Biodiv Sci ›› 2022, Vol. 30 ›› Issue (8): 22067. DOI: 10.17520/biods.2022067
Special Issue: 昆虫多样性与生态功能
• Original Papers: Animal Diversity • Previous Articles Next Articles
Runming Yang1,2, Akihiro Nakamura1,3,*()
Received:
2022-02-09
Accepted:
2022-03-18
Online:
2022-08-20
Published:
2022-08-31
Contact:
Akihiro Nakamura
Runming Yang, Akihiro Nakamura. Cavity-dwelling ants tend to colonize close to artificial light[J]. Biodiv Sci, 2022, 30(8): 22067.
Fig. 1 Artificial bamboo nests production (a and b) and setting in the field (c and d; nests were fixed on the tree trunk, 1.5 m away from the ground and keeping the hole downward for prevent raining water)
属 Genus | 干季 Dry season | 雨季 Rainy season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | 原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | |||||||
NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | |
弓背蚁属 Camponotus | 6 | 17 | 4 | 8 | 6 | 19 | 3 | 6 | 2 | 13 | 3 | 12 |
举腹蚁属 Crematogaster | 1 | 1 | 2 | 6 | 2 | 7 | 2 | 3 | 2 | 9 | 0 | 0 |
臭蚁属 Dolichoderus | 1 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
大头蚁属 Pheidole | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
菲臭蚁属 Philidris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
多刺蚁属 Polyrhachis | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 2 |
棒角蚁属 Rhopalomastix | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
酸臭蚁属 Tapinoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
狡臭蚁属 Technomyrmex | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 0 | 2 | 3 |
铺道蚁属 Tetramorium | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
虹臭蚁属 Iridomyrmex | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
小家蚁属 Monomorium | 0 | 0 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 2 | 10 |
合计 Total | 11 | 28 | 9 | 18 | 13 | 34 | 11 | 22 | 5 | 23 | 13 | 32 |
Table 1 Taxonomic information of ants found in artificial bamboo nests
属 Genus | 干季 Dry season | 雨季 Rainy season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | 原始林 Primary forest | 次生林 Secondary forest | 橡胶林 Rubber plantation | |||||||
NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | NS | NN | |
弓背蚁属 Camponotus | 6 | 17 | 4 | 8 | 6 | 19 | 3 | 6 | 2 | 13 | 3 | 12 |
举腹蚁属 Crematogaster | 1 | 1 | 2 | 6 | 2 | 7 | 2 | 3 | 2 | 9 | 0 | 0 |
臭蚁属 Dolichoderus | 1 | 7 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
大头蚁属 Pheidole | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
菲臭蚁属 Philidris | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
多刺蚁属 Polyrhachis | 1 | 1 | 0 | 0 | 0 | 0 | 2 | 6 | 0 | 0 | 2 | 2 |
棒角蚁属 Rhopalomastix | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 |
酸臭蚁属 Tapinoma | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 |
狡臭蚁属 Technomyrmex | 1 | 1 | 0 | 0 | 2 | 2 | 1 | 3 | 0 | 0 | 2 | 3 |
铺道蚁属 Tetramorium | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 2 | 1 | 1 | 1 | 1 |
虹臭蚁属 Iridomyrmex | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
小家蚁属 Monomorium | 0 | 0 | 1 | 1 | 2 | 5 | 0 | 0 | 0 | 0 | 2 | 10 |
合计 Total | 11 | 28 | 9 | 18 | 13 | 34 | 11 | 22 | 5 | 23 | 13 | 32 |
模型 Model | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants |
---|---|---|
AIC | AIC | |
R~ D + S + (1 | T) + D:S | 780 | 591 |
R ~ D + H + S + (1 | T) + D:S | 782 | 593 |
R ~ D + H + S + (1 | T) + D:S + D:H | 783 | 594 |
R ~ D + H + S + (1 | T) + D:S + S:H | 783 | 596 |
R~ D + S + (1 | T) | 784 | 592 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H | 784 | 597 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H + D:H:S | 785 | 596 |
Table 2 The glmmTMB best model selection of bamboos with ants and bamboos with nesting ants. The bold AIC values indicate lowest value which is the best model.
模型 Model | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants |
---|---|---|
AIC | AIC | |
R~ D + S + (1 | T) + D:S | 780 | 591 |
R ~ D + H + S + (1 | T) + D:S | 782 | 593 |
R ~ D + H + S + (1 | T) + D:S + D:H | 783 | 594 |
R ~ D + H + S + (1 | T) + D:S + S:H | 783 | 596 |
R~ D + S + (1 | T) | 784 | 592 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H | 784 | 597 |
R ~ D + H + S + (1 | T) + D:S + S:H + D:H + D:H:S | 785 | 596 |
固定因子 Fixed effects | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants | ||||
---|---|---|---|---|---|---|
χ2 | df | P | χ2 | df | P | |
D | 11.245 | 1 | < 0.001 | 11.518 | 1 | < 0.001 |
S | 6.109 | 1 | 0.013 | 4.235 | 1 | 0.039 |
D:S | 5.501 | 1 | 0.019 | 1.713 | 1 | 0.191 |
Table 3 The glmmTMB best models of bamboos with ants and bamboos with nesting ants. The bold P values indicate P < 0.05.
固定因子 Fixed effects | 存在蚂蚁的竹巢 Bamboos with ants | 被蚂蚁占用的竹巢 Bamboos with nesting ants | ||||
---|---|---|---|---|---|---|
χ2 | df | P | χ2 | df | P | |
D | 11.245 | 1 | < 0.001 | 11.518 | 1 | < 0.001 |
S | 6.109 | 1 | 0.013 | 4.235 | 1 | 0.039 |
D:S | 5.501 | 1 | 0.019 | 1.713 | 1 | 0.191 |
Fig. 2 Mean proportion of bamboos occupied by ants (a) and nesting ants (b) at different distances away from the light source (0, 10, 50 and 100 m) across the three habitats and two seasons. Error bars are standard errors. Bamboo nests were not set at 100 m site in dry season. PF, Primary forest; SF, Secondary forest; RP, Rubber plantation.
Fig. 3 Mean proportion of bamboos with different entrance size occupied by ants (a) and nesting ants (b) across the three habitats. Error bars are standard errors. PF, Primary forest; SF, Secondary forest; RP, Rubber plantation.
Fig. 4 Non-metric multidimensional scaling (NMDS) ordination of the ant assemblages found in the bamboo sticks placed in primary forest (PF), secondry forest (SF) and rubber plantation (RP) in dry and rainy seasons.
Fig. 5 Non-metric multidimensional scaling (NMDS) ordination of the ant assemblages found in the bamboo sticks placed in primary forest (PF), secondry forest (SF) and rubber plantation (RP) along the distance. Rare species were found at 10 m in the primary forest, caused extreme outlier in NMDS analysis, which had been removed in the figure.
[1] | Agosti ED, Majer JD, Alonso LE, Schultz TR (2000) Ant:Standard Methods for Measuring and Monitoring Biodiversity. Smithsonian Institution Press, Washington. |
[2] |
Andersen AN (1995) A classification of Australian ant communities, based on functional groups which parallel plant life-forms in relation to stress and disturbance. Journal of Biogeography, 22, 15.
DOI URL |
[3] |
Armbrecht I, Perfecto I, Silverman E (2006) Limitation of nesting resources for ants in Colombian forests and coffee plantations. Ecological Entomology, 31, 403-410.
DOI URL |
[4] |
Arruda FV, Pesquero MA, Marcelino DG, Leite GA, Delabie JHC, Fagundes R (2016) Size and condition of bamboo as structural factors behind the vertical stratification of the bamboo-nesting ant community. Insectes Sociaux, 63, 99-107.
DOI URL |
[5] |
Brooks ME, Kristensen K, van Benthem KJ, Magnusson A, Berg CW, Nielsen A, Skaug HJ, Mächler M, Bolker BM (2017) Modeling zero-inflated count data with glmmTMB. bioRxiv, doi: 10.1101/132753.
DOI |
[6] |
Czaczkes TJ, Bastidas-Urrutia AM, Ghislandi P, Tuni C (2018) Reduced light avoidance in spiders from populations in light-polluted urban environments. The Science of Nature, 105, 64.
DOI URL |
[7] |
Davies TW, Bennie J, Cruse D, Blumgart D, Inger R, Gaston KJ (2017) Multiple night-time light-emitting diode lighting strategies impact grassland invertebrate assemblages. Global Change Biology, 23, 2641-2648.
DOI URL |
[8] |
Deblauwe I, Dekoninck W (2007) Diversity and distribution of ground-dwelling ants in a lowland rainforest in southeast Cameroon. Insectes Sociaux, 54, 334-342.
DOI URL |
[9] | Debout GDG, Dalecky A, Ngomi AN, McKey DB (2009) Dynamics of species coexistence: Maintenance of a plant- ant competitive metacommunity. Oikos, 118, 873-884. |
[10] |
Duarte C, Quintanilla-Ahumada D, Anguita C, Manríquez PH, Widdicombe S, Pulgar J, Silva-Rodríguez EA, Miranda C, Manríquez K, Quijón PA (2019) Artificial light pollution at night (ALAN) disrupts the distribution and circadian rhythm of a sandy beach isopod. Environmental Pollution, 248, 565-573.
DOI URL |
[11] |
Durrant J, Botha LM, Green MP, Jones TM (2018) Artificial light at night prolongs juvenile development time in the black field cricket, Teleogryllus commodus. Journal of Experimental Zoology, Part B: Molecular and Developmental Evolution, 330, 225-233.
DOI PMID |
[12] |
Dwyer RG, Bearhop S, Campbell HA, Bryant DM (2013) Shedding light on light: Benefits of anthropogenic illumination to a nocturnally foraging shorebird. Journal of Animal Ecology, 82, 478-485.
DOI PMID |
[13] |
Firebaugh A, Haynes KJ (2016) Experimental tests of light-pollution impacts on nocturnal insect courtship and dispersal. Oecologia, 182, 1203-1211.
PMID |
[14] | Frank KD (2009) Exploitation of artificial light at night by a diurnal jumping spider. Peckhamia, 52, 277-287. |
[15] |
Friedrich R, Philpott SM (2009) Nest-site limitation and nesting resources of ants (Hymenoptera: Formicidae) in urban green spaces. Environmental Entomology, 38, 600-607.
PMID |
[16] |
Grenis K, Tjossem B, Murphy SM (2015) Predation of larval Lepidoptera in habitat fragments varies spatially and temporally but is not affected by light pollution. Journal of Insect Conservation, 19, 559-566.
DOI URL |
[17] | Hammond J, Yi DZ, McLellan T, Zhao JW (2015) Situational Analysis Report: Xishuangbanna Autonomous Dai Prefecture, Yunnan Province, China. World Agroforestry Centre. |
[18] | Holldobler B, Wilson E (1990) The Ants. Harvard University Press, Cambridge, MA. |
[19] |
Jiménez-Soto E, Philpott SM (2015) Size matters: Nest colonization patterns for twig-nesting ants. Ecology and Evolution, 5, 3288-3298.
DOI PMID |
[20] |
Kalinkat G, Grubisic M, Jechow A, Schroer S, Hölker F (2021) Assessing long-term effects of artificial light at night on insects: What is missing and how to get there. Insect Conservation and Diversity, 14, 260-270.
DOI URL |
[21] | Keroumi AE, Naamani K, Soummane H, Dahbi A (2012) Seasonal dynamics of ant community structure in the Moroccan Argan Forest. Journal of Insect Science, 12, 94. |
[22] | Klimes P (2017) Diversity and specificity of ant-plant interactions in canopy communities:Insights from primary and secondary tropical forests in new Guinea. In: Ant-Plant Interactions (eds Oliveira PS, Koptur S), pp. 26-51. Cambridge University Press, Cambridge. |
[23] |
Knop E, Zoller L, Ryser R, Gerpe C, Hörler M, Fontaine C (2017) Artificial light at night as a new threat to pollination. Nature, 548, 206-209.
DOI URL |
[24] |
Longino JT, Coddington J, Colwell RK (2002) The ant fauna of a tropical rain forest: Estimating species richness three different ways. Ecology, 83, 689-702.
DOI URL |
[25] | Miller CR, Barton BT, Zhu LK, Radeloff VC, Oliver KM, Harmon JP, Ives AR (2017) Combined effects of night warming and light pollution on predator-prey interactions. Proceedings of the Royal Society B: Biological Sciences, 284, 20171195. |
[26] |
Mottl O, Yombai J, Fayle TM, Novotný V, Klimeš P (2020) Experiments with artificial nests provide evidence for ant community stratification and nest site limitation in a tropical forest. Biotropica, 52, 277-287.
DOI URL |
[27] | Narendra A, Reid SF, Raderschall CA (2013) Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels. PLoS ONE, 8, e58801. |
[28] |
Owens ACS, Cochard P, Durrant J, Farnworth B, Perkin EK, Seymoure B (2020) Light pollution is a driver of insect declines. Biological Conservation, 241, 108259.
DOI URL |
[29] |
Philpott SM, Foster PF (2005) Nest-site limitation in coffee agroecosystems: Artificial nests maintain diversity of arboreal ants. Ecological Applications, 15, 1478-1485.
DOI URL |
[30] | Pilosof S, Porter MA, Pascual M, Kéfi S (2017) The multilayer nature of ecological networks. Nature Ecology & Evolution, 1, 101. |
[31] |
Powell S (2009) How ecology shapes caste evolution: Linking resource use, morphology, performance and fitness in a superorganism. Journal of Evolutionary Biology, 22, 1004-1013.
DOI PMID |
[32] |
Powell S, Costa AN, Lopes CT, Vasconcelos HL (2011) Canopy connectivity and the availability of diverse nesting resources affect species coexistence in arboreal ants. Journal of Animal Ecology, 80, 352-360.
DOI PMID |
[33] | Sanders D, Gaston KJ (2018) How ecological communities respond to artificial light at night. Journal of Experimental Zoology, Part A: Ecological and Integrative Physiology, 329, 394-400. |
[34] | Sullivan SMP, Hossler K, Meyer LA (2019) Artificial lighting at night alters aquatic-riparian invertebrate food webs. Ecological Applications, 29, e01821. |
[35] |
Thébault E, Fontaine C (2010) Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853-856.
DOI PMID |
[36] | Ugolini A, Boddi V, Mercatelli L, Castellini C (2005) Moon orientation in adult and young sandhoppers under artificial light. Proceedings of the Royal Society B: Biological Sciences, 272, 2189-2194. |
[37] |
van Geffen KG, van Eck E, de Boer RA, Salis L, Berendse F, Veenendaal EM (2015) Artificial light at night inhibits mating in a Geometrid moth. Insect Conservation and Diversity, 8, 282-287.
DOI URL |
[38] |
van Langevelde F, Ettema JA, Donners M, WallisDeVries MF, Groenendijk D (2011) Effect of spectral composition of artificial light on the attraction of moths. Biological Conservation, 144, 2274-2281.
DOI URL |
[39] | Wielgoss A, Tscharntke T, Rumede A, Fiala B, Seidel H, Shahabuddin S, Clough Y (2014) Interaction complexity matters:Disentangling services and disservices of ant communities driving yield in tropical agroecosystems. Proceedings of the Royal Society B: Biological Sciences, 281, 20132144. |
[40] | Xu ZH (1999) An analysis on the ant fauna of the tropical rain forest in Xishuangbanna of China. Zoological Research, 20, 379-384. (in Chinese with English abstract) |
[徐正会 (1999) 西双版纳热带雨林蚁科昆虫区系分析. 动物学研究, 20, 379-384.] | |
[41] | Zhang NN, Chen YQ, Lu ZX, Zhang W, Li KL (2013) Species diversity, community structure difference and indicator species of leaf-litter ants in rubber plantations and secondary natural forests in Yunnan, southwestern China. Acta Entomologica Sinica, 56, 1314-1323. (in Chinese with English abstract) |
[张念念, 陈又清, 卢志兴, 张威, 李可力 (2013) 云南橡胶林和天然次生林枯落物层蚂蚁物种多样性、群落结构差异及指示种. 昆虫学报, 56, 1314-1323.] |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn