Biodiv Sci ›› 2021, Vol. 29 ›› Issue (8): 1108-1119. DOI: 10.17520/biods.2021086
• Original Papers: Animal Diversity • Previous Articles Next Articles
Chengxiang Xu(), Lu Zhao, Weifeng Du, Siqiang Zhang, Yongying Wu, Fei Zhou
Received:
2021-03-09
Accepted:
2021-05-07
Online:
2021-08-20
Published:
2021-07-28
Contact:
Chengxiang Xu
Chengxiang Xu, Lu Zhao, Weifeng Du, Siqiang Zhang, Yongying Wu, Fei Zhou. Food sources and trophic levels of terrestrial cave fauna in Yuping Town, Libo County, Guizhou Province[J]. Biodiv Sci, 2021, 29(8): 1108-1119.
洞穴 Cave | 样本 Sample | 样本数 Sample number | δ13C (‰) | δ15N (‰) |
---|---|---|---|---|
水江洞 Shuijiang Cave | 有光带土壤有机质 Soil organic matter in light zone | 5 | -27.01 ± 0.13 | 4.46 ± 0.55 |
弱光带土壤有机质 Soil organic matter in weak light zone | 5 | -29.97 ± 0.01 | 2.74 ± 0.39 | |
黑暗带土壤有机质 Soil organic matter in dark zone | 5 | -26.42 ± 0.03 | 3.31 ± 0.05 | |
苔藓植物 Bryophyte | NC | -38.14 ± 0.45 | 3.65 ± 0.24 | |
蕨类植物 Pteridophyte | 62 | -31.79 ± 0.21 | 0.84 ± 0.07 | |
单子叶植物 Monocotyledon | 19 | -33.30 ± 0.03 | 0.01 ± 0.34 | |
双子叶植物 Dicotyledon | 66 | -33.03 ± 0.19 | 1.41 ± 0.16 | |
龙宫洞 Longgong Cave | 有光带土壤有机质 Soil organic matter in light zone | 5 | -26.98 ± 0.08 | 5.67 ± 0.50 |
弱光带土壤有机质 Soil organic matter in weak light zone | 5 | -32.73 ± 0.03 | 1.58 ± 0.15 | |
黑暗带土壤有机质 Soil organic matter in dark zone | 5 | -30.09 ± 0.32 | -2.12 ± 0.60 | |
苔藓植物 Bryophyte | NC | -38.25 ± 0.95 | -2.26 ± 0.11 | |
蕨类植物 Pteridophyte | 49 | -32.51 ± 0.17 | -0.27 ± 0.00 | |
单子叶植物 Monocotyledon | 22 | -33.46 ± 0.47 | 3.14 ± 0.36 | |
双子叶植物 Dicotyledon | 33 | -32.38 ± 0.22 | 3.72 ± 0.16 | |
双龙洞 Shuanglong Cave | 有光带土壤有机质 Soil organic matter in light zone | 5 | -24.68 ± 0.41 | 4.59 ± 0.17 |
弱光带土壤有机质 Soil organic matter in weak light zone | 5 | -26.47 ± 0.27 | 4.84 ± 0.08 | |
黑暗带土壤有机质 Soil organic matter in dark zone | 5 | -30.34 ± 0.67 | 1.11 ± 0.44 | |
苔藓植物 Bryophyte | NC | -31.03 ± 0.29 | -0.88 ± 0.28 | |
蕨类植物 Pteridophyte | 55 | -33.38 ± 0.47 | -0.66 ± 0.30 | |
单子叶植物 Monocotyledon | 19 | -29.44 ± 0.49 | 0.58 ± 0.34 | |
双子叶植物 Dicotyledon | 56 | -32.59 ± 0.14 | 0.10 ± 0.26 |
Table 1 The δ13C and δ15N values of soil organic matter and plants in three caves (mean ± SD)
洞穴 Cave | 样本 Sample | 样本数 Sample number | δ13C (‰) | δ15N (‰) |
---|---|---|---|---|
水江洞 Shuijiang Cave | 有光带土壤有机质 Soil organic matter in light zone | 5 | -27.01 ± 0.13 | 4.46 ± 0.55 |
弱光带土壤有机质 Soil organic matter in weak light zone | 5 | -29.97 ± 0.01 | 2.74 ± 0.39 | |
黑暗带土壤有机质 Soil organic matter in dark zone | 5 | -26.42 ± 0.03 | 3.31 ± 0.05 | |
苔藓植物 Bryophyte | NC | -38.14 ± 0.45 | 3.65 ± 0.24 | |
蕨类植物 Pteridophyte | 62 | -31.79 ± 0.21 | 0.84 ± 0.07 | |
单子叶植物 Monocotyledon | 19 | -33.30 ± 0.03 | 0.01 ± 0.34 | |
双子叶植物 Dicotyledon | 66 | -33.03 ± 0.19 | 1.41 ± 0.16 | |
龙宫洞 Longgong Cave | 有光带土壤有机质 Soil organic matter in light zone | 5 | -26.98 ± 0.08 | 5.67 ± 0.50 |
弱光带土壤有机质 Soil organic matter in weak light zone | 5 | -32.73 ± 0.03 | 1.58 ± 0.15 | |
黑暗带土壤有机质 Soil organic matter in dark zone | 5 | -30.09 ± 0.32 | -2.12 ± 0.60 | |
苔藓植物 Bryophyte | NC | -38.25 ± 0.95 | -2.26 ± 0.11 | |
蕨类植物 Pteridophyte | 49 | -32.51 ± 0.17 | -0.27 ± 0.00 | |
单子叶植物 Monocotyledon | 22 | -33.46 ± 0.47 | 3.14 ± 0.36 | |
双子叶植物 Dicotyledon | 33 | -32.38 ± 0.22 | 3.72 ± 0.16 | |
双龙洞 Shuanglong Cave | 有光带土壤有机质 Soil organic matter in light zone | 5 | -24.68 ± 0.41 | 4.59 ± 0.17 |
弱光带土壤有机质 Soil organic matter in weak light zone | 5 | -26.47 ± 0.27 | 4.84 ± 0.08 | |
黑暗带土壤有机质 Soil organic matter in dark zone | 5 | -30.34 ± 0.67 | 1.11 ± 0.44 | |
苔藓植物 Bryophyte | NC | -31.03 ± 0.29 | -0.88 ± 0.28 | |
蕨类植物 Pteridophyte | 55 | -33.38 ± 0.47 | -0.66 ± 0.30 | |
单子叶植物 Monocotyledon | 19 | -29.44 ± 0.49 | 0.58 ± 0.34 | |
双子叶植物 Dicotyledon | 56 | -32.59 ± 0.14 | 0.10 ± 0.26 |
洞穴 Cave | δ13C (‰) | δ15N (‰) | ||||||
---|---|---|---|---|---|---|---|---|
植物 Plants | 土壤有机质 Soil organic matter | 植物 Plants | 土壤有机质 Soil organic matter | |||||
水江洞 Shuijiang Cave | F = 326.65 | P < 0.01 | F = 1,225.08 | P < 0.01 | F = 143.20 | P < 0.01 | F = 8.845 | P > 0.05 |
龙宫洞 Longgong Cave | F = 76.57 | P < 0.01 | F = 683.14 | P < 0.01 | F = 504.54 | P < 0.01 | F = 168.16 | P < 0.01 |
双龙洞 Shuanglong Cave | F = 64.80 | P < 0.01 | F = 110.05 | P < 0.01 | F = 15.59 | P < 0.01 | F = 169.41 | P < 0.01 |
Table 2 Variance analysis of δ13C and δ15N values of plants and soil organic matter in three caves
洞穴 Cave | δ13C (‰) | δ15N (‰) | ||||||
---|---|---|---|---|---|---|---|---|
植物 Plants | 土壤有机质 Soil organic matter | 植物 Plants | 土壤有机质 Soil organic matter | |||||
水江洞 Shuijiang Cave | F = 326.65 | P < 0.01 | F = 1,225.08 | P < 0.01 | F = 143.20 | P < 0.01 | F = 8.845 | P > 0.05 |
龙宫洞 Longgong Cave | F = 76.57 | P < 0.01 | F = 683.14 | P < 0.01 | F = 504.54 | P < 0.01 | F = 168.16 | P < 0.01 |
双龙洞 Shuanglong Cave | F = 64.80 | P < 0.01 | F = 110.05 | P < 0.01 | F = 15.59 | P < 0.01 | F = 169.41 | P < 0.01 |
洞穴 Cave | 光带 Light zone | 洞穴动物 Cave fauna | 样本数 Sample number | δ13C (‰) (mean ± SD) | δ15N (‰) (mean ± SD) | 营养级 Trophic level |
---|---|---|---|---|---|---|
水江洞 Shuijiang Cave | 有光带 Light zone | 环口螺科 Cyclophoridae | 16 | -28.55 ± 1.20 | 4.49 ± 1.27 | 1.01 ± 0.37 |
钻头螺科 Subulinidae | 17 | -32.04 ± 1.41 | 6.51 ± 1.41 | 1.60 ± 0.41 | ||
烟管螺科 Clausiliidae | 3 | -27.84 ± 0.71 | - | - | ||
瞳孔蜗牛科 Corrillidae | 3 | -28.80 ± 0.15 | 4.40 ± 0.42 | 1.02 ± 0.12 | ||
巴蜗牛科 Bradybaenidae | 104 | -27.99 ± 0.46 | 4.91 ± 0.22 | 1.13 ± 0.06 | ||
派模蛛科 Pimoidae | 3 | -25.20 | 10.13 | 2.67 | ||
肖蛸科 Tetragnathidae | 3 | -25.80 ± 0.12 | 7.46 ± 0.05 | 1.88 ± 0.02 | ||
球蛛科 Theridiidae | 3 | -28.54 ± 0.26 | 6.09 ± 0.14 | 1.48 ± 0.04 | ||
蚁蛉科 Myrmeleontidae | 10 | -27.12 ± 0.12 | 10.55 ± 0.11 | 2.79 ± 0.03 | ||
大蚊科 Tipulidae | 24 | -34.22 ± 0.39 | 7.61 ± 0.41 | 1.93 ± 0.12 | ||
弱光带 Weak light zone | 环口螺科 Cyclophoridae | 3 | -27.09 ± 0.28 | - | - | |
烟管螺科 Clausiliidae | 3 | -24.17 ± 0.95 | - | - | ||
巴蜗牛科 Bradybaenidae | 8 | -26.30 ± 0.33 | - | - | ||
暗蛛科 Amaurobiidae | 9 | -23.87 ± 0.19 | 16.43 ± 0.05 | 5.03 ± 0.01 | ||
蠼螋科 Labiduridae | 2 | -27.04 ± 0.41 | 9.96 ± 0.10 | 3.12 ± 0.03 | ||
驼螽科 Rhaphidophoridae | 30 | -25.21 ± 0.19 | 8.11 ± 0.03 | 2.58 ± 0.01 | ||
大蚊科 Tipulidae | 2 | -24.60 | 6.88 | 2.22 | ||
黑暗带 Dark zone | 暗蛛科 Amaurobiidae | 11 | -24.44 ± 0.18 | 15.51 ± 0.06 | 4.59 ± 0.02 | |
蚰蜒科 Scutigeridae | 2 | -25.38 ± 0.04 | 8.51 ± 0.08 | 2.53 ± 0.02 | ||
交翅马陆科 Cambalopsidae | 8 | -25.70 ± 0.10 | 6.66 ± 0.06 | 1.99 ± 0.02 | ||
驼螽科 Rhaphidophoridae | 30 | -25.49 ± 0.40 | 7.80 ± 0.29 | 2.32 ± 0.09 | ||
大蚊科 Tipulidae | 2 | -28.46 | 6.92 | 2.06 | ||
夜蛾科 Noctuidae | 6 | -28.31 ± 0.03 | 4.96 ± 0.01 | 1.48 ± 0.00 | ||
假吸血蝠科 Megadermatidae | 2 | -25.73 ± 0.05 | 9.23 ± 0.02 | 2.74 ± 0.00 | ||
龙宫洞 Longgong Cave | 有光带 Light zone | 漏斗蛛科 Agelenidae | 2 | -28.56 ± 0.33 | 9.19 ± 0.03 | 2.04 ± 0.01 |
园蛛科 Araneidae | 2 | -26.24 ± 0.11 | 10.40 ± 0.13 | 2.39 ± 0.04 | ||
跳蛛科 Salticidae | 3 | -28.80 ± 0.25 | 8.17 ± 0.03 | 1.74 ± 0.01 | ||
刺客蛛科 Sicariidae | 2 | -23.43 ± 0.03 | 14.21 ± 0.07 | 3.51 ± 0.02 | ||
洞穴 Cave | 光带 Light zone | 洞穴动物 Cave fauna | 样本数 Sample number | δ13C (‰) (mean ± SD) | δ15N (‰) (mean ± SD) | 营养级 Trophic level |
龙宫洞 Longgong Cave | 有光带 Light zone | 肖蛸科 Tetragnathidae | 3 | -25.87 | 10.91 | 2.54 |
妩蛛科 Uloboridae | 3 | -25.67 ± 0.15 | 11.64 ± 0.04 | 2.76 ± 0.01 | ||
角囊马陆科 Cambalidae | 3 | -24.87 ± 0.33 | 3.83 ± 0.23 | 1.54 ± 0.07 | ||
蜚蠊科 Blattidae | 3 | -27.85 ± 0.23 | 7.86 ± 0.06 | 1.65 ± 0.02 | ||
蠼螋科 Labiduridae | 2 | -25.27 | 10.01 | 2.28 | ||
蚁蛉科 Myrmeleontidae | 18 | -26.98 ± 0.33 | - | - | ||
大蚊科 Tipulidae | 6 | -31.71 | 6.17 | 1.15 | ||
黑暗带 Dark zone | 拟阿勇蛞蝓科 Ariophantidae | 3 | -29.30 ± 0.48 | - | - | |
椎实螺科 Lymnaeidae | 3 | -29.74 ± 0.31 | 2.54 ± 0.25 | 2.37 ± 0.08 | ||
坚齿螺科 Canaenidae | 2 | -28.92 ± 0.11 | 1.86 ± 0.20 | 2.17 ± 0.06 | ||
巨蟹蛛科 Sparassidae | 2 | -26.68 ± 0.16 | 8.11 ± 0.07 | 4.01 ± 0.02 | ||
刺盲蛛科 Podoctidae | 2 | -27.76 ± 0.23 | 7.10 ± 0.36 | 3.71 ± 0.11 | ||
蜚蠊科 Blattidae | 3 | -27.74 ± 0.10 | 3.34 ± 0.18 | 2.61 ± 0.05 | ||
蠼螋科 Labiduridae | 2 | -26.35 ± 0.39 | 8.07 ± 0.08 | 4.00 ± 0.02 | ||
驼螽科 Rhaphidophoridae | 22 | -25.85 ± 0.19 | 7.20 ± 0.40 | 3.74 ± 0.12 | ||
大蚊科 Tipulidae | 3 | -33.52 ± 0.44 | 2.06 | 2.23 | ||
夜蛾科 Noctuidae | 3 | -27.18 ± 0.05 | 3.27 ± 0.02 | 2.59 ± 0.01 | ||
双龙洞 Shuanglong Cave | 有光带 Light zone | 环口螺科 Cyclophoridae | 12 | -26.97 ± 0.15 | 5.53 ± 0.24 | 1.28 ± 0.07 |
交翅马陆科 Cambalopsidae | 2 | -26.26 ± 0.30 | 4.47 ± 0.23 | 1.04 ± 0.07 | ||
角囊马陆科 Cambalidae | 3 | -24.44 ± 0.19 | 8.52 ± 0.27 | 2.09 ± 0.08 | ||
夜蛾科 Noctuidae | 5 | -29.11 ± 0.45 | 4.98 ± 0.08 | 1.12 ± 0.02 | ||
步甲科 Carabidae | 2 | -26.89 ± 0.01 | - | - | ||
蚁蛉科 Myrmeleontidae | 7 | -25.00 ± 0.36 | 11.19 ± 0.10 | 2.94 ± 0.03 | ||
长头地蜈蚣科 Mecistocephalidae | 2 | -26.23 ± 0.21 | - | - | ||
驼螽科 Rhaphidophoridae | 3 | -26.89 ± 0.49 | 12.04 ± 0.08 | 3.19 ± 0.02 | ||
巨蚓科 Megascolecidae | 1 | -14.83 ± 0.78 | 3.71 ± 0.05 | 1.26 ± 0.02 | ||
长踦盲蛛科 Phalangiidae | 3 | -26.52 ± 0.20 | - | - | ||
跳蛛科 Salticidae | 3 | -27.47 ± 0.30 | 8.50 ± 0.07 | 2.15 ± 0.02 | ||
漏斗蛛科 Agelenidae | 3 | -28.80 ± 0.80 | 8.42 ± 0.01 | 2.13 ± 0.00 | ||
弱光带 Weak light zone | 烟管螺科 Clausiliidae | 2 | -31.41 | 4.45 ± 0.12 | 1.11 ± 0.03 | |
巴蜗牛科 Bradybaenidae | 10 | -28.94 ± 0.48 | 4.68 ± 0.23 | 1.05 ± 0.07 | ||
潮虫科 Oniscidae | 4 | -24.36 ± 0.73 | 7.36 ± 0.39 | 1.74 ± 0.11 | ||
拟态蛛科 Mimetidae | 3 | -26.87 ± 0.55 | 6.99 ± 0.03 | 1.63 ± 0.01 | ||
跳蛛科 Salticidae | 3 | -27.57 ± 0.13 | 7.61 ± 0.16 | 1.81 ± 0.05 | ||
蚰蜒科 Scutigeridae | 3 | -26.81 ± 0.36 | 10.51 ± 0.65 | 2.67 ± 0.19 | ||
交翅马陆科 Cambalopsidae | 30 | -26.17 ± 1.26 | 3.64 ± 0.35 | 1.35 ± 0.10 | ||
奇马陆科 Paradoxosomatidae | 3 | -20.86 ± 0.17 | 4.52 ± 0.27 | 1.09 ± 0.08 | ||
驼螽科 Rhaphidophoridae | 29 | -25.56 ± 0.65 | 7.51 ± 0.65 | 1.79 ± 0.19 | ||
大蚊科 Tipulidae | 4 | -25.82 ± 0.28 | 6.18 ± 0.16 | 1.39 ± 0.05 | ||
夜蛾科 Noctuidae | 7 | -30.26 ± 0.14 | 7.44 ± 0.05 | 1.76 ± 0.02 | ||
黑暗带 Dark zone | 烟管螺科 Clausiliidae | 50 | -30.79 ± 0.05 | 6.19 ± 0.62 | 2.49 ± 0.18 | |
巴蜗牛科 Bradybaenidae | 17 | -29.02 ± 0.41 | 5.03 ± 0.99 | 2.15 ± 0.29 | ||
暗蛛科 Amaurobiidae | 2 | -24.79 ± 0.09 | 15.81 ± 0.16 | 5.32 ± 0.05 | ||
蚰蜒科 Scutigeridae | 1 | -24.83 | 9.46 ± 0.07 | 3.46 ± 0.02 | ||
交翅马陆科 Cambalopsidae | 21 | -27.14 ± 0.14 | 4.33 ± 0.15 | 1.95 ± 0.04 | ||
驼螽科 Rhaphidophoridae | 24 | -26.37 ± 0.22 | 6.23 ± 0.13 | 2.51 ± 0.04 | ||
菊头蝠科 Rhinolophidae | 5 | -27.84 ± 0.22 | 7.91 ± 0.03 | 3.00 ± 0.01 |
Table 3 The δ13C and δ15N values and trophic levels of cave fauna in different light zones of three caves
洞穴 Cave | 光带 Light zone | 洞穴动物 Cave fauna | 样本数 Sample number | δ13C (‰) (mean ± SD) | δ15N (‰) (mean ± SD) | 营养级 Trophic level |
---|---|---|---|---|---|---|
水江洞 Shuijiang Cave | 有光带 Light zone | 环口螺科 Cyclophoridae | 16 | -28.55 ± 1.20 | 4.49 ± 1.27 | 1.01 ± 0.37 |
钻头螺科 Subulinidae | 17 | -32.04 ± 1.41 | 6.51 ± 1.41 | 1.60 ± 0.41 | ||
烟管螺科 Clausiliidae | 3 | -27.84 ± 0.71 | - | - | ||
瞳孔蜗牛科 Corrillidae | 3 | -28.80 ± 0.15 | 4.40 ± 0.42 | 1.02 ± 0.12 | ||
巴蜗牛科 Bradybaenidae | 104 | -27.99 ± 0.46 | 4.91 ± 0.22 | 1.13 ± 0.06 | ||
派模蛛科 Pimoidae | 3 | -25.20 | 10.13 | 2.67 | ||
肖蛸科 Tetragnathidae | 3 | -25.80 ± 0.12 | 7.46 ± 0.05 | 1.88 ± 0.02 | ||
球蛛科 Theridiidae | 3 | -28.54 ± 0.26 | 6.09 ± 0.14 | 1.48 ± 0.04 | ||
蚁蛉科 Myrmeleontidae | 10 | -27.12 ± 0.12 | 10.55 ± 0.11 | 2.79 ± 0.03 | ||
大蚊科 Tipulidae | 24 | -34.22 ± 0.39 | 7.61 ± 0.41 | 1.93 ± 0.12 | ||
弱光带 Weak light zone | 环口螺科 Cyclophoridae | 3 | -27.09 ± 0.28 | - | - | |
烟管螺科 Clausiliidae | 3 | -24.17 ± 0.95 | - | - | ||
巴蜗牛科 Bradybaenidae | 8 | -26.30 ± 0.33 | - | - | ||
暗蛛科 Amaurobiidae | 9 | -23.87 ± 0.19 | 16.43 ± 0.05 | 5.03 ± 0.01 | ||
蠼螋科 Labiduridae | 2 | -27.04 ± 0.41 | 9.96 ± 0.10 | 3.12 ± 0.03 | ||
驼螽科 Rhaphidophoridae | 30 | -25.21 ± 0.19 | 8.11 ± 0.03 | 2.58 ± 0.01 | ||
大蚊科 Tipulidae | 2 | -24.60 | 6.88 | 2.22 | ||
黑暗带 Dark zone | 暗蛛科 Amaurobiidae | 11 | -24.44 ± 0.18 | 15.51 ± 0.06 | 4.59 ± 0.02 | |
蚰蜒科 Scutigeridae | 2 | -25.38 ± 0.04 | 8.51 ± 0.08 | 2.53 ± 0.02 | ||
交翅马陆科 Cambalopsidae | 8 | -25.70 ± 0.10 | 6.66 ± 0.06 | 1.99 ± 0.02 | ||
驼螽科 Rhaphidophoridae | 30 | -25.49 ± 0.40 | 7.80 ± 0.29 | 2.32 ± 0.09 | ||
大蚊科 Tipulidae | 2 | -28.46 | 6.92 | 2.06 | ||
夜蛾科 Noctuidae | 6 | -28.31 ± 0.03 | 4.96 ± 0.01 | 1.48 ± 0.00 | ||
假吸血蝠科 Megadermatidae | 2 | -25.73 ± 0.05 | 9.23 ± 0.02 | 2.74 ± 0.00 | ||
龙宫洞 Longgong Cave | 有光带 Light zone | 漏斗蛛科 Agelenidae | 2 | -28.56 ± 0.33 | 9.19 ± 0.03 | 2.04 ± 0.01 |
园蛛科 Araneidae | 2 | -26.24 ± 0.11 | 10.40 ± 0.13 | 2.39 ± 0.04 | ||
跳蛛科 Salticidae | 3 | -28.80 ± 0.25 | 8.17 ± 0.03 | 1.74 ± 0.01 | ||
刺客蛛科 Sicariidae | 2 | -23.43 ± 0.03 | 14.21 ± 0.07 | 3.51 ± 0.02 | ||
洞穴 Cave | 光带 Light zone | 洞穴动物 Cave fauna | 样本数 Sample number | δ13C (‰) (mean ± SD) | δ15N (‰) (mean ± SD) | 营养级 Trophic level |
龙宫洞 Longgong Cave | 有光带 Light zone | 肖蛸科 Tetragnathidae | 3 | -25.87 | 10.91 | 2.54 |
妩蛛科 Uloboridae | 3 | -25.67 ± 0.15 | 11.64 ± 0.04 | 2.76 ± 0.01 | ||
角囊马陆科 Cambalidae | 3 | -24.87 ± 0.33 | 3.83 ± 0.23 | 1.54 ± 0.07 | ||
蜚蠊科 Blattidae | 3 | -27.85 ± 0.23 | 7.86 ± 0.06 | 1.65 ± 0.02 | ||
蠼螋科 Labiduridae | 2 | -25.27 | 10.01 | 2.28 | ||
蚁蛉科 Myrmeleontidae | 18 | -26.98 ± 0.33 | - | - | ||
大蚊科 Tipulidae | 6 | -31.71 | 6.17 | 1.15 | ||
黑暗带 Dark zone | 拟阿勇蛞蝓科 Ariophantidae | 3 | -29.30 ± 0.48 | - | - | |
椎实螺科 Lymnaeidae | 3 | -29.74 ± 0.31 | 2.54 ± 0.25 | 2.37 ± 0.08 | ||
坚齿螺科 Canaenidae | 2 | -28.92 ± 0.11 | 1.86 ± 0.20 | 2.17 ± 0.06 | ||
巨蟹蛛科 Sparassidae | 2 | -26.68 ± 0.16 | 8.11 ± 0.07 | 4.01 ± 0.02 | ||
刺盲蛛科 Podoctidae | 2 | -27.76 ± 0.23 | 7.10 ± 0.36 | 3.71 ± 0.11 | ||
蜚蠊科 Blattidae | 3 | -27.74 ± 0.10 | 3.34 ± 0.18 | 2.61 ± 0.05 | ||
蠼螋科 Labiduridae | 2 | -26.35 ± 0.39 | 8.07 ± 0.08 | 4.00 ± 0.02 | ||
驼螽科 Rhaphidophoridae | 22 | -25.85 ± 0.19 | 7.20 ± 0.40 | 3.74 ± 0.12 | ||
大蚊科 Tipulidae | 3 | -33.52 ± 0.44 | 2.06 | 2.23 | ||
夜蛾科 Noctuidae | 3 | -27.18 ± 0.05 | 3.27 ± 0.02 | 2.59 ± 0.01 | ||
双龙洞 Shuanglong Cave | 有光带 Light zone | 环口螺科 Cyclophoridae | 12 | -26.97 ± 0.15 | 5.53 ± 0.24 | 1.28 ± 0.07 |
交翅马陆科 Cambalopsidae | 2 | -26.26 ± 0.30 | 4.47 ± 0.23 | 1.04 ± 0.07 | ||
角囊马陆科 Cambalidae | 3 | -24.44 ± 0.19 | 8.52 ± 0.27 | 2.09 ± 0.08 | ||
夜蛾科 Noctuidae | 5 | -29.11 ± 0.45 | 4.98 ± 0.08 | 1.12 ± 0.02 | ||
步甲科 Carabidae | 2 | -26.89 ± 0.01 | - | - | ||
蚁蛉科 Myrmeleontidae | 7 | -25.00 ± 0.36 | 11.19 ± 0.10 | 2.94 ± 0.03 | ||
长头地蜈蚣科 Mecistocephalidae | 2 | -26.23 ± 0.21 | - | - | ||
驼螽科 Rhaphidophoridae | 3 | -26.89 ± 0.49 | 12.04 ± 0.08 | 3.19 ± 0.02 | ||
巨蚓科 Megascolecidae | 1 | -14.83 ± 0.78 | 3.71 ± 0.05 | 1.26 ± 0.02 | ||
长踦盲蛛科 Phalangiidae | 3 | -26.52 ± 0.20 | - | - | ||
跳蛛科 Salticidae | 3 | -27.47 ± 0.30 | 8.50 ± 0.07 | 2.15 ± 0.02 | ||
漏斗蛛科 Agelenidae | 3 | -28.80 ± 0.80 | 8.42 ± 0.01 | 2.13 ± 0.00 | ||
弱光带 Weak light zone | 烟管螺科 Clausiliidae | 2 | -31.41 | 4.45 ± 0.12 | 1.11 ± 0.03 | |
巴蜗牛科 Bradybaenidae | 10 | -28.94 ± 0.48 | 4.68 ± 0.23 | 1.05 ± 0.07 | ||
潮虫科 Oniscidae | 4 | -24.36 ± 0.73 | 7.36 ± 0.39 | 1.74 ± 0.11 | ||
拟态蛛科 Mimetidae | 3 | -26.87 ± 0.55 | 6.99 ± 0.03 | 1.63 ± 0.01 | ||
跳蛛科 Salticidae | 3 | -27.57 ± 0.13 | 7.61 ± 0.16 | 1.81 ± 0.05 | ||
蚰蜒科 Scutigeridae | 3 | -26.81 ± 0.36 | 10.51 ± 0.65 | 2.67 ± 0.19 | ||
交翅马陆科 Cambalopsidae | 30 | -26.17 ± 1.26 | 3.64 ± 0.35 | 1.35 ± 0.10 | ||
奇马陆科 Paradoxosomatidae | 3 | -20.86 ± 0.17 | 4.52 ± 0.27 | 1.09 ± 0.08 | ||
驼螽科 Rhaphidophoridae | 29 | -25.56 ± 0.65 | 7.51 ± 0.65 | 1.79 ± 0.19 | ||
大蚊科 Tipulidae | 4 | -25.82 ± 0.28 | 6.18 ± 0.16 | 1.39 ± 0.05 | ||
夜蛾科 Noctuidae | 7 | -30.26 ± 0.14 | 7.44 ± 0.05 | 1.76 ± 0.02 | ||
黑暗带 Dark zone | 烟管螺科 Clausiliidae | 50 | -30.79 ± 0.05 | 6.19 ± 0.62 | 2.49 ± 0.18 | |
巴蜗牛科 Bradybaenidae | 17 | -29.02 ± 0.41 | 5.03 ± 0.99 | 2.15 ± 0.29 | ||
暗蛛科 Amaurobiidae | 2 | -24.79 ± 0.09 | 15.81 ± 0.16 | 5.32 ± 0.05 | ||
蚰蜒科 Scutigeridae | 1 | -24.83 | 9.46 ± 0.07 | 3.46 ± 0.02 | ||
交翅马陆科 Cambalopsidae | 21 | -27.14 ± 0.14 | 4.33 ± 0.15 | 1.95 ± 0.04 | ||
驼螽科 Rhaphidophoridae | 24 | -26.37 ± 0.22 | 6.23 ± 0.13 | 2.51 ± 0.04 | ||
菊头蝠科 Rhinolophidae | 5 | -27.84 ± 0.22 | 7.91 ± 0.03 | 3.00 ± 0.01 |
Fig. 2 Contribution rates of soil organic matter and plants to the food sources of cave fauna in three caves. SOM, Soil organic matter of light zone; Br, Bryophyte; Pt, Pteridophyte; Mo, Monocotyledon; Di, Dicotyledon. There are no numberical display when the contribution rates of organic carbon sources to animals less than 2.0%.
[1] | Chen ZY, Guan Q, Wu HT, Lu KL, Lü XG, Wang YB (2018) Characteristics of stable isotopes of carbon and nitrogen and food sources of snails inCarex lasiocarpa marshes in Sanjiang Plain. Wetland Science, 16, 38-44. (in Chinese with English abstract) |
[ 陈展彦, 管强, 武海涛, 芦康乐, 吕宪国, 王云彪 (2018) 三江平原毛薹草沼泽中螺类的碳、氮稳定同位素特征及其食物来源结构. 湿地科学, 16, 38-44.] | |
[2] | Dou YJ, Chang L, Wu DH (2015) Research methods of soil animal food web: A review. Chinese Journal of Ecology, 34, 247-255. (in Chinese with English abstract) |
[ 窦永静, 常亮, 吴东辉 (2015) 土壤动物食物网研究方法. 生态学杂志, 34, 247-255.] | |
[3] | Engel AS (2007) Observations on the biodiversity of sulfidic karst habitats. Journal of Cave and Karst Studies, 69, 187-206. |
[4] |
Estévez E, Álvarez-Martínez JM, Álvarez-Cabria M, Robinson CT, Battin TJ, Barquín J (2019) Catchment land cover influences macroinvertebrate food-web structure and energy flow pathways in mountain streams. Freshwater Biology, 64, 1557-1571.
DOI URL |
[5] | Fanelli E, Papiol V, Cartes JE, Rumolo P, Brunet C, Sprovieri M (2011) Food web structure of the epibenthic and infaunal invertebrates on the Catalan slope (NW Mediterranean): Evidence from δ13C and δ15N analysis. Deep Sea Research Part I: Oceanographic Research, 58, 98-109. |
[6] | Han K, Xu CX, Li DH, Zheng CW, Luo QH (2014) Trophic relationships in Guizhou Shibingxia Cave and Mulaotang Cave by means of stable carbon and nitrogen isotopes. Journal of Guangxi Normal University (Natural Science Edition), 32, 154-161. (in Chinese with English abstract) |
[ 韩康, 徐承香, 黎道洪, 郑传伟, 罗庆怀 (2014) 应用同位素研究施秉下洞和木老唐洞的营养级. 广西师范大学学报(自然科学版), 32, 154-161.] | |
[7] |
Herwig BR, Soluk DA, Dettmers JM, Wahl DH (2004) Trophic structure and energy flow in backwater lakes of two large floodplain rivers assessed using stable isotopes. Canadian Journal of Fisheries and Aquatic Sciences, 61, 12-22.
DOI URL |
[8] | Hu ZJ, Shi XH, Wu H, Li YL, Li XX, Chen LQ, Liu QG (2019) Food web structure in Qingcaosha Reservoir of Shanghai, China. Journal of Hydroecology, 40(2),47-54. (in Chinese with English abstract) |
[ 胡忠军, 史先鹤, 吴昊, 李亚雷, 李晓雪, 陈立侨, 刘其根 (2019) 上海青草沙水库食物网结构特征分析. 水生态学杂志, 40(2),47-54.] | |
[9] | Kasun A, Ao M, Eben G, Yang XD, Xu XH, Xu ZD, Qiu GL (2016) Mercury and selenium in arthropods and their bioaccumulation across food webs. Chinese Journal of Ecology, 35, 1031-1037. (in Chinese with English abstract) |
[ Kasun A, 敖明, Eben G, 杨效东, 徐晓航, 许志东, 仇广乐 (2016) 节肢动物体内汞、硒分布及食物链传递特征. 生态学杂志, 35, 1031-1037.] | |
[10] | Lei LS, Tian DH, Xu CX, Zhang SQ, Hu BL, Du WF (2021) Relationship between terrestrial animal community structure and environmental factors in Ganxi Cave and Lasuo Cave, Libo, Guizhou. Journal of Agricultural Resources and Environment, 38, 53-62. (in Chinese with English abstract) |
[ 雷莉莎, 田大海, 徐承香, 张思强, 胡碧露, 杜维锋 (2021) 贵州荔波干细洞和拉梭洞陆生动物群落结构与环境因子的关系. 农业资源与环境学报, 38, 53-62.] | |
[11] | Li B, Xu DD, Wu D, Tao M (2017) Research on carbon sources of river food webs based on the carbon and nitrogen stable isotopic technique. Journal of Nuclear Agricultural Sciences, 31, 1029-1035. (in Chinese with English abstract) |
[ 李斌, 徐丹丹, 吴迪, 陶敏 (2017) 基于C、N同位素技术的河流食物网基础碳源研究进展. 核农学报, 31, 1029-1035.] | |
[12] |
Li DH (2007) The correlation between the environmental factors and animal community structure in Boduo Cave and Jialiang Cave of Guizhou Province. Acta Ecologica Sinica, 27, 2167-2176. (in Chinese with English abstract)
DOI URL |
[ 黎道洪 (2007) 贵州波多洞和甲良洞内部分环境因子与动物群落结构的相关性. 生态学报, 27, 2167-2176.] | |
[13] |
Li DH, Su XM (2012) The studies on the food web structures and trophic relationships in Guangxi Dongfang Cave by means of stable carbon and nitrogen isotopes. Acta Ecologica Sinica, 32, 3497-3504. (in Chinese with English abstract)
DOI URL |
[ 黎道洪, 苏晓梅 (2012) 应用稳定同位素研究广西东方洞食物网结构和营养级关系. 生态学报, 32, 3497-3504.] | |
[14] | Liang XQ, Chen HM, Li WX (2005) Three new species of atyid shrimps (Decapoda, Caridea) from caves of Guizhou, China. Acta Zootaxonomica Sinica, 30, 529-534. (in Chinese with English abstract) |
[ 梁象秋, 陈会明, 李维贤 (2005) 贵州荔波洞穴匙指虾三新种. 动物分类学报, 30, 529-534.] | |
[15] |
Liu QM, Wang SJ, Piao HC, Ouyang ZY (2002) Soil organic matter changes of turnover ecosystems traced by stable carbon isotopes. Environmental Science, 23(3),75-78. (in Chinese with English abstract)
DOI URL |
[ 刘启明, 王世杰, 朴河春, 欧阳自远 (2002) 稳定碳同位素示踪农林生态转换系统中土壤有机质的含量变化. 环境科学, 23(3),75-78.] | |
[16] | Liu XS, Ni DP, Zhong X, Zhang ZN (2020) Structure of benthic food web and trophic relationship of macrofauna in the Yellow Sea. Periodical of Ocean University of China, 50(9),20-33. (in Chinese with English abstract) |
[ 刘晓收, 倪大朋, 钟鑫, 张志南 (2020) 黄海大型底栖动物食物网结构和营养关系研究. 中国海洋大学学报(自然科学版), 50(9),20-33.] | |
[17] | Liu XZ, Zhang Y, Su Q, Tian YL, Wang Q, Quan B (2014) Progress of research on relationships between terrestrial plant nitrogen isotope composition and climate environment change. Advances in Earth Science, 29, 216-226. (in Chinese with English abstract) |
[ 刘贤赵, 张勇, 宿庆, 田艳林, 王庆, 全斌 (2014) 陆生植物氮同位素组成与气候环境变化研究进展. 地球科学进展, 29, 216-226.] | |
[18] | Liu ZX, Gu ZY, Wu NQ, Xu B (2006) Carbon isotopic composition of food-controlled terrestrial snails. Chinese Science Bulletin, 51, 2410-2416. (in Chinese) |
[ 刘宗秀, 顾兆炎, 吴乃琴, 许冰 (2006) 食物控制的陆生蜗牛碳同位素组成. 科学通报, 51, 2410-2416.] | |
[19] |
MacAvoy SE, Braciszewski A, Tengi E, Fong DW (2016) Trophic plasticity among spring vs. cave populations ofGammarus minus: Examining functional niches using stable isotopes and C/N ratios. Ecological Research, 31, 589-595.
DOI URL |
[20] |
Magnusson WE, Carmozina de Araújo M, Cintra R, Lima AP, Martinelli LA, Sanaiotti TM, Vasconcelos HL, Victoria RL (1999) Contributions of C3 and C4 plants to higher trophic levels in an Amazonian savanna. Oecologia, 119, 91-96.
DOI PMID |
[21] |
Montagano L, Leroux SJ, Giroux MA, Lecomte N (2019) The strength of ecological subsidies across ecosystems: A latitudinal gradient of direct and indirect impacts on food webs. Ecology Letters, 22, 265-274.
DOI PMID |
[22] |
Pasquaud S, Lobry J, Elie P (2007) Facing the necessity of describing estuarine ecosystems: A review of food web ecology study techniques. Hydrobiologia, 588, 159-172.
DOI URL |
[23] |
Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293-320.
DOI URL |
[24] |
Phillips DL, Gregg JW (2003) Source partitioning using stable isotopes: Coping with too many sources. Oecologia, 136, 261-269.
PMID |
[25] |
Post DM (2002) Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83, 703-718.
DOI URL |
[26] |
Revill AT, Young JW, Lansdell M (2009) Stable isotopic evidence for trophic groupings and bio-regionalization of predators and their prey in oceanic waters off eastern Australia. Marine Biology, 156, 1241-1253.
DOI URL |
[27] |
Roach KA, Tobler M, Winemiller KO (2011) Hydrogen sulfide, bacteria, and fish: A unique, subterranean food chain. Ecology, 92, 2056-2062.
DOI URL |
[28] | Rong L, Wang SJ, Du XL (2008) Responses of δ13C values of plant leaves to environmental gradients along environmental gradient factors in rocky desertified area of a typical karst gorge. Environmental Science, 29, 2885-2893. (in Chinese with English abstract) |
[ 容丽, 王世杰, 杜雪莲 (2008) 喀斯特峡谷区常见植物叶片δ13C值与环境因子的关系研究. 环境科学, 29, 2885-2893.] | |
[29] |
Saito L, Johnson BM, Bartholow J, Hanna RB (2001) Assessing ecosystem effects of reservoir operations using food web-energy transfer and water quality models. Ecosystems, 4, 105-125.
DOI URL |
[30] | Salgado SS, Motta PC, de Souza Aguiar LM, Nardoto GB (2014) Tracking dietary habits of cave arthropods associated with deposits of hematophagous bat guano: A study from a neotropical savanna. Austral Ecology, 39, 560-566. |
[31] | Schneider K (2009) How the Availability of Nutrients and Energy Influence the Biodiversity of Cave Ecosystems. PhD dissertation, University of Maryland, Baltimore. |
[32] |
Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology, 84, 2395-2406.
DOI URL |
[33] |
Song B, Chen LL, Yan L, Jiang SY, Liu CY, Li BJ, Li BQ (2019) Food web characteristics of seagrass beds in intertidal of Dongying and Yantai, Shandong Province. Biodiversity Science, 27, 984-992. (in Chinese with English abstract)
DOI |
[ 宋博, 陈琳琳, 闫朗, 姜少玉, 刘春云, 李秉钧, 李宝泉 (2019) 山东东营和烟台潮间带海草床食物网结构特征. 生物多样性, 27, 984-992.]
DOI |
|
[34] | Sun AZ, Ma YZ, Wu J, Cui QY (2005) Environmental factors and the δ13C values of different plant species. Arid Land Geography, 28, 538-540. (in Chinese with English abstract) |
[ 孙爱芝, 马玉贞, 伍婧, 崔巧玉 (2005) 环境因子与植物体δ13C值关系的研究. 干旱区地理, 28, 538-540.] | |
[35] |
Thompson RM, Dunne JA, Woodward G (2012) Freshwater food webs: Towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology, 57, 1329-1341.
DOI URL |
[36] |
Tomczyk-Zak K, Zielenkiewicz U (2016) Microbial diversity in caves. Geomicrobiology Journal, 33, 20-38.
DOI URL |
[37] | Wen ZR, Xiong Y, Xu J, Xie P (2016) The studies on the structures of the food web and the trophic relationships in the Gonghu Bay of the Taihu Lake. Acta Hydrobiologica Sinica, 40, 131-138. (in Chinese with English abstract) |
[ 温周瑞, 熊鹰, 徐军, 谢平 (2016) 太湖贡湖湾食物网特征研究. 水生生物学报, 40, 131-138.] | |
[38] |
Wilson RM, Chanton J, Lewis G, Nowacek D (2009) Isotopic variation (δ15N, δ13C, and δ34S) with body size in post-larval estuarine consumers. Estuarine, Coastal and Shelf Science, 83, 307-312.
DOI URL |
[39] | Xu CX, Du WF, Zhang SQ, Zhang Y, Yang RQ, Liu XZ (2020) Using stable isotopes to assess food source and trophic level of terrestrial animals in Mawan Cave of Fenggang in Guizhou. Chinese Journal of Ecology, 39, 2024-2032. (in Chinese with English abstract) |
[ 徐承香, 杜维锋, 张思强, 张燕, 杨瑞泉, 柳希竹 (2020) 应用稳定同位素测定贵州凤冈麻湾洞洞穴陆生动物的食物来源及营养级. 生态学杂志, 39, 2024-2032.] | |
[40] |
Xu J, Zhang M, Xie P (2010) Variability of stable nitrogen isotopic baselines and its consequence for trophic modeling. Journal of Lake Sciences, 22, 8-20. (in Chinese with English abstract)
DOI URL |
[ 徐军, 张敏, 谢平 (2010) 氮稳定同位素基准的可变性及对营养级评价的影响. 湖泊科学, 22, 8-20.] | |
[41] | Xu WQ, Chen X, Luo GP, Feng YX (2014) Progress of research on soil carbon cycle using carbon isotope approach. Arid Land Geography, 37, 980-987. (in Chinese with English abstract) |
[ 许文强, 陈曦, 罗格平, 冯异星 (2014) 基于稳定同位素技术的土壤碳循环研究进展. 干旱区地理, 37, 980-987.] | |
[42] | Zhang SH, Zhang XP (2014) Study on the trophic levels of soil macrofauna in artificial protection forests by means of stable nitrogen isotopes. Acta Ecologica Sinica, 34, 2892-2899. (in Chinese with English abstract) |
[ 张淑花, 张雪萍 (2014) 基于δ15N稳定同位素分析的人工防护林大型土壤动物营养级研究. 生态学报, 34, 2892-2899.] | |
[43] | Zhang XL, Jiao SW, Zhao E, Wu M, Shao XX, Ye XQ, Yan YN (2019) Diet of two passerine birds during breeding season in reed wetland of Hangzhou Bay. Chinese Journal of Ecology, 38, 1810-1816. (in Chinese with English abstract) |
[ 张昕丽, 焦盛武, 赵锷, 吴明, 邵学新, 叶小齐, 闫雅楠 (2019) 杭州湾湿地芦苇生境两种雀形目鸟类繁殖期食性. 生态学杂志, 38, 1810-1816.] | |
[44] | Zhao L, Xu CX, Li DH, Yan HL (2017) Food sources and trophic level of animals in Guizhou Zhijin Cave by means of stable carbon and nitrogen isotopes. Chinese Journal of Ecology, 36, 1444-1451. (in Chinese with English abstract) |
[ 赵璐, 徐承香, 黎道洪, 晏翰林 (2017) 应用碳氮稳定同位素研究贵州织金洞动物食物来源与营养级. 生态学杂志, 36, 1444-1451.] | |
[45] | Zheng DM, Sun LN, Li HY, Li XX (2013) Carbon and nitrogen stable isotopes composition and its relationships with trophic levels of arthropods in smelting areas. Chinese Journal of Ecology, 32, 1857-1861. (in Chinese with English abstract) |
[ 郑冬梅, 孙丽娜, 李卉颖, 李昕馨 (2013) 冶金区节肢动物碳、氮稳定同位素组成及营养级关系. 生态学杂志, 32, 1857-1861.] | |
[46] | Zhou GC, Xu CX, Li DH, Luo QH (2015) Trophic structure of the cave community of Laizi Cave and Qingcai Cave of karst cave in Guizhou: A stable isotope analysis. Journal of Guangxi Normal University (Natural Science Edition), 33, 152-158. (in Chinese with English abstract) |
[ 周谷春, 徐承香, 黎道洪, 罗庆怀 (2015) 稳定同位素技术对贵州青菜洞和癞子洞营养级关系的研究. 广西师范大学学报(自然科学版), 33, 152-158.] | |
[47] | Zhou Z, Huang YB, Wang BL, Mi WJ, Song QY, Xu YZ, Bi YH (2020) The analysis of food web structure in the area in front of the Three Gorges Dam using the stable isotope technology. Ecological Science, 39(5),82-90. (in Chinese with English abstract) |
[ 周正, 黄宇波, 王斌梁, 米武娟, 宋庆洋, 许元钊, 毕永红 (2020) 运用稳定同位素技术分析三峡坝前水域的食物网结构. 生态科学, 39(5),82-90.] |
[1] | Hui Ran, Tianyou Yang, Xiaoqi Mi. The updated checklist of reptiles in Guizhou Province, China [J]. Biodiv Sci, 2024, 32(4): 23348-. |
[2] | Luqin Yin, Cheng Wang, Wenjing Han. Food source characteristics and diversity of birds based on feeding behavior in residential areas of Beijing [J]. Biodiv Sci, 2023, 31(5): 22473-. |
[3] | Shusen Fu, Puqing Song, Yuan Li, Yuanyuan Li, Ran Zhang, Hushun Zhang, Rui Wang, Longshan Lin. Trophic levels and trophic niches of fish from the Bering Sea and Chukchi Sea [J]. Biodiv Sci, 2023, 31(4): 22521-. |
[4] | Yuanzhi Li, Junli Xiao, Hanlun Liu, Youshi Wang, Chengjin Chu. Advances in higher-order interactions between organisms [J]. Biodiv Sci, 2020, 28(11): 1333-1344. |
[5] | Bo Song,Linlin Chen,Lang Yan,Shaoyu Jiang,Chunyun Liu,Bingjun Li,Baoquan Li. Food web characteristics of seagrass beds in intertidal of Dongying and Yantai, Shandong Province [J]. Biodiv Sci, 2019, 27(9): 984-992. |
[6] | Jianji Liao, Xinqing Zheng, Jianguo Du*, Bin Chen, Zhiyuan Ma, Wenjia Hu. Biodiversity and trophic level characteristics of fishes captured by set nets in Tong’an Bay, Xiamen [J]. Biodiv Sci, 2014, 22(5): 624-629. |
[7] | Yongli Gao, Hui Huang, Jiansheng Lian, Jianhui Yang. The species diversity and trophic structure of reef fishes in the waters of the Xisha Archipelago [J]. Biodiv Sci, 2014, 22(5): 618-623. |
[8] | Xuezhen Li, Changying Niu, Zhongjiu Jiao, Chaoliang Lei, Xuefeng Tan. Cave fauna in Yachang Nature Reserve, Guangxi [J]. Biodiv Sci, 2008, 16(2): 185-190. |
[9] | Fangping Qian, Yilong Xi, Xinli Wen, Lin Huang. Eutrophication impact on community structure and species diversity of rotifers in five lakes of Anhui [J]. Biodiv Sci, 2007, 15(4): 344-355. |
[10] | Han Boping. The measurement of ecosystem trophic structure diversity [J]. Biodiv Sci, 1995, 03(4): 222-226. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn