Biodiv Sci ›› 2011, Vol. 19 ›› Issue (2): 134-142. DOI: 10.3724/SP.J.1003.2011.09295
Special Issue: 中国的森林生物多样性监测
Previous Articles Next Articles
Wei Wang1, Zhengrong Luo1, Rongfei Zhou2, Daming Xu2, Jianguo Ai3, Bingyang Ding4,*()
Received:
2010-12-03
Accepted:
2011-02-23
Online:
2011-03-20
Published:
2011-06-01
Contact:
Bingyang Ding
Wei Wang, Zhengrong Luo, Rongfei Zhou, Daming Xu, Jianguo Ai, Bingyang Ding. Habitat associations of woody plant species in Baishanzu subtropical broad-leaved evergreen forest[J]. Biodiv Sci, 2011, 19(2): 134-142.
Fig. 2 Multivariate regression tree (MRT) for the tree species composition against micro-topographic factors in the Baishanzu plot. The information above the node denotes the selected factor and rule for the division of the quadrats. The number n below each branch give the number of quadrats in that habitat
Map of the habitat types classified by the multivariate regression tree at 10 m × 10 m scale. The diamonds with different color and numbers denote different group of habitats.1, Gully; 2, Steep slope; 3, Less-steep slope; 4, Ridge.
生境类别 Habitat category | 生境名称 Habitat name | 小样方数 Number of quadrats | 面积 Total area (ha) | 相对海拔 Relative elevation (m) | 凸度 Convexity (m) | 坡度 Slope (°) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最低 Min. | 最高 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | ||||||
1 | 沟谷 Gully | 203 | 2.03 | 3.49 | 109.08 | 49.90 | -8.71 | 0.06 | -2.67 | 13.43 | 35.55 | 27.47 | ||
2 | 陡坡 Steep slope | 36 | 0.36 | 11.39 | 91.77 | 43.78 | -7.66 | -0.03 | -1.99 | 35.64 | 41.95 | 37.54 | ||
3 | 缓坡 Less-steep slope | 194 | 1.94 | 9.70 | 120.53 | 67.90 | 0.07 | 3.35 | 1.49 | 10.64 | 40.95 | 27.69 | ||
4 | 山脊 Ridge | 67 | 0.67 | 26.77 | 114.62 | 75.63 | 3.37 | 10.04 | 4.90 | 11.95 | 37.28 | 27.42 |
Table 1 The topographic parameters of habitat categories in the 5 ha Baishanzu permanent plot
生境类别 Habitat category | 生境名称 Habitat name | 小样方数 Number of quadrats | 面积 Total area (ha) | 相对海拔 Relative elevation (m) | 凸度 Convexity (m) | 坡度 Slope (°) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
最低 Min. | 最高 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | 最小 Min. | 最大 Max. | 平均 Mean | ||||||
1 | 沟谷 Gully | 203 | 2.03 | 3.49 | 109.08 | 49.90 | -8.71 | 0.06 | -2.67 | 13.43 | 35.55 | 27.47 | ||
2 | 陡坡 Steep slope | 36 | 0.36 | 11.39 | 91.77 | 43.78 | -7.66 | -0.03 | -1.99 | 35.64 | 41.95 | 37.54 | ||
3 | 缓坡 Less-steep slope | 194 | 1.94 | 9.70 | 120.53 | 67.90 | 0.07 | 3.35 | 1.49 | 10.64 | 40.95 | 27.69 | ||
4 | 山脊 Ridge | 67 | 0.67 | 26.77 | 114.62 | 75.63 | 3.37 | 10.04 | 4.90 | 11.95 | 37.28 | 27.42 |
生长阶段 Growth stages | 径级 DBH (cm) | |
---|---|---|
灌木 Shrubs | 幼树 Sapling | 1.0 ≤ DBH < 1.5 |
生长期 Juvenile | 1.5 ≤ DBH < 2.5 | |
成熟期 Mature | DBH ≥ 2.5 | |
小乔木 Under-story trees | 幼树 Sapling | 1.0 ≤ DBH < 2.5 |
生长期 Juvenile | 2.5 ≤ DBH < 4.0 | |
成熟期 Mature | DBH ≥ 4.0 | |
高大乔木 Canopy trees | 幼树 Sapling | 1.0 ≤ DBH < 4.0 |
生长期 Juvenile | 4.0 ≤ DBH < 8.0 | |
成熟期 Mature | DBH ≥ 8.0 |
Table 2 Growth stages of different types of tree species
生长阶段 Growth stages | 径级 DBH (cm) | |
---|---|---|
灌木 Shrubs | 幼树 Sapling | 1.0 ≤ DBH < 1.5 |
生长期 Juvenile | 1.5 ≤ DBH < 2.5 | |
成熟期 Mature | DBH ≥ 2.5 | |
小乔木 Under-story trees | 幼树 Sapling | 1.0 ≤ DBH < 2.5 |
生长期 Juvenile | 2.5 ≤ DBH < 4.0 | |
成熟期 Mature | DBH ≥ 4.0 | |
高大乔木 Canopy trees | 幼树 Sapling | 1.0 ≤ DBH < 4.0 |
生长期 Juvenile | 4.0 ≤ DBH < 8.0 | |
成熟期 Mature | DBH ≥ 8.0 |
生境名称 Habitat name | 正相关的物种数 Number of species positively associated with habitat | 负相关的物种数 Number of species negatively associated with habitat |
---|---|---|
沟谷 Gully | 10 | 40 |
陡坡 Steep slope | 10 | 4 |
缓坡 Less-steep slope | 17 | 5 |
山脊 Ridge | 21 | 13 |
Table 3 The number of species with remarkable association in each habitat category
生境名称 Habitat name | 正相关的物种数 Number of species positively associated with habitat | 负相关的物种数 Number of species negatively associated with habitat |
---|---|---|
沟谷 Gully | 10 | 40 |
陡坡 Steep slope | 10 | 4 |
缓坡 Less-steep slope | 17 | 5 |
山脊 Ridge | 21 | 13 |
Fig. 4 Venn diagrams illustrating positive associations (I) and negative associations (II) of the sapling, juvenile, and mature stages with four habitats in the 5 ha Baishanzu permanent plot. Significance of association was determined with Torus-transla- tion tests at P<0.1. The numbers in the venn diagrams indicate the numbers of species that associated with habitats at different developmental stages.
Fig. 5 Number of species positively(A) and negatively(B) associated with each of the four habitat at the sapling, juvenile, and mature stages in the 5 ha Baishanzu permanent plot. Torus-translation tests were used to assess the significance of habitat associations for 89 tree and shrub species (P<0.1).
[1] | Chave J (2004) Neutral theory and community ecology. Ecology Letters, 7, 241-253. |
[2] |
Chen L, Mi XC, Comita SL, Zhang LW, Ren HB, Ma KP (2010) Community-level consequences of density dependence and habitat association in a subtropical broad-leaved forest. Ecology Letters, 13, 695-704.
URL PMID |
[3] | Clark DB, Clark DA, Read JM (1998) Edaphic variation and the mesoscale distribution of tree species in a neotropical rain forest. Journal of Ecology, 86, 101-112. |
[4] | Clark DB, Palmer MW, Clark DA (1999) Edaphic factors and the landscape scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675. |
[5] | Comita LS, Condit R, Hubbell SP (2007) Developmental changes in habitat associations of tropical trees. Journal of Ecology, 95, 482-492. |
[6] | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer-Verlag, Berlin. |
[7] |
Connell JH (1978) Diversity in tropical rain forests and coral reefs. Science, 199, 1302-1310.
URL PMID |
[8] | Dalling JW, Muller-Landau HC, Wright SJ, Hubbell SP (2002) Role of dispersal in the recruitment limitation of neotropical pioneer species. Journal of Ecology, 90, 714-727. |
[9] | De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology, 83, 1105-1117. |
[10] | Debski I, Burslem DFRP, Palmiotto PA, Lafrankie JV, Lee HS, Manokaran N (2002) Habitat preferences of Aporosa in two Malaysian rain forests: implications for abundance and co-existence. Ecology, 83, 2005-2018. |
[11] | Gong GQ (宫贵权), Cheng JM (程积民), Mi XC (米湘成), Chen SW (陈声文), Fang T (方腾) (2007) Habitat associations of wood species in the Gutianshan subtropical broad-leaved evergreen forest. Science of Soil and Water Conservation (中国水土保持科学), 5(3), 79-83. (in Chinese with English abstract) |
[12] | Grubb PJ (1977) The maintenance of species richness in plant communities: the importance of regeneration niche. Biological Reviews, 52, 107-145. |
[13] | Grubb PJ (1986) Problems posed by sparse and patchily distributed species in species-rich communities. In: Community Ecology (eds Diamond J, Case TJ), pp. 207-225. Harper & Row, New York. |
[14] | Gunatilleke CVS, Gunatilleke IAUN, Esufali S, Harms KE, Ashton PMS, Burslem DFRP, Ashton PS (2006) Species-habitat associations in a Sri Lankan dipterocarp forest. Journal of Tropical Ecology, 22, 371-384. |
[15] | Harms KE, Condit R, Hubbell SP, Foster SB (2001) Habitat associations of trees and shrubs in a 50 ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[16] | Hou JH (侯继华), Ma KP (马克平) (2002) On mechanisms of species coexistence in plant communities. Acta Phytoecologica Sinica (植物生态学报), 26, 1-8. (in Chinese with English abstract) |
[17] | Hubbell SP, Foster RB (1983) Diversity of canopy trees in a neotropical forest and implications for conservation. In: Tropical Rain Forest: Ecology and Management (eds Sutton SL, Whitmore TC, Chadwick AC), pp.25-41. Blackwell Scientific Publications, Oxford. |
[18] | Hubbell SP, Foster RB (1986) Biology, chance and history and the structure of tropical rain forest tree communities. In: Community Ecology, pp. 314-319. Harper & Row, New York. |
[19] |
Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler R, Wright SJ, de Lao SL (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest. Science, 283, 554-557.
DOI URL PMID |
[20] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ. |
[21] | Itoh A, Yamakura T, Ohkubo T, Kanzakim M, Palmiotto PA, Lafrankie JV, Ashton PS, Lee HS (2003) Importance of topography and soil texture in the spatial distribution of two sympatric dipterocarp trees in a Bornean rain forest. Ecological Research, 18, 307-320. |
[22] | Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 20, 415-423. |
[23] | Legendre P, Mi XC, Ren HB, Ma KP, Yu MJ, Sun IF, He FL (2009) Partitioning beta diversity in a subtropical broad-leaved forest of China. Ecology, 90, 663-674. |
[24] | Leigh EG (1999) Tropical Forest Ecology. Oxford University Press, Oxford. |
[25] | Li L, Huang ZL, Ye WH, Cao HL, Wei SG, Wang ZG, Lian JY, Sun IF, Ma KP, He FL (2009) Spatial distributions of tree species in a subtropical forest of China. Oikos, 118, 495-502. |
[26] | Liu M (刘梅), Jiang DS (蒋定生), Huang GJ (黄国俊), Fan XK (范兴科), Chang CE (畅彩娥) (1990) An analysis to the differences of soil water in varied places of hillslopes. Bulletin of Soil and Water Conservation (水土保持通报), 10(2), 16-20. (in Chinese with English abstract) |
[27] | Luo ZR, Ding BY, Mi XC, Yu JH, Wu YG (2009) Distribution patterns of tree species in an evergreen broadleaved forest in eastern China. Frontiers of Biology in China, 4, 531-538. |
[28] | Lutz HJ (1930) Original forest composition in northwestern Pennsylvania as indicated by early land survey notes. Journal of Forestry, 28, 1098-1103. |
[29] |
Nakashizuka T (2001) Species coexistence in temperate, mixed deciduous forests. Trends in Ecology and Evolution, 16, 205-210.
URL PMID |
[30] | Potts MD, Ashton PS, Kaufman LS, Plotkin JB (2002) Habitat patterns in tropical rainforests: a comparison of 105 plots in northwest Borneo. Ecology, 83, 2782-2797. |
[31] |
Potts MD, Davies SJ, Bossert WH, Tan S, Supardi MNN (2004) Habitat heterogeneity and niche structure of trees in two tropical rain forests. Oecologia, 139, 446-453.
URL PMID |
[32] | Qiu Y (邱扬), Fu BJ (傅伯杰), Wang J (王军), Zhang XL (张希来), Meng QH (孟庆华) (2007) Spatio temporal variation of soil moisture and its relation to environmental factors. Chinese Journal of Ecology (生态学杂志), 26, 100-107. (in Chinese with English abstract) |
[33] | Queenborough SA, Burslem DFRP, Garwood NC, Valencia R (2007) Habitat niche partitioning by 16 species of Myristicaceae in Amazonian Ecuador. Plant Ecology, 192, 193-207. |
[34] | Schupp EW, Fuentes M (1995) Spatial patterns of seed disperal and the unification of plant population ecology. Ecoscience, 2, 267-275. |
[35] | Shea K, Roxburgh SH, Rauschert ES (2004) Moving from pattern to process: coexistence mechanisms under intermediate disturbance regimes. Ecology Letters, 7, 491-508. |
[36] |
Shen GC, Yu MJ, Hu XS, Mi XC, Ren HB, Sun IF, Ma KP (2009) Species-area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. Ecology, 90, 3033-3041.
URL PMID |
[37] | Silvertown J (2004) Plant coexistence and the niche. Trends in Ecology and Evolution, 19, 606-611. |
[38] | Svenning JC (1999) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. Journal of Ecology, 87, 55-65. |
[39] | Tilman D, Pacala S (1993) The maintenance of species richness in plant communities. In: Species Diversity in Ecological Communities (eds Ricklefs RE, Schluter D), pp. 13-25. University of Chicago Press, Chicago. |
[40] |
Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment, and floristic variation of western Amazonian forests. Science, 299, 241-244.
DOI URL PMID |
[41] | Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229. |
[42] | Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends in Ecology and Evolution, 17, 379-385. |
[43] | Webb C, Peart DR (2000) Habitat associations of trees and seedlings in a Bornean rain forest. Journal of Ecology, 88, 464-478. |
[44] | Werner EE, Gilliam JF (1984) The ontogenetic niche and species interactions in size-structured populations. Annual Review of Ecology and Systematics, 15, 393-425. |
[45] |
Whitfield J (2002) Ecology: neutrality versus the niche. Nature, 417, 480-481.
DOI URL PMID |
[46] |
Wright SJ (2002) Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 130, 1-14.
DOI URL PMID |
[47] | Xu M (徐敏), Luo ZR (骆争荣), Yu MJ (于明坚), Ding BY (丁炳扬), Wu YG (吴友贵) (2007) Floristic composition and community structure of mid-montane evergreen broad-leaved forest in north slope of Baishanzu Mountain. Journal of Zhejiang University (Agriculture & Life Science) (浙江大学学报(农业与生命科学版)), 33, 450-454. (in Chinese with English abstract) |
[48] | Yamada T, Zuidema PA, Itoh A, Yamakura T, Ohkubo T, Kanzaki M, Tan S, Ashton PS (2007) Strong habitat preference of a tropical rain forest tree does not imply large differences in population dynamics across habitats. Journal of Ecology, 95, 332-342. |
[49] | Yamakura T, Kanzake M, Itoh A, Ohkubo T, Ogino K, Chai EOK, Lee HS, Ashton PS (1995) Topgraphy of a large-scale research plot established within a tropical rain forest at Lambir, Sarawak. Tropics, 5, 41-56. |
[50] | Zhu Y, Mi XC, Ren HB, Ma KP (2010) Density dependence is prevalent in a heterogeneous subtropical forest. Oikos, 119, 109-119. |
[1] | Yunwei Dong, Menghuan Bao, Jiao Cheng, Yiyong Chen, Jianguo Du, Yangchun Gao, Lisha Hu, Xincheng Li, Chunlong Liu, Geng Qin, Jin Sun, Xin Wang, Guang Yang, Chongliang Zhang, Xiong Zhang, Yuyang Zhang, Zhixin Zhang, Aibin Zhan, Qiang He, Jun Sun, Bin Chen, Zhongli Sha, Qiang Lin. Advances of marine biogeography in China: Species distribution model and its applications [J]. Biodiv Sci, 2024, 32(5): 23453-. |
[2] | Tingting Deng, Yan Wei, Siyuan Ren, Yan Zhu. Effects of topography and stand structure of warm temperate deciduous broad-leaved forest on understory herb diversity in Donglingshan, Beijing [J]. Biodiv Sci, 2023, 31(7): 22671-. |
[3] | Ziyu Ma, Zaixin He, Yiqing Wang, Dazhao Song, Fan Xia, Shiming Cui, Hongxin Su, Jianlin Deng, Ping Li, Sheng Li. An update on the current distribution and key habitats of the clouded leopard (Neofelis nebulosa) populations in China [J]. Biodiv Sci, 2022, 30(9): 22349-. |
[4] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[5] | Xiyang Hao, Cha He, Kelin Chu, Zhixin Shen, Qiang Zhao, Wei Gao, Da Pan, Hongying Sun. The distribution pattern and biodiversity conservation of freshwater crabs in Hainan Island [J]. Biodiv Sci, 2021, 29(5): 605-616. |
[6] | Yichao Li, Yongsheng Chen, Denis Sandanov, Ao Luo, Tong Lü, Xiangyan Su, Yunpeng Liu, Qinggang Wang, Viktor Chepinoga, Sergey Dudov, Wei Wang, Zhiheng Wang. Patterns and environmental drivers of Ranunculaceae species richness and phylogenetic diversity across eastern Eurasia [J]. Biodiv Sci, 2021, 29(5): 561-574. |
[7] | Yuanjun Yu, Huolin Luo, Nannan Liu, Dongjin Xiong, Yibo Luo, Boyun Yang. Influence of the climate change on suitable areas of Calanthe sieboldii and its pollinators in China [J]. Biodiv Sci, 2020, 28(7): 769-778. |
[8] | Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis [J]. Biodiv Sci, 2020, 28(1): 99-106. |
[9] | Shun Li,Liang Zou,Yinan Gong,Haitao Yang,Tianming Wang,Limin Feng,Jianping Ge. Advances in LiDAR technology in the field of animal ecology [J]. Biodiv Sci, 2019, 27(9): 1021-1031. |
[10] | Xiaoyun Shi,Xiaogang Shi,Qiang Hu,Tianpei Guan,Qiang Fu,Jian Zhang,Meng Yao,Sheng Li. Evaluating the potential habitat overlap and predation risk between snow leopards and free-range yaks in the Qionglai Mountains, Sichuan [J]. Biodiv Sci, 2019, 27(9): 951-959. |
[11] | Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606. |
[12] | Wang Yingcan, Lin Jiayi, Xu Han, Lin Mingxian, Li Yide. Numerical characteristics of plant sexual system of the woody plants in the 60 ha plot in the tropical rain forest in Jianfengling, Hainan Island [J]. Biodiv Sci, 2019, 27(3): 297-305. |
[13] | Chi Xiulian, Wang Qinggang, Guo Qiang, Yang Xian, Tang Zhiyao. Sprouting characteristics of communities during succession in an evergreen broad-leaved forest on Gutian Mountain, East China [J]. Biodiv Sci, 2019, 27(1): 24-32. |
[14] | Yu Jianping, Shen Yunyi, Song Xiaoyou, Chen Xiaonan, Li Sheng, Shen Xiaoli. Evaluating the effectiveness of functional zones for black muntjac (Muntiacus crinifrons) protection in Qianjiangyuan National Park pilot site [J]. Biodiv Sci, 2019, 27(1): 5-12. |
[15] | Yan Sun, Zhongshi Zhou, Rui Wang, Heinz Müller-Schärer. Biological control opportunities of ragweed are predicted to decrease with climate change in East Asia [J]. Biodiv Sci, 2017, 25(12): 1285-1294. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn