Biodiv Sci ›› 2016, Vol. 24 ›› Issue (1): 30-39. DOI: 10.17520/biods.2015207
• Original Papers: Ecosystem Diversity • Previous Articles Next Articles
Yili Guo1,2, Bin Wang1,2, Wusheng Xiang1,2, Tao Ding1,2, Shuhua Lu1,2, Fuzhao Huang1,2, Shujun Wen1,2, Dongxing Li1,2, Yunlin He1,2, Xiankun Li1,2,*()
Received:
2015-07-18
Accepted:
2015-11-02
Online:
2016-01-20
Published:
2016-06-12
Contact:
Li Xiankun
Yili Guo, Bin Wang, Wusheng Xiang, Tao Ding, Shuhua Lu, Fuzhao Huang, Shujun Wen, Dongxing Li, Yunlin He, Xiankun Li. Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China[J]. Biodiv Sci, 2016, 24(1): 30-39.
Fig. 2 Results of generalized additive models (GAM) regression between different topographic factors and total basal area of the karst seasonal rainforest in Nonggang, Guangxi. S(topographic factor) is the fitted value of smoothing spline functions, which represent their impacts on the total basal area. The solid lines represent the expected values of total basal area; the dotted lines represent the 95% confidence intervals of equations.
径级 DBH Class (cm) | 环境参数 Environmental parameters | r2adj | 累计解释偏差 Cumulative explained deviation (%) | 赤池信息准则Akaike Information Criterion (AIC) |
---|---|---|---|---|
所有个体 All individuals | 海拔 Elevation | 0.148 | 16.1 | -88.071 |
坡向 Aspect | 0.256 | 28.4 | -130.984 | |
凹凸度 Convexity | 0.291 | 33.1 | -142.770 | |
岩石裸露率 Rock-bareness rate | 0.313 | 36.0 | -148.860 | |
地形湿润指数Topographic wetness index | 0.314 | 36.4 | -149.909 | |
坡度 Slope | 0.322 | 37.4 | -152.044 | |
干旱度指数 Altitude above channel | 0.336 | 39.4 | -156.461 | |
DBH < 2.5 | 海拔 Elevation | 0.113 | 12.6 | -2,416.026 |
坡向 Aspect | 0.153 | 18.4 | -2,425.371 | |
凹凸度 Convexity | 0.193 | 22.8 | -2,441.038 | |
岩石裸露率 Rock-bareness rate | 0.266 | 29.7 | -2,477.055 | |
地形湿润指数Topographic wetness index | 0.303 | 34.0 | -2,492.105 | |
坡度 Slope | 0.311 | 34.9 | -2,495.940 | |
干旱度指数 Altitude above channel | 0.328 | 36.3 | -2,506.965 | |
2.5 ≤ DBH < 7.5 | 海拔 Elevation | 0.412 | 42.1 | -1,340.583 |
坡向 Aspect | 0.432 | 44.7 | -1,348.138 | |
凹凸度 Convexity | 0.462 | 48.9 | -1,360.737 | |
岩石裸露率 Rock-bareness rate | 0.481 | 51.1 | -1,371.831 | |
地形湿润指数Topographic wetness index | 0.505 | 53.1 | -1,390.343 | |
坡度 Slope | 0.540 | 57.6 | -1,407.893 | |
干旱度指数 Altitude above channel | 0.540 | 57.8 | -1,410.145 | |
7.5 ≤ DBH < 22.5 | 海拔 Elevation | 0.194 | 21.0 | -448.036 |
坡向 Aspect | 0.267 | 29.5 | -476.660 | |
凹凸度 Convexity | 0.305 | 34.4 | -490.249 | |
岩石裸露率 Rock-bareness rate | 0.316 | 36.2 | -492.008 | |
地形湿润指数Topographic wetness index | 0.334 | 38.0 | -498.367 | |
坡度 Slope | 0.339 | 38.5 | -507.223 | |
干旱度指数 Altitude above channel | 0.381 | 43.6 | -522.046 | |
22.5 ≤ DBH | 海拔 Elevation | 0.263 | 27.4 | -193.325 |
坡向 Aspect | 0.321 | 34.7 | -216.574 | |
凹凸度 Convexity | 0.326 | 35.4 | -216.982 | |
岩石裸露率 Rock-bareness rate | 0.335 | 36.5 | -220.844 | |
地形湿润指数Topographic wetness index | 0.345 | 37.8 | -225.257 | |
坡度 Slope | 0.392 | 42.8 | -250.109 | |
干旱度指数 Altitude above channel | 0.398 | 43.7 | -251.184 |
Table 1 Tests of generalized additive models (GAM) for modeling total basal area in the Nonggang karst seasonal rainforest and topographic factors
径级 DBH Class (cm) | 环境参数 Environmental parameters | r2adj | 累计解释偏差 Cumulative explained deviation (%) | 赤池信息准则Akaike Information Criterion (AIC) |
---|---|---|---|---|
所有个体 All individuals | 海拔 Elevation | 0.148 | 16.1 | -88.071 |
坡向 Aspect | 0.256 | 28.4 | -130.984 | |
凹凸度 Convexity | 0.291 | 33.1 | -142.770 | |
岩石裸露率 Rock-bareness rate | 0.313 | 36.0 | -148.860 | |
地形湿润指数Topographic wetness index | 0.314 | 36.4 | -149.909 | |
坡度 Slope | 0.322 | 37.4 | -152.044 | |
干旱度指数 Altitude above channel | 0.336 | 39.4 | -156.461 | |
DBH < 2.5 | 海拔 Elevation | 0.113 | 12.6 | -2,416.026 |
坡向 Aspect | 0.153 | 18.4 | -2,425.371 | |
凹凸度 Convexity | 0.193 | 22.8 | -2,441.038 | |
岩石裸露率 Rock-bareness rate | 0.266 | 29.7 | -2,477.055 | |
地形湿润指数Topographic wetness index | 0.303 | 34.0 | -2,492.105 | |
坡度 Slope | 0.311 | 34.9 | -2,495.940 | |
干旱度指数 Altitude above channel | 0.328 | 36.3 | -2,506.965 | |
2.5 ≤ DBH < 7.5 | 海拔 Elevation | 0.412 | 42.1 | -1,340.583 |
坡向 Aspect | 0.432 | 44.7 | -1,348.138 | |
凹凸度 Convexity | 0.462 | 48.9 | -1,360.737 | |
岩石裸露率 Rock-bareness rate | 0.481 | 51.1 | -1,371.831 | |
地形湿润指数Topographic wetness index | 0.505 | 53.1 | -1,390.343 | |
坡度 Slope | 0.540 | 57.6 | -1,407.893 | |
干旱度指数 Altitude above channel | 0.540 | 57.8 | -1,410.145 | |
7.5 ≤ DBH < 22.5 | 海拔 Elevation | 0.194 | 21.0 | -448.036 |
坡向 Aspect | 0.267 | 29.5 | -476.660 | |
凹凸度 Convexity | 0.305 | 34.4 | -490.249 | |
岩石裸露率 Rock-bareness rate | 0.316 | 36.2 | -492.008 | |
地形湿润指数Topographic wetness index | 0.334 | 38.0 | -498.367 | |
坡度 Slope | 0.339 | 38.5 | -507.223 | |
干旱度指数 Altitude above channel | 0.381 | 43.6 | -522.046 | |
22.5 ≤ DBH | 海拔 Elevation | 0.263 | 27.4 | -193.325 |
坡向 Aspect | 0.321 | 34.7 | -216.574 | |
凹凸度 Convexity | 0.326 | 35.4 | -216.982 | |
岩石裸露率 Rock-bareness rate | 0.335 | 36.5 | -220.844 | |
地形湿润指数Topographic wetness index | 0.345 | 37.8 | -225.257 | |
坡度 Slope | 0.392 | 42.8 | -250.109 | |
干旱度指数 Altitude above channel | 0.398 | 43.7 | -251.184 |
坡度 Slope (SLO) | 凹凸度 Convexity (CON) | 坡向 Aspect (ASP) | 地形湿润指数Topographic wetness index (TWI) | 干旱度指数 Altitude above channel (ACH) | 岩石裸露率 Rock-bareness rate (RBR) | 胸高断面积之和 Total basal area | |
---|---|---|---|---|---|---|---|
海拔 Elevation (ELE) | 0.578** | 0.466** | 0.052 | -0.701** | 0.289** | 0.450** | -0.147* |
SLO | 0.336** | 0.205* | -0.631** | 0.220** | 0.509** | -0.080 | |
CON | 0.025 | -0.564** | 0.518** | 0.300** | 0.051 | ||
ASP | -0.098 | -0.159* | 0.140* | 0.134* | |||
TWI | -0.629** | -0.326** | 0.035 | ||||
ACH | -0.016 | 0.083 | |||||
RBR | 0.044 |
Table 2 The Spearman correlations (rho values) between different topographic factors
坡度 Slope (SLO) | 凹凸度 Convexity (CON) | 坡向 Aspect (ASP) | 地形湿润指数Topographic wetness index (TWI) | 干旱度指数 Altitude above channel (ACH) | 岩石裸露率 Rock-bareness rate (RBR) | 胸高断面积之和 Total basal area | |
---|---|---|---|---|---|---|---|
海拔 Elevation (ELE) | 0.578** | 0.466** | 0.052 | -0.701** | 0.289** | 0.450** | -0.147* |
SLO | 0.336** | 0.205* | -0.631** | 0.220** | 0.509** | -0.080 | |
CON | 0.025 | -0.564** | 0.518** | 0.300** | 0.051 | ||
ASP | -0.098 | -0.159* | 0.140* | 0.134* | |||
TWI | -0.629** | -0.326** | 0.035 | ||||
ACH | -0.016 | 0.083 | |||||
RBR | 0.044 |
1 | Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA (2010) Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management, 260, 679-691. |
2 | Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd edn. Springer, New York. |
3 | Cantón Y, Del Barrio G, Solé-Benet A, Lázaro R (2004) Topographic controls on the spatial distribution of ground cover in the Tabernas badlands of SE Spain. Catena, 55, 341-365. |
4 | Chauvel A, Lucas Y, Boulet R (1987) On the genesis of the soil mantle of the region of Manaus, Central Amazonia. Brazil Experientia, 43, 234-241. |
5 | Clements R, Sodhi N S, Schilthuizen M, Ng PK (2006) Limestone karsts of Southeast Asia: imperiled arks of biodiversity. BioScience, 56, 733-742. |
6 | Condit R (1998) Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a Comparison with Other Plots. Springer, Berlin. |
7 | Deng JM, Qin BQ, Wang BW (2015) Quick implementing of generalized additive models using R and its application in bluegreen algal bloom forecasting. Chinese Journal of Ecology, 34, 835-842. (in Chinese with English abstract) |
[邓建明, 秦伯强, 王博雯 (2015) 广义可加模型在R中的快捷实现及蓝藻水华预测分析中的应用. 生态学杂志, 34, 835-842.] | |
8 | Deng ZQ (1988) Report on the investigation of karst geology from Nonggang Natural Reserve. Guihaia, (S1), 1-16. (in Chinese) |
[邓自强 (1988) 广西弄岗自然保护区综合考察报告. 广西植物, S1, 1-16.] | |
9 | Dong X, Bennion H, Maberly SC, Sayer CD, Simpson GL, Battarbee RW (2012) Nutrients exert a stronger control than climate on recent diatom communities in Esthwaite Water: evidence from monitoring and palaeolimnological records. Freshwater Biology, 57, 2044-2056. |
10 | Engelbrecht BMJ, Kursar TA, Tyree MT (2005) Drought effects on seedling survival in a tropical moist forest. Trees: Structure and Function, 19, 312-321. |
11 | Guisan A, Edwards Jr TC, Hastie T (2002) Generalized linear and generalized additive models in studies of species distributions: setting the scene. Ecological Modelling, 157, 89-100. |
12 | Guo FT, Hu HQ, Jin S, Ma ZH, Zhang Y (2010) Relationship between forest lighting fire occurrence and weather factors in Daxing’an Mountains based on negative binomial model and zero-inflated negative binomial models. Chinese Journal of Plant Ecology, 34, 571-577. (in Chinese with English abstract) |
[郭福涛, 胡海清, 金森, 马志海, 张扬 (2010) 基于负二项和零膨胀负二项回归模型的大兴安岭地区雷击火与气象因素的关系. 植物生态学报, 34, 571-577.] | |
13 | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Li DX, Wen SJ, He YL, Li XK (2015a) Sprouting characteristics of tree species in 15 ha northern tropical karst seasonal rain forest dynamics plot in Nonggang, Guangxi, southern China. Chinese Journal of Ecology, 34, 955-961. (in Chinese with English abstract) |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 李冬兴, 文淑均, 何运林, 李先琨 (2015a) 弄岗北热带喀斯特季节性雨林15 ha样地萌生特征分析. 生态学杂志, 34, 955-961.] | |
14 | Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Li DX, Wen SJ, He YL, Li XK (2015b) Dynamics of density-dependent effects of tree species in a 15 ha seasonal rain forest plot in northern tropical karst in Nonggang, Guangxi, southern China. Chinese Science Bulltin, 60, 1602-1611. (in Chinese with English abstract) |
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 李冬兴, 文淑均, 何运林, 李先琨 (2015b) 弄岗喀斯特季节性雨林15 ha样地密度制约效应分析. 科学通报, 60, 1602-1611.] | |
15 | Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
16 | Hastie TJ, Tibshirani RJ (1990) Generalized Additive Models. CRC Press, Boca Raton. |
17 | Huang FZ, Wang B, Ding T, Xiang WS, Li XK, Zhou AP (2014) Numerical classification of associations in a northern tropical karst seasonal rain forest and the relationships of these associations with environmental factors. Biodiversity Science, 22, 157-166. (in Chinese with English abstract) |
[黄甫昭, 王斌, 丁涛, 向悟生, 李先琨, 周爱萍 (2014) 弄岗北热带喀斯特季节性雨林群丛数量分类及与环境的关系. 生物多样性, 22, 157-166.] | |
18 | Jiang ZZ, Yuan DX (1999) Dynamics features of the epikarst zone and their significance in environment sand resources. Acta Geoscientica Sinica, 20, 302-308. (in Chinese with English abstract) |
[蒋忠诚, 袁道先 (1999) 表层岩溶带的岩溶动力学特征及其环境和资源意义. 地球学报, 20, 302-308.] | |
19 | John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceedings of the National Academy of Sciences, USA, 104, 864-869. |
20 | Kanagaraj R, Wiegand T, Comita LS, Huth A (2011) Tropical tree species assemblages in topographical habitats change in time and with life stage. Journal of Ecology, 99, 1441-1452. |
21 | Lai JS, Mi XC, Ren HB, Ma KP (2009) Species-habitat associations change in a subtropical forest of China. Journal of Vegetation Science, 20, 415-423. |
22 | Li XK, Su ZM, Lü SH, Ou ZL, Xiang WS, Qu Z, Lu SH (2003) The spatial pattern of natural vegetation in the karst regions of Guangxi and the ecological signality for ecosystem rehabilitation and reconstruction. Journal of Mountain Science, 21, 129-139. (in Chinese with English abstract) |
[李先琨, 苏宗明, 吕仕洪, 欧祖兰, 向悟生, 区智, 陆树华 (2003) 广西岩溶植被自然分布规律及对岩溶生态恢复重建的意义. 山地学报, 21, 129-139.] | |
23 | Li YB, Hou JJ, Xie DT (2002) The recent development of research on karst system of Southwest China. Scientia Geographica Sinica, 22, 365-370. (in Chinese with English abstract) |
[李阳兵, 侯建筠, 谢德体 (2002) 中国西南岩溶生态研究进展. 地理科学, 22, 365-370.] | |
24 | Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE, 7, e48244. |
25 | Liu HF, Xue DY, Sang WG (2012) Effect of topographic factors on the relationship between species richness and aboveground biomass in a warm temperate forest. Ecology and Environmental Sciences, 21, 1403-1407. |
[刘海丰, 薛达元, 桑卫国 (2012) 地形因子对暖温带森林群落物种丰富度-地上生物量关系的影响. 生态环境学报, 21, 1403-1407.] | |
26 | Liu XL, Shi ZM, Yang DS, Liu SR, Yang YP, Ma QY (2005) Advances in study on changes of biodiversity and productivity along elevational gradient in mountainous plant community. World Forestry Research, 18(4), 27-34. (in Chinese with English abstract) |
[刘兴良, 史作民, 杨冬生, 刘世荣, 杨玉坡, 马钦彦 (2005) 山地植物群落生物多样性与生物生产力海拔梯度变化研究进展. 世界林业研究, 18(4), 27-34.] | |
27 | Luizão RCC, Luizão FJ, Paiva RQ, Monteiro TF, Sousa LS, Kruijt B (2004) Variation of carbon and nitrogen cycling processes along a topographic gradient in a central Amazonian forest. Global Change Biology, 10, 592-600. |
28 | Marshall AR, Willcock S, Platts PJ, Lovetta JC, Balmfordd A, Burgessd ND, Lathama JE, Munishih PKT, Saltera R, Shirimah DD, Lewisc SL (2012) Measuring and modelling aboveground carbon and tree allometry along a tropical elevation gradient. Biological Conservation, 154, 20-33. |
29 | Mascaro J, Asner G P, Muller-Landau H C, van Breugel M, Hall J, Dahlin K (2011) Controls over aboveground forest carbon density on Barro Colorado Island, Panama. Biogeosciences, 8, 1615-1629. |
30 | McEwan RW, Lin YC, Sun IF, Hsieh CF, Su SH, Chang LW, Song GZM, Wang HH, Hwong JL, Lin KC, Yang KC, Chiang JM (2011) Topographic and biotic regulation of aboveground carbon storage in subtropical broad-leaved forests of Taiwan. Forest Ecology and Management, 262, 1817-1825. |
31 | McEwan RW, Muller RN (2006) Spatial and temporal dynamics in canopy dominance of an old-growth central Appalachian forest. Canadian Journal of Forest Research, 36, 1536-1550. |
32 | Punchi-Manage R, Getzin S, Wiegand T, Kanagaraj R, Gunatilleke CVS, Gunatilleke IAUN, Wiegand K, Huth A (2013) Effects of topography on structuring local species assemblages in a Sri Lankan mixed dipterocarp forest. Journal of Ecology, 101, 149-160. |
33 | R Core Team (2014) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. |
34 | Sun HL (2005) Ecosystem of China. Science Press, Beijing. (in Chinese) |
[孙鸿烈 (2005) 中国生态系统. 科学出版社, 北京.] | |
35 | Sutherland WJ, Aveling R, Bennun L, Chapman E, Clout M, Côté IM, Depledge MH, Dicks LV, Dobson AP, Fellman L, Fleishman E, Gibbons DW, Keim B, Lickorish F, Lindenmayer DB, Monk5 KA, Norris K, Peck LS, Prior SV, Scharlemann JPW, Spalding M, Watkinson AR (2012) A horizon scan of global conservation issues for 2012. Trends in Ecology and Evolution, 27, 12-18. |
36 | Swartzman G, Huang CH, Kaluzny S (1992) Spatial analysis of Bering Sea groundfish survey data using generalized additive models. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1366-1378. |
37 | Takyu M, Aiba SI, Kitayama K (2003) Changes in biomass, productivity and decomposition along topographical gradients under different geological conditions in tropical lower montane forests on Mount Kinabalu, Borneo. Oecologia, 134, 397-404. |
38 | Tarboton DG (1997) A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33, 309-319. |
39 | Valencia R, Foster RB, Villa G, Condit R, Svenning JC, Hernández C, Romoleroux K, Losos E, Magård E, Balslev H (2004) Tree species distributions and local habitat variation in the Amazon: large forest plot in eastern Ecuador. Journal of Ecology, 92, 214-229. |
40 | Wang B, Huang YS, Li XK, Xiang WS, Ding T, Huang FZ, Lu SH, Han WH, Wen SJ, He LJ (2014) Species composition and spatial distribution of a 15 ha northern tropical karst seasonal rain forest dynamics study plot in Nonggang, Guangxi, southern China. Biodiversity Science, 22, 141-156. (in Chinese with English abstract) |
[王斌, 黄俞淞, 李先琨, 向悟生, 丁涛, 黄甫昭, 陆树华, 韩文衡, 文淑均, 何兰军 (2014) 弄岗北热带喀斯特季节性雨林15 ha监测样地的树种组成与空间分布. 生物多样性, 22, 141-156.] | |
41 | Wood SN (2001) mgcv: GAMs and generalized ridge regression for R. R News, 1, 20-25. |
42 | Wood SN (2004) Stable and efficient multiple smoothing parameter estimation for generalized additive models. Journal of the American Statistical Association, 99, 673-689. |
43 | Wood SN (2006a) Low rank scale invariant tensor product smooths for generalized additive mixed models. Biometrics, 62, 1025-1036. |
44 | Wood SN (2006b) Generalized Additive Models: An Introduction with R. Chapman and Hall/CRC Press, London. |
[1] | Jianhuan Yang, King Wa Li, Ho Yuen Yeung, Tsz Kin Au, Xi Zheng, Anthony J. Giordano, Bosco Pui Lok Chan. Population density and activity patterns of the leopard cat (Prionailurus bengalensis) in southern China: Estimates based on camera-trapping data [J]. Biodiv Sci, 2022, 30(9): 21357-. |
[2] | Yueqiao Kong, Yanlin Liu, Chengwu He, Tianti Li, Quanliang Li, Cunxin Ma, Dajun Wang, Sheng Li. Determining the daily activity pattern of Chinese mountain cat (Felis bieti): A comparative study based on camera-trapping and satellite collar tracking data [J]. Biodiv Sci, 2022, 30(9): 22081-. |
[3] | Fei Li, Xiangyuan Huang, Xingchao Zhang, Tsz Kin Au, Bosco Pui Lok Chan. Camera-trapping study of marbled cat (Pardofelis marmorata) in Tengchong area of Mt. Gaoligongshan, Yunnan [J]. Biodiv Sci, 2022, 30(9): 22089-. |
[4] | Ke Yang, Chengzhi Ding, Xiaoyong Chen, Liuyong Ding, Minrui Huang, Jinnan Chen, Juan Tao. Fish diversity and spatial distribution pattern in the Nujiang River Basin [J]. Biodiv Sci, 2022, 30(7): 21334-. |
[5] | Gaohui Liu, Jianguo Cui, Yue Wang, Hongliang Wang, Bao Xiang, Nengwen Xiao. Amphibian diversity and its spatio-temporal distribution patterns in Kangding City, Sichuan Province [J]. Biodiv Sci, 2022, 30(6): 21494-. |
[6] | Nan Ye, Beibei Hou, Chao Wang, Ruiwu Wang, Jianxiao Song. Spatial self-organization in microbial interactions [J]. Biodiv Sci, 2022, 30(5): 21458-. |
[7] | Fei Fu, Huiyu Wei, Yuteng Chang, Beixin Wang, Kai Chen. Elevational patterns of life history and ecological trait diversity of aquatic insects in the middle of the Lancang River: The effects of climate and land use variables [J]. Biodiv Sci, 2022, 30(5): 21332-. |
[8] | Mengzhen Lu, Fuping Zeng, Tongqing Song, Wanxia Peng, Hao Zhang, Liang Su, Kunping Liu, Weining Tan, Hu Du. Spatial distribution pattern and habitat-association of snags in karst evergreen deciduous broad-leaved mixed forests [J]. Biodiv Sci, 2022, 30(4): 21340-. |
[9] | Yu Fu, Kangxiang Huang, Jinfeng Cai, Huimin Chen, Jiusheng Ren, Songze Wan, Yang Zhang, Heng Ren, Rong Mao, Fuxi Shi. Responses in spatial pattern of four dominant species to different water level environments in a freshwater marsh in the Sanjiang Plain [J]. Biodiv Sci, 2022, 30(3): 21392-. |
[10] | Yating Wang, Dinghai Zhang, Zhishan Zhang. Spatial distribution and interspecific correlation of Haloxylon persicum and H. ammodendron on fixed dunes of the Gurbantunggut Desert, China [J]. Biodiv Sci, 2022, 30(3): 21280-. |
[11] | Chongyang Wang, Lianjun Zhao, Shiyong Meng. Spatial distribution pattern and protection strategy for orchids in landslide mass of the Wanglang National Nature Reserve [J]. Biodiv Sci, 2022, 30(2): 21313-. |
[12] | Jiahuan Sun, Dong Liu, Jiaqi Zhu, Shuning Zhang, Meixiang Gao. Spatial distribution pattern of soil mite community and body size in wheat– maize rotation farmland [J]. Biodiv Sci, 2022, 30(12): 22292-. |
[13] | Xiangcheng Mi, Xugao Wang, Guochun Shen, Xubin Liu, Xiaoyang Song, Xiujuan Qiao, Gang Feng, Jie Yang, Zikun Mao, Xuehong Xu, Keping Ma. Chinese Forest Biodiversity Monitoring Network (CForBio): Twenty years of exploring community assembly mechanisms and prospects for future research [J]. Biodiv Sci, 2022, 30(10): 22504-. |
[14] | Cheng Gao, Liang-Dong Guo. Progress on microbial species diversity, community assembly and functional traits [J]. Biodiv Sci, 2022, 30(10): 22429-. |
[15] | Dan Zhang, Songmei Ma, Bo Wei, Chuncheng Wang, Lin Zhang, Han Yan. Historical distribution pattern and driving mechanism of Haloxylon in China [J]. Biodiv Sci, 2022, 30(1): 21192-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn