Biodiv Sci ›› 2010, Vol. 18 ›› Issue (5): 497-508. DOI: 10.3724/SP.J.1003.2010.497
• Original Papers • Previous Articles Next Articles
Lei Li, Tong Liu*(), Bin Liu, Zhongquan Liu, Langming Si, Rong Zhang
Received:
2009-12-22
Accepted:
2010-07-27
Online:
2010-09-20
Published:
2010-09-20
Contact:
Tong Liu
Lei Li, Tong Liu, Bin Liu, Zhongquan Liu, Langming Si, Rong Zhang. Phenotypic variation and covariation among natural populations of Arabidopsis thaliana in North Xinjiang[J]. Biodiv Sci, 2010, 18(5): 497-508.
Fig. 1 The sketch map of locations of Arabidopsis thaliana populations in north of Tianshan Mountains. A: Shihezi; B: Dushanzi; C; Guozigou; D; Emin; E: Aletai; F: Fuyun; G: Qinghe.
种群 Population | 主成分 PC | 贡献率 POV (%) | 特征向量 Eigenvectors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
分枝数 Branch number | 株高 Plant height (cm) | 株重 Plant biomass (mg) | 根重 Root biomass (mg) | 根长 Root length (cm) | 单个果实重 Single fruit weight (mg) | 单株果数 Number of fruits per plant | 果实长度 Fruit length (mm) | 果实开裂力度 Fruit dehiscence force (kg/cm2) | |||
小尺度种群 Micro-scale population | |||||||||||
独山子 Dushanzi | 1 | 37.39 | 0.80 | 0.78 | 0.60 | 0.81 | 0.69 | -0.44 | 0.59 | 0.29 | 0.08 |
2 | 18.45 | 0.31 | -0.18 | 0.47 | -0.06 | -0.32 | 0.55 | -0.18 | 0.59 | 0.73 | |
果子沟 Guzigou | 1 | 52.55 | 0.64 | 0.82 | 0.92 | 0.85 | 0.84 | 0.49 | 0.84 | 0.60 | -0.10 |
2 | 14.48 | 0.36 | -0.16 | -0.07 | -0.24 | 0.09 | 0.55 | -0.04 | -0.07 | 0.86 | |
青河1 Qinghe1 | 1 | 54.84 | 0.63 | 0.76 | 0.93 | 0.77 | 0.74 | 0.66 | 0.81 | 0.72 | 0.52 |
2 | 15.40 | -0.55 | 0.36 | -0.04 | -0.36 | -0.46 | 0.06 | 0.36 | 0.06 | 0.67 | |
青河2 Qinghe 2 | 1 | 48.17 | 0.77 | 0.63 | 0.96 | 0.82 | 0.46 | 0.38 | 0.83 | 0.74 | -0.33 |
2 | 17.63 | -0.48 | -0.51 | 0.09 | 0.24 | 0.59 | 0.74 | -0.02 | -0.05 | 0.32 | |
阿勒泰1 Aletai1 | 1 | 46.25 | 0.93 | 0.53 | 0.93 | 0.75 | 0.58 | 0.65 | 0.80 | 0.17 | 0.34 |
2 | 20.99 | -0.06 | -0.82 | 0.14 | 0.15 | 0.42 | 0.09 | -0.39 | 0.85 | 0.31 | |
阿勒泰2 Aletai 2 | 1 | 44.69 | 0.82 | 0.80 | 0.97 | 0.75 | 0.47 | -0.03 | 0.91 | 0.26 | 0.23 |
2 | 14.02 | 0.21 | 0.14 | -0.02 | -0.35 | 0.06 | 0.24 | -0.13 | -0.41 | 0.90 | |
阿勒泰3 Aletai 3 | 1 | 33.07 | 0.75 | -0.47 | 0.65 | 0.68 | 0.81 | -0.15 | 0.29 | -0.68 | 0.21 |
2 | 21.97 | -0.14 | 0.67 | 0.03 | 0.35 | 0.27 | 0.31 | 0.68 | 0.52 | 0.68 | |
额敏 Emin | 1 | 42.33 | 0.82 | 0.81 | 0.88 | 0.79 | 0.32 | 0.45 | 0.79 | 0.27 | 0.17 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | -0.01 | -0.34 | -0.03 | 0.85 | |
富蕴 Fuyun | 1 | 39.66 | 0.71 | 0.14 | 0.89 | 0.88 | 0.72 | -0.53 | 0.67 | 0.42 | -0.13 |
2 | 24.01 | 0.45 | 0.86 | 0.09 | -0.24 | 0.07 | 0.54 | -0.46 | 0.68 | 0.38 | |
石河子 Shihezi | 1 | 35.13 | 0.77 | 0.24 | 0.91 | 0.86 | 0.44 | 0.37 | 0.70 | -0.02 | 0.09 |
2 | 27.27 | -0.03 | 0.67 | 0.08 | -0.15 | -0.50 | 0.33 | -0.02 | 0.93 | 0.84 | |
局域尺度种群 Local-scale population | |||||||||||
天山北 North of Tianshan | 1 | 56.61 | 0.56 | 0.88 | 0.97 | 0.91 | 0.76 | 0.77 | 0.93 | 0.42 | 0.12 |
2 | 15.82 | 0.15 | -0.02 | -0.04 | -0.15 | -0.38 | 0.06 | -0.05 | 0.70 | 0.86 | |
阿尔泰北 North of Aletai | 1 | 40.08 | 0.27 | 0.74 | 0.94 | 0.83 | 0.64 | 0.17 | 0.90 | -0.01 | -0.39 |
2 | 18.99 | 0.66 | -0.40 | 0.10 | 0.19 | 0.10 | -0.67 | 0.21 | 0.18 | 0.73 | |
阿尔泰南 South of Aletai | 1 | 43.54 | -0.06 | -0.34 | 0.91 | 0.93 | 0.66 | -0.30 | 0.95 | 0.15 | -0.81 |
2 | 24.16 | 0.75 | 0.72 | 0.30 | 0.08 | 0.29 | 0.45 | -0.05 | 0.80 | 0.23 | |
天山西 West of Tianshan | 1 | 52.67 | 0.64 | 0.82 | 0.92 | 0.85 | 0.85 | 0.51 | 0.85 | 0.61 | -0.10 |
2 | 14.44 | 0.38 | -0.15 | -0.08 | -0.25 | 0.09 | 0.53 | -0.04 | -0.10 | 0.87 | |
额敏 Emin | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 | |
区域尺度种群 Regional-scale population | |||||||||||
天山 Tianshan | 1 | 51.79 | 0.24 | 0.94 | 0.97 | 0.95 | 0.68 | 0.09 | 0.95 | 0.65 | -0.28 |
2 | 17.43 | 0.64 | -0.15 | -0.05 | -0.14 | 0.30 | 0.74 | -0.07 | 0.24 | 0.65 | |
阿尔泰山 Aletai Mountain | 1 | 41.34 | 0.24 | 0.75 | 0.93 | 0.91 | 0.51 | 0.03 | 0.85 | 0.09 | -0.64 |
2 | 14.66 | 0.67 | 0.02 | 0.07 | -0.08 | 0.14 | 0.46 | -0.01 | 0.64 | 0.46 | |
塔尔巴哈台山 Tarbagatai Mountain | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 |
Table 1 Principal component analysis of nine phenotypic traits of Arabidopsis thaliana populations at three environmental scales
种群 Population | 主成分 PC | 贡献率 POV (%) | 特征向量 Eigenvectors | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
分枝数 Branch number | 株高 Plant height (cm) | 株重 Plant biomass (mg) | 根重 Root biomass (mg) | 根长 Root length (cm) | 单个果实重 Single fruit weight (mg) | 单株果数 Number of fruits per plant | 果实长度 Fruit length (mm) | 果实开裂力度 Fruit dehiscence force (kg/cm2) | |||
小尺度种群 Micro-scale population | |||||||||||
独山子 Dushanzi | 1 | 37.39 | 0.80 | 0.78 | 0.60 | 0.81 | 0.69 | -0.44 | 0.59 | 0.29 | 0.08 |
2 | 18.45 | 0.31 | -0.18 | 0.47 | -0.06 | -0.32 | 0.55 | -0.18 | 0.59 | 0.73 | |
果子沟 Guzigou | 1 | 52.55 | 0.64 | 0.82 | 0.92 | 0.85 | 0.84 | 0.49 | 0.84 | 0.60 | -0.10 |
2 | 14.48 | 0.36 | -0.16 | -0.07 | -0.24 | 0.09 | 0.55 | -0.04 | -0.07 | 0.86 | |
青河1 Qinghe1 | 1 | 54.84 | 0.63 | 0.76 | 0.93 | 0.77 | 0.74 | 0.66 | 0.81 | 0.72 | 0.52 |
2 | 15.40 | -0.55 | 0.36 | -0.04 | -0.36 | -0.46 | 0.06 | 0.36 | 0.06 | 0.67 | |
青河2 Qinghe 2 | 1 | 48.17 | 0.77 | 0.63 | 0.96 | 0.82 | 0.46 | 0.38 | 0.83 | 0.74 | -0.33 |
2 | 17.63 | -0.48 | -0.51 | 0.09 | 0.24 | 0.59 | 0.74 | -0.02 | -0.05 | 0.32 | |
阿勒泰1 Aletai1 | 1 | 46.25 | 0.93 | 0.53 | 0.93 | 0.75 | 0.58 | 0.65 | 0.80 | 0.17 | 0.34 |
2 | 20.99 | -0.06 | -0.82 | 0.14 | 0.15 | 0.42 | 0.09 | -0.39 | 0.85 | 0.31 | |
阿勒泰2 Aletai 2 | 1 | 44.69 | 0.82 | 0.80 | 0.97 | 0.75 | 0.47 | -0.03 | 0.91 | 0.26 | 0.23 |
2 | 14.02 | 0.21 | 0.14 | -0.02 | -0.35 | 0.06 | 0.24 | -0.13 | -0.41 | 0.90 | |
阿勒泰3 Aletai 3 | 1 | 33.07 | 0.75 | -0.47 | 0.65 | 0.68 | 0.81 | -0.15 | 0.29 | -0.68 | 0.21 |
2 | 21.97 | -0.14 | 0.67 | 0.03 | 0.35 | 0.27 | 0.31 | 0.68 | 0.52 | 0.68 | |
额敏 Emin | 1 | 42.33 | 0.82 | 0.81 | 0.88 | 0.79 | 0.32 | 0.45 | 0.79 | 0.27 | 0.17 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | -0.01 | -0.34 | -0.03 | 0.85 | |
富蕴 Fuyun | 1 | 39.66 | 0.71 | 0.14 | 0.89 | 0.88 | 0.72 | -0.53 | 0.67 | 0.42 | -0.13 |
2 | 24.01 | 0.45 | 0.86 | 0.09 | -0.24 | 0.07 | 0.54 | -0.46 | 0.68 | 0.38 | |
石河子 Shihezi | 1 | 35.13 | 0.77 | 0.24 | 0.91 | 0.86 | 0.44 | 0.37 | 0.70 | -0.02 | 0.09 |
2 | 27.27 | -0.03 | 0.67 | 0.08 | -0.15 | -0.50 | 0.33 | -0.02 | 0.93 | 0.84 | |
局域尺度种群 Local-scale population | |||||||||||
天山北 North of Tianshan | 1 | 56.61 | 0.56 | 0.88 | 0.97 | 0.91 | 0.76 | 0.77 | 0.93 | 0.42 | 0.12 |
2 | 15.82 | 0.15 | -0.02 | -0.04 | -0.15 | -0.38 | 0.06 | -0.05 | 0.70 | 0.86 | |
阿尔泰北 North of Aletai | 1 | 40.08 | 0.27 | 0.74 | 0.94 | 0.83 | 0.64 | 0.17 | 0.90 | -0.01 | -0.39 |
2 | 18.99 | 0.66 | -0.40 | 0.10 | 0.19 | 0.10 | -0.67 | 0.21 | 0.18 | 0.73 | |
阿尔泰南 South of Aletai | 1 | 43.54 | -0.06 | -0.34 | 0.91 | 0.93 | 0.66 | -0.30 | 0.95 | 0.15 | -0.81 |
2 | 24.16 | 0.75 | 0.72 | 0.30 | 0.08 | 0.29 | 0.45 | -0.05 | 0.80 | 0.23 | |
天山西 West of Tianshan | 1 | 52.67 | 0.64 | 0.82 | 0.92 | 0.85 | 0.85 | 0.51 | 0.85 | 0.61 | -0.10 |
2 | 14.44 | 0.38 | -0.15 | -0.08 | -0.25 | 0.09 | 0.53 | -0.04 | -0.10 | 0.87 | |
额敏 Emin | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 | |
区域尺度种群 Regional-scale population | |||||||||||
天山 Tianshan | 1 | 51.79 | 0.24 | 0.94 | 0.97 | 0.95 | 0.68 | 0.09 | 0.95 | 0.65 | -0.28 |
2 | 17.43 | 0.64 | -0.15 | -0.05 | -0.14 | 0.30 | 0.74 | -0.07 | 0.24 | 0.65 | |
阿尔泰山 Aletai Mountain | 1 | 41.34 | 0.24 | 0.75 | 0.93 | 0.91 | 0.51 | 0.03 | 0.85 | 0.09 | -0.64 |
2 | 14.66 | 0.67 | 0.02 | 0.07 | -0.08 | 0.14 | 0.46 | -0.01 | 0.64 | 0.46 | |
塔尔巴哈台山 Tarbagatai Mountain | 1 | 42.32 | 0.82 | 0.81 | 0.89 | 0.80 | 0.33 | 0.46 | 0.79 | 0.27 | 0.18 |
2 | 14.92 | -0.03 | 0.02 | -0.11 | 0.01 | 0.69 | 0.00 | -0.35 | -0.02 | 0.86 |
Fig. 2 Results of variance analysis of nine phenotypic traits of ten Arabidopsis thaliana populations at three environmental scales. ** Significantly different among populations at P = 0.01 level. a, b, c, d represent Duncan grouping values, the same letter indicating no significance among populations. Micro-scale population: D, Dushanzi; G, Guzigou; Q1, Qinghe1; Q2, Qinghe 2; A1, Aletai 1; A2, Aletai 2; A3, Aletai 3; E, Emin; F, Fuyun; S, Shihezi. Local-scale population: SD, North of Tianshan; G, Guzigou; E, Emin; A, North of Aletai; QF, South of Aletai.
性状 Traits | 小尺度种群 Micro-scale population | 局域尺度种群 Local-scale population | 区域尺度种群 Regional - scale population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | |||
分枝数 Branch number | 3.94 | 3.94 | 50.00 | 0.26 | 8.16 | 3.13 | 1.82 | 24.74 | 6.86 | ||
株高 Plant height (cm) | 68.89 | 6.41 | 91.49 | 78.32 | 5.72 | 93.19 | 50.66 | 0.28 | 99.45 | ||
株重 Plant biomass (mg) | 84.92 | 1.67 | 98.08 | 63.64 | 5.97 | 91.43 | 51.93 | 17.45 | 74.85 | ||
根重 Root biomass (mg) | 72.84 | 4.86 | 93.75 | 72.50 | 1.85 | 97.51 | 54.58 | 3.63 | 93.77 | ||
根长 Root length (cm) | 21.84 | 8.54 | 71.88 | 23.90 | 3.57 | 87.00 | 38.74 | 30.53 | 55.93 | ||
单个果实重 Single fruit weight (mg) | 42.06 | 6.54 | 86.54 | 32.03 | 7.81 | 80.39 | 42.28 | 14.09 | 75.00 | ||
单株果数 Number of fruits per plant | 64.78 | 6.32 | 91.11 | 70.60 | 2.02 | 97.22 | 28.11 | 5.90 | 82.64 | ||
果实长度 Fruit length (mm) | 16.59 | 11.90 | 58.22 | 27.83 | 13.70 | 67.01 | 19.15 | 10.19 | 65.27 | ||
果实开裂力度 (kg/cm2) Fruit dehiscence force | 66.35 | 0.47 | 99.29 | 60.00 | 20.00 | 75.00 | 77.78 | 11.11 | 87.50 | ||
平均值 Mean | 49.13 | 5.62 | 82.26 | 47.68 | 7.64 | 76.88 | 40.56 | 13.10 | 71.25 |
Table 2 The percentage of variance components and differentiation coefficients of phenotypic traits (Vst) within and among Arabidopsis thaliana populations at three environmental scales
性状 Traits | 小尺度种群 Micro-scale population | 局域尺度种群 Local-scale population | 区域尺度种群 Regional - scale population | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | 种群间 Among populations | 种群内 Within population | 表型分化 系数 Vst | |||
分枝数 Branch number | 3.94 | 3.94 | 50.00 | 0.26 | 8.16 | 3.13 | 1.82 | 24.74 | 6.86 | ||
株高 Plant height (cm) | 68.89 | 6.41 | 91.49 | 78.32 | 5.72 | 93.19 | 50.66 | 0.28 | 99.45 | ||
株重 Plant biomass (mg) | 84.92 | 1.67 | 98.08 | 63.64 | 5.97 | 91.43 | 51.93 | 17.45 | 74.85 | ||
根重 Root biomass (mg) | 72.84 | 4.86 | 93.75 | 72.50 | 1.85 | 97.51 | 54.58 | 3.63 | 93.77 | ||
根长 Root length (cm) | 21.84 | 8.54 | 71.88 | 23.90 | 3.57 | 87.00 | 38.74 | 30.53 | 55.93 | ||
单个果实重 Single fruit weight (mg) | 42.06 | 6.54 | 86.54 | 32.03 | 7.81 | 80.39 | 42.28 | 14.09 | 75.00 | ||
单株果数 Number of fruits per plant | 64.78 | 6.32 | 91.11 | 70.60 | 2.02 | 97.22 | 28.11 | 5.90 | 82.64 | ||
果实长度 Fruit length (mm) | 16.59 | 11.90 | 58.22 | 27.83 | 13.70 | 67.01 | 19.15 | 10.19 | 65.27 | ||
果实开裂力度 (kg/cm2) Fruit dehiscence force | 66.35 | 0.47 | 99.29 | 60.00 | 20.00 | 75.00 | 77.78 | 11.11 | 87.50 | ||
平均值 Mean | 49.13 | 5.62 | 82.26 | 47.68 | 7.64 | 76.88 | 40.56 | 13.10 | 71.25 |
矩阵对比 Matrix comparison | Mantel’s r | P |
---|---|---|
分枝数 vs 地理距离 Branch number vs geographic distance | -0.037 | 0.955 |
株高 vs 地理距离 Plant height vs geographic distance | 0.338 | 0.000 |
株重 vs 地理距离 Plant biomass vs geographic distance | 0.246 | 0.000 |
根重 vs 地理距离 Root biomass vs geographic distance | 0.279 | 0.000 |
单个果实重 vs 地理距离 Single fruit weight vs geographic distance | 0.062 | 0.016 |
单株果数 vs 地理距离 Number of fruits per plant vs geographic distance | 0.352 | 0.000 |
果实长度 vs 地理距离 Fruit length vs geographic distance | 0.097 | 0.001 |
果实开裂力度 vs 地理距离 Fruit dehiscence force vs geographic distance | 0.303 | 0.000 |
根长 vs 地理距离 Root length vs geographic distance | 0.006 | 0.398 |
Table 3 Mantel test between geographic distance and phenotypic traits of Arabidopsis thaliana populations
矩阵对比 Matrix comparison | Mantel’s r | P |
---|---|---|
分枝数 vs 地理距离 Branch number vs geographic distance | -0.037 | 0.955 |
株高 vs 地理距离 Plant height vs geographic distance | 0.338 | 0.000 |
株重 vs 地理距离 Plant biomass vs geographic distance | 0.246 | 0.000 |
根重 vs 地理距离 Root biomass vs geographic distance | 0.279 | 0.000 |
单个果实重 vs 地理距离 Single fruit weight vs geographic distance | 0.062 | 0.016 |
单株果数 vs 地理距离 Number of fruits per plant vs geographic distance | 0.352 | 0.000 |
果实长度 vs 地理距离 Fruit length vs geographic distance | 0.097 | 0.001 |
果实开裂力度 vs 地理距离 Fruit dehiscence force vs geographic distance | 0.303 | 0.000 |
根长 vs 地理距离 Root length vs geographic distance | 0.006 | 0.398 |
[1] |
Adrian B (2007) Perceptions of epigenetics. Nature, 447, 396-398.
URL PMID |
[2] | An ZX (安争夕), Shen GM (沈观冕), Li XY (李学禹) (1995) Flora of Xinjiang (新疆植物志). Xinjiang Science Technology and Hygeian Press, Urumqi. (in Chinese) |
[3] | Badyaev AV, Uller T (2009) Parental effects in ecology and evolution: mechanisms, processes and implications. Philosophical Transactions of the Royal Society B, 364, 1169-1177. |
[4] | Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J (2006) Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Molecular Ecology, 15, 1405-1418. |
[5] | Banta JA, Dole J, Cruzan MB, Pigliucci M (2007) Evidence of local adaptation to coarse-grained environmental variation in Arabidopsis thaliana. Evolution, 61, 2419-2432. |
[6] |
Beck JB, Schmuths H, Schual BA (2008) Native range genetic variation in Arabidopsis thaliana is strongly geographically structured and reflects Pleistocene glacial dynamics. Molecular Ecology, 17, 902-915.
URL PMID |
[7] |
Benfey PN, Mitchell-Olds T (2008) From genotype to phenotype: systems biology meets natural variation. Science, 320, 495-497.
DOI URL PMID |
[8] | Boyd EW, Dorn LA, Weinig C, Schmitt J (2007) Maternal effects and germination timing mediate the expression of winter and spring annual life histories in Arabidopsis thaliana. International Journal of Plant Sciences, 168, 205-214. |
[9] | Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecology Letters, 11, 106-115. |
[10] | Brock MT, Maloof JN, Weinig C (2010) Genes underlying quantitative variation in ecologically important traits: PIF4 (PHYTOCHROME INTERACTING FACTOR 4) is associated with variation in internode length, flowering time, and fruit set in Arabidopsis thaliana. Molecular Ecology, 19, 1187-1199. |
[11] | Conchita A, Carlos MH (2001) Patterns made of patterns: variation and covariation of leaf nutrient concentrations within and between populations of Prunus mahaleb. New Phytologist, 150, 629-640. |
[12] | Dalziel AC, Rogers SM, Schulte PM (2009) Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology. Molecular Ecology, 18, 4997-5017. |
[13] | Donohue K (2009) Completing the cycle: maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society B, 364, 1059-1074. |
[14] | Donohue K, Dorn LA, Griffith C, Schmitt J, Kim ES, Aguilera A (2005a) Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution, 59, 740-757. |
[15] | Donohue K, Dorn LA, Griffith C, Schmitt J, Kim ES, Aguilera A (2005b) The evolutionary ecology of seed germination of Arabidopsis thaliana: variable natural selection on germination timing. Evolution, 59, 758-770. |
[16] | Dowell RD, Ryan O, Jansen A, Cheung D, Agarwala S, Danford T, Douglas A, Bernstein PR, Lawrence EH, Chin B, Nislow C, Giaever G, Patrick CP, Gerald RF, David KG, Boone C (2010) Genotype to phenotype: a complex problem. Science, 328, 4-9. |
[17] | Galloway LF, Burgess KS (2009) Manipulation of flowering time: phenological integration and maternal effects. Ecology, 90, 2139-2148. |
[18] | Gao LX, Chen JK, Yang J (2008) Phenotypic plasticity: Eco-Devo and evolution. Journal of Systematics and Evolution, 46, 441-451. |
[19] | Ge S (葛颂), Hong DY (洪德元) (1994) Biosystematic studies on Adenophora potaninii Korsh. Complex (Campanulac- eae). I. Phenotypic plasticity. Acta Phytotaxonomica Sinica (植物分类学报), 32, 489-503. (in Chinese with English abstract) |
[20] | Gianoli E, Palacio-Lopez K (2009) Phenotypic integration may constrain phenotypic plasticity in plants. Oikos, 118, 1924-1928. |
[21] | Gu YJ (辜云杰), Luo JX (罗建勋), Wu YW (吴远伟), Cao XJ (曹小军) (2009) Phenotypic diversity in natural popula- tions of Picea balfouriana in Sichuan, China. Chinese Journal of Plant Ecology (植物生态学报), 33, 291-301. (in Chinese with English abstract) |
[22] |
He F, Kang D, Ren Y, Qu LJ, Zhen Y, Gu H (2007) Genetic diversity of the natural populations of Arabidopsis thaliana in China. Heredity, 99, 423-431.
URL PMID |
[23] |
Hedrick PW (2005) A standardized genetic differentiation measure. Evolution, 59, 1633-1638.
URL PMID |
[24] | Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241. |
[26] | Klingenberg CP (2008) Morphological integration and developmental modularity. Annual Review of Ecology, Evolution, and Systematics, 39, 115-132. |
[27] | Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology, 55, 141-172. |
[28] | Liu T (刘彤), Zhao XJ (赵新俊), Cui YH (崔运河), Liu CL (刘龙昌), Jia YM (贾亚敏), Luo B (骆郴), Wei P (魏鹏), Zhang YH (张元杭) (2008) Spatial associations and patterns of Arabidopsis thaliana and its adjacent species in the middle part of northern Tianshan Mountain. Acta Ecologica Sinica (生态学报), 28, 1842-1849. (in Chinese with English abstract) |
[29] | Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature, 441, 947-952. |
[30] |
Mitchell-Olds T, Willis J, Goldstein D (2007) Which evolutionary processes influence natural genetic variation for phenotypic traits? Nature Reviews Genetics, 8, 845-856.
URL PMID |
[31] | Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philosophical Transactions of the Royal Society B, 365, 557-566. |
[32] | Pigliucci M, Cammell K, Schmitt J (1999) Evolution of phenotypic plasticity a comparative approach in the phylogenetic neighbourhood of Arabidopsis thaliana. Journal of Evolutionary Biology, 12, 779-791. |
[33] | Pigliucci M, Kolodynska A (2002) Phenotypic plasticity to light intensity in Arabidopsis thaliana: invariance of reaction norms and phenotypic integration. Evolutionary Ecology, 16, 27-47. |
[34] | Price RA, Palmer JA, Systematic relationships of Arabidopsis: a molecular and morphological perspective. 7-19. Cold Spring Harbour Laboratory Press, Cold Spring Harbour. |
[35] |
Rebecca LY, Alexander VB (2006) Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution. Evolution, 60, 1-9.
URL PMID |
[36] | Reboud X, Corre LV, Scarcelli N, Roux F, David JL, Bataillon T, Camillert C, Brunel D, Mckhann H (2004) Natural variation among accessions of Arabidopsis thaliana: beyond the flowering date, what morphological traits are relevant to study adaptation? In: Plant Adaptation: Molecular Biology and Ecology (eds Cronk QC, Whitton J, Taylor IEP), pp. 135-142. NRC Research Press, Ottawa, Canada. |
[37] | Schlichting CD (1989) Phenotypic integration and environmental change. BioScience, 39, 460-464. |
[38] | Schlichting CD, Smith H (2002) Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evolutionary Ecology, 16, 189-211. |
[39] | Tao Y (陶冶), Wang D (王丹), Liu T (刘彤), Jiang CG (蒋成国), Zhai W (翟伟), Li YG (李勇冠), Tang C (唐诚) (2009) Community characteristics of Arabidopsis thaliana natural populations in the northern Tianshan Mountains along with relevant environmental factors. Biodiversity Science (生物多样性), 17, 51-61. (in Chinese with English abstract) |
[40] |
Turner TL, Bourne EC, Von Wettberg EJ, Hu TT, Nuzhdin SV (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260-263.
DOI URL PMID |
[41] | Young NM (2006) Function, ontogeny and canalization of shape variance in the primate scapula. Journal of Anatomy, 209, 23-36. |
[42] |
Verdugo CG, Yela CG, Manrique E, Casas RR, Balaguer L (2009) Phenotypic plasticity and integration across the canopy of Olea europaea subsp. guanchica (Oleaceae) in populations with different wind exposures. American Journal of Botany. 96, 1454-1461.
DOI URL PMID |
[43] | Wagner GP (1990) A comparative study of morphological integration in Apis mellifera (Insecta, Hymenoptera). Journal of Zoological Systematics and Evolutionary Research, 28, 48-61. |
[44] | Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nature Reviews Genetics, 8, 921-931. |
[45] |
Werner JD, Borevitz JO, Uhlenhaut N H, Ecker JR, Chory J, Weigel D (2005) FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics, 170, 1197-1207.
DOI URL PMID |
[46] | Willmore KE, Leamy L, Hallgrímsson B (2006) Effects of developmental and functional interactions on mouse cranial variability through late ontogeny. Evolution and Development, 8, 550-567. |
[47] | Winker K (2009) Reuniting phenotype and genotype in biodiversity research. BioScience, 59, 657-665. |
[48] | Zhang HQ (张恒庆), An LJ (安利佳), Zu YG (祖元刚) (1999) Geographical variation of morphology characters for natural population of Pinus koraiensis. Acta Ecologica Sinica (生态学报), 19, 932-938. (in Chinese with English abstract) |
[49] | Zhen Y, Ungerer MC (2008) Clinal variation in freezing tolerance among natural accessions of Arabidopsis thaliana. New Phytologist, 177, 419-427. |
[1] | Cao Hao, Donghui Wu, Lingzi Mo, Guoliang Xu. A review on gut microbial diversity and function of overwintering animals [J]. Biodiv Sci, 2024, 32(3): 23407-. |
[2] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[3] | Rui Luo, Ya Chen, Hanma Zhang. Research progress on whole-genome resequencing in Brassica [J]. Biodiv Sci, 2023, 31(10): 23237-. |
[4] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[5] | Zhenbin Jiao, Yibo Luo. Effects of environmental and genetic factors on phenotypic traits and species classification of Dendrobium huoshanense [J]. Biodiv Sci, 2021, 29(8): 1073-1086. |
[6] | Zhengyan Hu, Quanjing Zheng, Qiyong Mu, Zhiqiang Du, Lin Liu, Yaowu Xing, Ting-Shen Han. The mating system and reproductive assurance of Rorippa elata (Brassicaceae) across latitude [J]. Biodiv Sci, 2021, 29(6): 712-721. |
[7] | Xiangxiang Chen, Zhongshuai Gai, Juntuan Zhai, Jindong Xu, Peipei Jiao, Zhihua Wu, Zhijun Li. Genetic diversity and construction of core conservation units of the natural populations of Populus euphratica in Northwest China [J]. Biodiv Sci, 2021, 29(12): 1638-1649. |
[8] | Qiuhong Feng, Dengfeng Li, Tao Yu, Junqing Li, Wenbao Ma, Lei Zhang. Phenotypic fruit and seed variations of Acer catalpifolium, a Wild Plant with Extremely Small Populations in China [J]. Biodiv Sci, 2020, 28(3): 314-322. |
[9] | Fang Sheng, Shuying Chen, Jia Tian, Peng Li, Xue Qin, Shuping Luo, Jiang Li. Genetic diversity of Crataegus songorica in Xinjiang [J]. Biodiv Sci, 2017, 25(5): 518-530. |
[10] | Chi Li, Daode Yang, Yuming Zhang, Yucheng Song, Pengfei Li, Zhigang Jiang. Seasonal variation in nocturnal bed-site selection by Milu (Elaphurus davidianus) in Hubei Shishou Milu National Nature Reserve, China [J]. Biodiv Sci, 2016, 24(9): 1031-1038. |
[11] | Li Liu, Jiangping Shu, Hongjin Wei, Rui Zhang, Hui Shen, Yuehong Yan. De novo transcriptome analysis of the rare fern Monachosorum maximowiczii (Dennstaedtiaceae) endemic to East Asia [J]. Biodiv Sci, 2016, 24(12): 1325-1334. |
[12] | Xueping Wei, Xianchun Zhang. Distributional patterns of the monolete and trilete ferns in China [J]. Biodiv Sci, 2016, 24(10): 1129-1134. |
[13] |
Keping Ma.
New opportunities for mainstreaming biodiversity conservation [J]. Biodiv Sci, 2015, 23(5): 557-558. |
[14] | Dexing Zhang. Unorthodox reflections on molecular ecology research in China [J]. Biodiv Sci, 2015, 23(5): 559-569. |
[15] | Yunfang Zhong, Zhe Zhang, Xiqiang Song, Zhaode Zhou. Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes [J]. Biodiv Sci, 2014, 22(4): 467-475. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn