian camel | 30 | 新疆克孜勒苏柯尔克孜自治州 Kizilsu Kirghiz Autonomous Prefecture, Xinjiang, China |
ML | 木垒长眉驼 Mulei Bactrian camel | 34 | 新疆木垒 Mulei Kazak Autonomous Prefecture, Xinjiang, China |
YL | 伊犁州双峰驼 Yili Bactrian camel | 34 | 新疆伊犁哈萨克自治州 Yili Kazak Autonomous Prefecture, Xinjiang, China |
MG | 蒙古双峰驼 Mongolian Bactrian camel | 38 | 蒙古国南戈壁省 South Gobi Province, Mongolia |
Table 1 Code, name, sample size and sampling locations of 10 Bactrian camel populations
代码 Code | 群体名称 Population name | 样本数 Sample size | 采集地 Sampling location |
---|---|---|---|
QH | 青海双峰驼 Qinghai Bactrian camel | 95 | 青海省海西州 Haixi Autonomous Prefecture, Qinghai, China |
AS | 阿拉善双峰驼-沙漠型 Alashan Bactrian camel-desert type | 50 | 内蒙古阿拉善左旗 Alashan Prefecture, Inner Mongolia, China |
AG | 阿拉善双峰驼-戈壁型 Alashan Bactrian camel-Gobi type | 50 | 内蒙古阿拉善左旗 Alashan Prefecture, Inner Mongolia, China |
GS | 甘肃双峰驼 Gansu Bactrian camel | 51 | 甘肃省酒泉 Jiuquan city, Gansu, China |
SU | 苏尼特双峰驼 Sunite Bactrian camel | 27 | 内蒙古锡林郭勒盟 Silinghol League, Inner Mongolia, China |
ALT | 阿勒泰双峰驼 Altay Bactrian camel | 46 | 新疆阿勒泰市 Altay City, Xinjiang, China |
KKZ | 柯尔克孜双峰驼 Kirgizi Bactrian camel | 30 | 新疆克孜勒苏柯尔克孜自治州 Kizilsu Kirghiz Autonomous Prefecture, Xinjiang, China |
ML | 木垒长眉驼 Mulei Bactrian camel | 34 | 新疆木垒 Mulei Kazak Autonomous Prefecture, Xinjiang, China |
YL | 伊犁州双峰驼 Yili Bactrian camel | 34 | 新疆伊犁哈萨克自治州 Yili Kazak Autonomous Prefecture, Xinjiang, China |
MG | 蒙古双峰驼 Mongolian Bactrian camel | 38 | 蒙古国南戈壁省 South Gobi Province, Mongolia |
位点 Locus | 引物(5′-3′) Primer(5′-3′) | 等位基因 Allele (bp) | 荧光标记 Fluorescent label | 退火温度 Tm (℃) | FIT | FST | FIS | 基因流 Nm |
---|---|---|---|---|---|---|---|---|
CMS09 | TGCTTTAGACGACTTTTACTTTAC ATTTCACTTTCTTCATACTTGTGAT | 233-256 | FAM | 55 | 0.128*** | 0.042*** | 0.090** | 4.150 |
CMS17 | TATAAAGGATCACTGCCTTC AAAATGAACCTCCATAAAGTTAG | 144-149 | FAM | 55 | 0.184*** | 0.146*** | 0.045 | 1.600 |
CMS18 | GAACGACCCTTGAAGACGAA AGCAGCTGGTTTTAGGTCCA | 157-186 | HEX | 60 | 0.231*** | 0.153*** | 0.092*** | 1.851 |
CMS32 | ACGGACAAGAACTGCTCATA ACAACCAATAAATCCCCATT | 198-204 | FAM | 51 | 0.420*** | 0.019*** | 0.408*** | 7.381 |
CMS50 | TTTATAGTCAGAGAGAGTGCTG TGTAGGGTTCATTGTAACA | 154-183 | FAM | 55 | 0.042 | 0.050*** | -0.008 | 3.180 |
CMS121 | CAAGAGAACTGGTGAGGATTTTC AGTTGATAAAAATACAGCTGGAAAG | 151-159 | FAM | 59 | 0.163*** | 0.062*** | 0.107*** | 4.029 |
CVRL01 | GAAGAGGTTGGGGCACTAC CAGGCAGATATCCATTGAA | 188-253 | HEX | 60 | 0.590*** | 0.105*** | 0.542*** | 2.001 |
CVRL05 | CCTTGGACCTCCTTGCTCTG GCCACTGGTCCCTGTCATT | 148-174 | HEX | 56 | 0.090** | 0.031*** | 0.061* | 5.612 |
CVRL06 | TTTTAAAAATTCTGACCAGGAGTCTG CATAATAGCCAAAACATGGAAACAAC | 185-205 | HEX | 59 | 0.243*** | 0.045*** | 0.208*** | 4.061 |
CVRL07 | AATACCCTAGTTGAAGCTCTGTCCT GAGTGCCTTTATAAATATGGGTCTG | 255-263 | FAM | 56 | 0.366*** | 0.224*** | 0.183*** | 0.662 |
LCA66 | GTGCAGCGTCCAAATAGTCA CCAGCATCGTCCAGTATTCA | 212-242 | HEX | 55 | 0.434*** | 0.166*** | 0.321*** | 1.163 |
VOLP08 | CCATTCACCCCATCTCTC TCGCCAGTGACCTTATTTAGA | 142-180 | FAM | 52 | 0.127*** | 0.073*** | 0.059* | 2.536 |
VOLP10 | CTTTCTCCTTTCCTCCCTACT CGTCCACTTCCTTCATTTC | 232-260 | FAM | 58 | 0.117*** | 0.048*** | 0.073*** | 3.973 |
VOLP32 | GTGATCGGAATGGCTTGAAA CAGCGAGCACCTGAAAGAA | 256-262 | HEX | 55 | 0.399*** | 0.207*** | 0.241*** | 0.882 |
VOLP67 | TTAGAGGGTCTATCCAGTTTC TGGACCTAAAAGAGTGGAG | 142-172 | FAM | 60 | 0.399*** | 0.034*** | 0.378*** | 5.698 |
YWLL08 | ATCAAGTTTGAGGTGCTTTCC CCATGGCATTGTGTTGAAGAC | 154-180 | HEX | 59 | 0.208*** | 0.119*** | 0.101*** | 1.685 |
YWLL38 | GGCCTAAATCCTACTAGAC CCTCTCACTCTTGTTCTCCTC | 180-192 | FAM | 58 | 0.080*** | 0.049*** | 0.033 | 4.118 |
YWLL59 | TGTGCAGGAGTTAGGTGTA CCATGTCTCTGAAGCTCTGGA | 109-135 | FAM | 58 | 0.277*** | 0.112*** | 0.186*** | 1.667 |
所有位点 All loci | 0.240*** | 0.096*** | 0.159*** |
Table 2 The information of 18 microsatellite loci employed in this study and F-statistics
位点 Locus | 引物(5′-3′) Primer(5′-3′) | 等位基因 Allele (bp) | 荧光标记 Fluorescent label | 退火温度 Tm (℃) | FIT | FST | FIS | 基因流 Nm |
---|---|---|---|---|---|---|---|---|
CMS09 | TGCTTTAGACGACTTTTACTTTAC ATTTCACTTTCTTCATACTTGTGAT | 233-256 | FAM | 55 | 0.128*** | 0.042*** | 0.090** | 4.150 |
CMS17 | TATAAAGGATCACTGCCTTC AAAATGAACCTCCATAAAGTTAG | 144-149 | FAM | 55 | 0.184*** | 0.146*** | 0.045 | 1.600 |
CMS18 | GAACGACCCTTGAAGACGAA AGCAGCTGGTTTTAGGTCCA | 157-186 | HEX | 60 | 0.231*** | 0.153*** | 0.092*** | 1.851 |
CMS32 | ACGGACAAGAACTGCTCATA ACAACCAATAAATCCCCATT | 198-204 | FAM | 51 | 0.420*** | 0.019*** | 0.408*** | 7.381 |
CMS50 | TTTATAGTCAGAGAGAGTGCTG TGTAGGGTTCATTGTAACA | 154-183 | FAM | 55 | 0.042 | 0.050*** | -0.008 | 3.180 |
CMS121 | CAAGAGAACTGGTGAGGATTTTC AGTTGATAAAAATACAGCTGGAAAG | 151-159 | FAM | 59 | 0.163*** | 0.062*** | 0.107*** | 4.029 |
CVRL01 | GAAGAGGTTGGGGCACTAC CAGGCAGATATCCATTGAA | 188-253 | HEX | 60 | 0.590*** | 0.105*** | 0.542*** | 2.001 |
CVRL05 | CCTTGGACCTCCTTGCTCTG GCCACTGGTCCCTGTCATT | 148-174 | HEX | 56 | 0.090** | 0.031*** | 0.061* | 5.612 |
CVRL06 | TTTTAAAAATTCTGACCAGGAGTCTG CATAATAGCCAAAACATGGAAACAAC | 185-205 | HEX | 59 | 0.243*** | 0.045*** | 0.208*** | 4.061 |
CVRL07 | AATACCCTAGTTGAAGCTCTGTCCT GAGTGCCTTTATAAATATGGGTCTG | 255-263 | FAM | 56 | 0.366*** | 0.224*** | 0.183*** | 0.662 |
LCA66 | GTGCAGCGTCCAAATAGTCA CCAGCATCGTCCAGTATTCA | 212-242 | HEX | 55 | 0.434*** | 0.166*** | 0.321*** | 1.163 |
VOLP08 | CCATTCACCCCATCTCTC TCGCCAGTGACCTTATTTAGA | 142-180 | FAM | 52 | 0.127*** | 0.073*** | 0.059* | 2.536 |
VOLP10 | CTTTCTCCTTTCCTCCCTACT CGTCCACTTCCTTCATTTC | 232-260 | FAM | 58 | 0.117*** | 0.048*** | 0.073*** | 3.973 |
VOLP32 | GTGATCGGAATGGCTTGAAA CAGCGAGCACCTGAAAGAA | 256-262 | HEX | 55 | 0.399*** | 0.207*** | 0.241*** | 0.882 |
VOLP67 | TTAGAGGGTCTATCCAGTTTC TGGACCTAAAAGAGTGGAG | 142-172 | FAM | 60 | 0.399*** | 0.034*** | 0.378*** | 5.698 |
YWLL08 | ATCAAGTTTGAGGTGCTTTCC CCATGGCATTGTGTTGAAGAC | 154-180 | HEX | 59 | 0.208*** | 0.119*** | 0.101*** | 1.685 |
YWLL38 | GGCCTAAATCCTACTAGAC CCTCTCACTCTTGTTCTCCTC | 180-192 | FAM | 58 | 0.080*** | 0.049*** | 0.033 | 4.118 |
YWLL59 | TGTGCAGGAGTTAGGTGTA CCATGTCTCTGAAGCTCTGGA | 109-135 | FAM | 58 | 0.277*** | 0.112*** | 0.186*** | 1.667 |
所有位点 All loci | 0.240*** | 0.096*** | 0.159*** |
群体 Population | Ho | He | PIC | 平均等位基因数 MNA | 有效等位基因 NE | 基因丰富度 AR | 所有位点FIS FIS of all loci |
---|---|---|---|---|---|---|---|
QH | 0.572 | 0.687 | 0.639 | 8.78 | 3.63 | 4.91 | 0.168* |
AS | 0.519 | 0.646 | 0.597 | 6.83 | 3.28 | 4.63 | 0.199* |
AG | 0.518 | 0.638 | 0.587 | 6.94 | 3.18 | 4.57 | 0.191* |
GS | 0.552 | 0.679 | 0.632 | 6.44 | 3.67 | 4.72 | 0.189* |
SU | 0.574 | 0.649 | 0.589 | 5.56 | 3.13 | 4.43 | 0.118* |
MG | 0.538 | 0.671 | 0.622 | 6.56 | 3.47 | 4.71 | 0.201* |
ALT | 0.561 | 0.649 | 0.595 | 8.00 | 3.20 | 4.70 | 0.138* |
KKZ | 0.589 | 0.648 | 0.591 | 6.22 | 3.05 | 4.48 | 0.093 |
ML | 0.533 | 0.594 | 0.543 | 6.06 | 2.72 | 4.18 | 0.105* |
YL | 0.573 | 0.654 | 0.600 | 6.39 | 3.19 | 4.66 | 0.125* |
Table 3 Genetic variation information of the Bactrian camel populations
群体 Population | Ho | He | PIC | 平均等位基因数 MNA | 有效等位基因 NE | 基因丰富度 AR | 所有位点FIS FIS of all loci |
---|---|---|---|---|---|---|---|
QH | 0.572 | 0.687 | 0.639 | 8.78 | 3.63 | 4.91 | 0.168* |
AS | 0.519 | 0.646 | 0.597 | 6.83 | 3.28 | 4.63 | 0.199* |
AG | 0.518 | 0.638 | 0.587 | 6.94 | 3.18 | 4.57 | 0.191* |
GS | 0.552 | 0.679 | 0.632 | 6.44 | 3.67 | 4.72 | 0.189* |
SU | 0.574 | 0.649 | 0.589 | 5.56 | 3.13 | 4.43 | 0.118* |
MG | 0.538 | 0.671 | 0.622 | 6.56 | 3.47 | 4.71 | 0.201* |
ALT | 0.561 | 0.649 | 0.595 | 8.00 | 3.20 | 4.70 | 0.138* |
KKZ | 0.589 | 0.648 | 0.591 | 6.22 | 3.05 | 4.48 | 0.093 |
ML | 0.533 | 0.594 | 0.543 | 6.06 | 2.72 | 4.18 | 0.105* |
YL | 0.573 | 0.654 | 0.600 | 6.39 | 3.19 | 4.66 | 0.125* |
QH | AS | AG | GS | SU | MG | ALT | KKZ | ML | YL | |
---|---|---|---|---|---|---|---|---|---|---|
QH | 0.0603** | 0.0746** | 0.0734** | 0.0691** | 0.0645** | 0.0966** | 0.1253** | 0.1284** | 0.1238** | |
AS | 3.8959 | 0.0537** | 0.0960** | 0.0873** | 0.0624** | 0.0775** | 0.1170** | 0.1276** | 0.1266** | |
AG | 3.1012 | 4.4055 | 0.0729** | 0.1043** | 0.0790** | 0.0914** | 0.1400** | 0.1204** | 0.1415** | |
GS | 3.1560 | 2.3542 | 3.1794 | 0.1169** | 0.0678** | 0.1088** | 0.1493** | 0.1382** | 0.1394** | |
SU | 3.3679 | 2.6137 | 2.1469 | 1.8886 | 0.0852 | 0.1278** | 0.1694** | 0.1623** | 0.1455** | |
MG | 3.6260 | 3.7564 | 2.9146 | 3.4373 | 2.6843 | 0.0805** | 0.1280* | 0.1058** | 0.1235* | |
ALT | 2.3380 | 2.9758 | 2.4852 | 2.0478 | 1.7062 | 2.8556 | 0.0486** | 0.0346** | 0.0449** | |
KKZ | 1.7452 | 1.8868 | 1.5357 | 1.4245 | 1.2258 | 1.7031 | 4.8940 | 0.1004** | 0.0269** | |
ML | 1.6970 | 1.7092 | 1.8264 | 1.5590 | 1.2904 | 2.1129 | 6.9754 | 2.2400 | 0.0918** | |
YL | 1.7694 | 1.7247 | 1.5168 | 1.5434 | 1.4682 | 1.7743 | 5.3179 | 9.0437 | 2.4733 |
Table 4 Fixation index resulting from comparing subpopulations to the total population (FST , above the diagonal) and gene flow (Nm, below the diagonal) among 10 Bactrain camel populations
QH | AS | AG | GS | SU | MG | ALT | KKZ | ML | YL | |
---|---|---|---|---|---|---|---|---|---|---|
QH | 0.0603** | 0.0746** | 0.0734** | 0.0691** | 0.0645** | 0.0966** | 0.1253** | 0.1284** | 0.1238** | |
AS | 3.8959 | 0.0537** | 0.0960** | 0.0873** | 0.0624** | 0.0775** | 0.1170** | 0.1276** | 0.1266** | |
AG | 3.1012 | 4.4055 | 0.0729** | 0.1043** | 0.0790** | 0.0914** | 0.1400** | 0.1204** | 0.1415** | |
GS | 3.1560 | 2.3542 | 3.1794 | 0.1169** | 0.0678** | 0.1088** | 0.1493** | 0.1382** | 0.1394** | |
SU | 3.3679 | 2.6137 | 2.1469 | 1.8886 | 0.0852 | 0.1278** | 0.1694** | 0.1623** | 0.1455** | |
MG | 3.6260 | 3.7564 | 2.9146 | 3.4373 | 2.6843 | 0.0805** | 0.1280* | 0.1058** | 0.1235* | |
ALT | 2.3380 | 2.9758 | 2.4852 | 2.0478 | 1.7062 | 2.8556 | 0.0486** | 0.0346** | 0.0449** | |
KKZ | 1.7452 | 1.8868 | 1.5357 | 1.4245 | 1.2258 | 1.7031 | 4.8940 | 0.1004** | 0.0269** | |
ML | 1.6970 | 1.7092 | 1.8264 | 1.5590 | 1.2904 | 2.1129 | 6.9754 | 2.2400 | 0.0918** | |
YL | 1.7694 | 1.7247 | 1.5168 | 1.5434 | 1.4682 | 1.7743 | 5.3179 | 9.0437 | 2.4733 |
QH | AS | AG | GS | SU | MG | ALT | KKZ | ML | YL | |
---|---|---|---|---|---|---|---|---|---|---|
QH | 0.1102 | 0.1299 | 0.1660 | 0.1587 | 0.1508 | 0.1985 | 0.2443 | 0.2249 | 0.2385 | |
AS | 0.1404 | 0.0986 | 0.1842 | 0.1695 | 0.1386 | 0.1586 | 0.2276 | 0.1991 | 0.2390 | |
AG | 0.1763 | 0.1118 | 0.1426 | 0.1820 | 0.1538 | 0.1736 | 0.2631 | 0.1946 | 0.2615 | |
GS | 0.1915 | 0.2385 | 0.1684 | 0.2374 | 0.1980 | 0.2228 | 0.2933 | 0.2443 | 0.2782 | |
SU | 0.1694 | 0.1997 | 0.2423 | 0.3143 | 0.1955 | 0.2701 | 0.3203 | 0.2853 | 0.3016 | |
MG | 0.1632 | 0.1423 | 0.1818 | 0.1710 | 0.2061 | 0.1723 | 0.2607 | 0.1914 | 0.2458 | |
ALT | 0.2470 | 0.1712 | 0.2044 | 0.2804 | 0.3208 | 0.1898 | 0.1298 | 0.0897 | 0.1223 | |
KKZ | 0.3499 | 0.2840 | 0.3529 | 0.4361 | 0.4786 | 0.3422 | 0.1027 | 0.1680 | 0.0825 | |
ML | 0.3149 | 0.2785 | 0.2538 | 0.3359 | 0.3821 | 0.2280 | 0.0617 | 0.2027 | 0.1453 | |
YL | 0.3484 | 0.3190 | 0.3632 | 0.4003 | 0.3894 | 0.3309 | 0.0957 | 0.0566 | 0.1843 |
Table 5 Nei’s genetic distance (DA, above the diagonal) and Nei’s standard genetic distance (DS, below the diagonal) among 10 Bactrain camel populations
QH | AS | AG | GS | SU | MG | ALT | KKZ | ML | YL | |
---|---|---|---|---|---|---|---|---|---|---|
QH | 0.1102 | 0.1299 | 0.1660 | 0.1587 | 0.1508 | 0.1985 | 0.2443 | 0.2249 | 0.2385 | |
AS | 0.1404 | 0.0986 | 0.1842 | 0.1695 | 0.1386 | 0.1586 | 0.2276 | 0.1991 | 0.2390 | |
AG | 0.1763 | 0.1118 | 0.1426 | 0.1820 | 0.1538 | 0.1736 | 0.2631 | 0.1946 | 0.2615 | |
GS | 0.1915 | 0.2385 | 0.1684 | 0.2374 | 0.1980 | 0.2228 | 0.2933 | 0.2443 | 0.2782 | |
SU | 0.1694 | 0.1997 | 0.2423 | 0.3143 | 0.1955 | 0.2701 | 0.3203 | 0.2853 | 0.3016 | |
MG | 0.1632 | 0.1423 | 0.1818 | 0.1710 | 0.2061 | 0.1723 | 0.2607 | 0.1914 | 0.2458 | |
ALT | 0.2470 | 0.1712 | 0.2044 | 0.2804 | 0.3208 | 0.1898 | 0.1298 | 0.0897 | 0.1223 | |
KKZ | 0.3499 | 0.2840 | 0.3529 | 0.4361 | 0.4786 | 0.3422 | 0.1027 | 0.1680 | 0.0825 | |
ML | 0.3149 | 0.2785 | 0.2538 | 0.3359 | 0.3821 | 0.2280 | 0.0617 | 0.2027 | 0.1453 | |
YL | 0.3484 | 0.3190 | 0.3632 | 0.4003 | 0.3894 | 0.3309 | 0.0957 | 0.0566 | 0.1843 |
[1] |
Balmus G, Trifonov VA, Biltueva LS, O'Brien PC, Alkalaeva ES, Fu B, Skidmore JA, Allen T, Graphodatsky AS, Yang F, Ferguson-Smith MA (2007) Cross-species chromosome painting among camel, cattle, pig and human: further insights into the putative Cetartiodactyla ancestral karyotype. Chromosome Research, 15, 499-514.
DOI URL PMID |
[2] | Chen YC (陈幼春), Wang YY (王毓英), Chang H (常洪), Cao HH (曹红鹤), Pang ZH (庞之洪), Zhang Y (张跃) (1990) The classification of Chinese yellow cattle. In: Characteristics of Chinese Yellow Cattle Ecospecies and Their Course of Utilization) (中国黄牛生态种特征及其利用方向)(ed. Chen YC (陈幼春)), pp. 89-93. China Agricultural Press, Beijing. (in Chinese) |
[3] | Di R (狄冉) (2008) The Microsatellite and SNPs Study of Chinese Cashmere Goats (中国产绒山羊微卫星和单核苷酸多态性研究). PhD dissertation, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing. (in Chinese) |
[4] | Evdotchenko D, Han Y, Bartenschlager H, Preuss S, Geldermann H (2003) New polymorphic microsatellite loci for different camel species. Molecular Ecology Notes, 3, 431-434. |
[5] | Gao HW (高宏巍), Wang J (王晶), He JX (何俊霞), Chen LY (陈鲁勇), Ji R (吉日木图), Meng H (孟和) (2009) Analysis on the genetic diversity and evolution in the Camelus bactrianus using SSR markers. Journal of Shanghai Jiaotong University (Agriculture Science) (上海交通大学学报) (农业科学版), 27, 89-95. (in Chinese with English abstract) |
[6] | Han JL (韩建林) (2000) Origin, Evolution and Genetic Diversity of Old World Genus of Camelus (旧世界驼属动物的起源、演化及其遗传多样性). PhD dissertation, Lanzhou University, Lanzhou. (in Chinese) |
[7] | Han JL, Ochieng JW, Lkhagva B, Hanotte O (2004) Genetic diversity and relationship of domestic Bactrian camels (Camelus bactrianus) in China and Mongolia. Journal of Camel Practice and Research, 11, 97-99. |
[8] | Hoffmann I, Marsan PA, Barker JSF, Cothran EG, Hanotte O, Lenstra JA, Milan D, Weigend S, Simianer H(2004) New MoDAD marker sets to be used in diversity studies for the major farm animal species: recommendations of a joint ISAG/FAO working group. In: Proc. 29th International Conference on Animal Genetics. Tokyo, Japan.Lang KDM, Wang Y, Plante Y (1996) Fifteen polymorphic dinuleotide microsatellites in llamas and alpacas. Animal Genetics, 27, 293. |
[9] | Men ZM (门正明), Han JL (韩建林), Zhang YZ (张月周) (1989) A study on the polymorphous heredity of blood proteins in Bactrian camel. Acta Veterinariaet Zootechnica Sinica (畜牧兽医学报), 20, 313-314. (in Chinese with English abstract) |
[10] |
Obreque V, Coogle L, Henney PJ, Bailey E, Mancilla R, García-Huidobro J, Hinrichsen P, Cothran EG (1998) Characterisation of 10 polymorphic alpaca dinucleotide microsatellites. Animal Genetics, 29, 461-462.
URL PMID |
[11] |
Penedo MCT, Caetano AR, Cordova K (1999) Eight microsatellite markers for south American camelids. Animal Genetics, 30, 166-167.
DOI URL PMID |
[12] |
Prichard JK, Stephens M, Donnelly P (2000) Inference structure using multilocus genotype data. Genetics, 155, 945-959.
URL PMID |
[13] | Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity, 86, 248-249. |
[14] | Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York. |
[15] |
Taylor KM, Hungerford DA, Snyder RL, Ulmer FA Jr (1968) Uniformity of kryotypes in the Camelidae. Cytogenetics, 7, 8-15.
DOI URL PMID |
[16] | Wang L (王乐), Ren ZJ (任战军), Cheng J (程佳), Wang YX (王咏絮), Wang HL (王洪亮) (2010) Genetic diversity of five domesticated Bactrian camel populations in China. Acta Agriculturae Boreali-occidentalis Sinica (西北农业学报), 9(11), 18-23. (in Chinese with English abstract) |
[17] | Yang SL, Wang ZG, Liu B, Zhang GX, Zhao SH, Yu M, Fan B, Li MH, Xiong TA, Li K (2003) Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genetics, Selection, Evolution, 35, 657-671. |
[18] | Zhao QJ (赵倩君) (2007) Origin, Genetic Diversity and Conservation of Chinese Sheep Populations (中国部分绵羊群体的起源、遗传多样性及保护研究). PhD dissertation, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing. (in Chinese) |
[1] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[2] | Qingduo Li, Dongmei Li. Analysis for the prevalence of global bat-borne Bartonella [J]. Biodiv Sci, 2023, 31(9): 23166-. |
[3] | Chen Feng, Jie Zhang, Hongwen Huang. Parallel situ conservation: A new plant conservation strategy to integrate in situ and ex situ conservation of plants [J]. Biodiv Sci, 2023, 31(9): 23184-. |
[4] | Hailing Qi, Pengzhen Fan, Yuehua Wang, Jie Liu. Genetic diversity and population structure of Juglans regia from six provinces in northern China [J]. Biodiv Sci, 2023, 31(8): 23120-. |
[5] | Fei Xiong, Hongyan Liu, Dongdong Zhai, Xinbin Duan, Huiwu Tian, Daqing Chen. Population genetic structure of Pelteobagrus vachelli in the upper Yangtze River based on genome re-sequencing [J]. Biodiv Sci, 2023, 31(4): 22391-. |
[6] | Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin. Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands [J]. Biodiv Sci, 2023, 31(4): 22585-. |
[7] | Yiyue He, Yuying Liu, Fubin Zhang, Qiang Qin, Yu Zeng, Zhenyu Lü, Kun Yang. Genetic diversity and population structure of Saurogobio dabryi under cascade water conservancy projects in the Jialing River [J]. Biodiv Sci, 2023, 31(11): 23160-. |
[8] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[9] | Xiaofeng Niu, Xiaomei Wang, Yan Zhang, Zhipeng Zhao, Enyuan Fan. Integration and application of sturgeon identification methods [J]. Biodiv Sci, 2022, 30(6): 22034-. |
[10] | Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland [J]. Biodiv Sci, 2022, 30(5): 21387-. |
[11] | Togtokh Mongke, Dongyi Bai, Tugeqin Bao, Ruoyang Zhao, Tana An, Aertengqimike Tiemuqier, Baoyindeligeer Mongkejargal, Has Soyoltiin, Manglai Dugarjaviin, Haige Han. Assessment of SNPs-based genomic diversity in different populations of Eastern Asian landrace horses [J]. Biodiv Sci, 2022, 30(5): 21031-. |
[12] | Jing Cui, Mingfang Xu, Qun Zhang, Yao Li, Xiaoshu Zeng, Sha Li. Differences in genetic diversity of Pleuronichthys cornutus in the coastal water of China and Japan based on three mitochondrial markers [J]. Biodiv Sci, 2022, 30(5): 21485-. |
[13] | Xinyu Cai, Xiaowei Mao, Yiqiang Zhao. Methods and research progress on the origin of animal domestication [J]. Biodiv Sci, 2022, 30(4): 21457-. |
[14] | Jun Sun, Yuyao Song, Yifeng Shi, Jian Zhai, Wenzhuo Yan. Progress of marine biodiversity studies in China seas in the past decade [J]. Biodiv Sci, 2022, 30(10): 22526-. |
[15] | Dongmei Li, Weihong Yang, Qingduo Li, Xi Han, Xiuping Song, Hong Pan, Yun Feng. High prevalence and genetic variation of Bartonella species inhabiting the bats in southwestern Yunnan [J]. Biodiv Sci, 2021, 29(9): 1245-1255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn