生物多样性 ›› 2024, Vol. 32 ›› Issue (6): 24018. DOI: 10.17520/biods.2024018
程建伟1,2(), 徐满厚1(), 窦永静1, 王亚东2(), 王桠楠2(), 刘新民3, 李永宏2,*()()
收稿日期:
2024-01-18
接受日期:
2024-04-16
出版日期:
2024-06-20
发布日期:
2024-06-12
通讯作者:
* E-mail: lifyhong@126.com基金资助:
Jianwei Cheng1,2(), Manhou Xu1(), Yongjing Dou1, Yadong Wang2(), Yanan Wang2(), Xinmin Liu3, Frank Yonghong Li2,*()()
Received:
2024-01-18
Accepted:
2024-04-16
Online:
2024-06-20
Published:
2024-06-12
Contact:
* E-mail: lifyhong@126.com摘要:
地面节肢动物作为陆地生态系统的重要组成部分, 在大型食草动物粪便分解中扮演着重要角色。当前动物粪便中节肢动物群落研究主要集中在粪便类型和微生境的作用, 而季节或气候状况对粪便中节肢动物群落影响的研究较少。本研究在内蒙古典型草原区, 采用野外人工堆置方法, 研究不同季节马粪中节肢动物群落的组成和多样性特征, 并分析了节肢动物各类群多度与环境因子的关系。结果表明: (1)春夏秋3个季节马粪的初始含水量不存在显著差异(P > 0.05); 夏季马粪初始有机质含量显著地低于春季和秋季(P < 0.05); 马粪初始pH在秋季显著地低于春季和夏季(P < 0.05)。(2)在马粪分解第3 d和第360 d, 秋季马粪中节肢动物群落多度和类群数显著高于春季(P < 0.05); 在粪块分解第3 d和第7 d, 秋季马粪中粪金龟子群落多度和物种数显著高于夏季(P < 0.05); 在分解第3 d和第7 d, 秋季马粪中隐翅虫群落多度和属数显著高于春季和夏季(P < 0.05)。研究表明, 分解早期粪的有机质含量和含水量对马粪中节肢动物群落组成影响较大, 而分解后期节肢动物群落组成主要受土壤温度和湿度的调控。
程建伟, 徐满厚, 窦永静, 王亚东, 王桠楠, 刘新民, 李永宏 (2024) 内蒙古典型草原马粪分解过程中节肢动物群落的季节动态变化. 生物多样性, 32, 24018. DOI: 10.17520/biods.2024018.
Jianwei Cheng, Manhou Xu, Yongjing Dou, Yadong Wang, Yanan Wang, Xinmin Liu, Frank Yonghong Li (2024) Seasonal dynamics of arthropod communities during horse dung decomposition in Inner Mongolian grasslands. Biodiversity Science, 32, 24018. DOI: 10.17520/biods.2024018.
图1 不同季节马粪分解实验的野外布置(A)和取样时间安排(B)
Fig. 1 Field arrangement (A) and sampling scheme (B) of the horse dung decomposition experiment in different seasons. SPD, Horse dung in spring; SUD, Horse dung in summer; AUD, Horse dung in autumn.
图3 不同季节马粪理化性质的变化。虚线表示该时间段未进行取样。采用Duncan检验进行事后比较, *代表不同季节间在P < 0.05水平上差异显著。
Fig. 3 Changes in the physical and chemical properties of horse dung in different seasons. The dashed line indicates no sampling at the time period. The significant differences between seasons at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
图4 不同季节马粪中节肢动物群落多度(A)和类群数(B)的变化。虚线表示该时间段未进行取样。采用Duncan检验进行事后比较, *代表不同季节间在P < 0.05水平上差异显著。
Fig. 4 Changes in the abundance (A) and group number (B) of arthropod communities in horse dung in different seasons. The dashed line indicates no sampling at the time period. The significant differences between seasons at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
图5 分解早期(A)和后期(B)不同季节马粪中节肢动物功能群多度相对比例的变化
Fig. 5 Relative proportions of abundance of functional groups of arthropods in horse dung in different seasons during the early (A) and late stages (B) of decomposition
物种 Species | 春季 Spring | 夏季 Summer | 秋季 Autumn | |||
---|---|---|---|---|---|---|
多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | |
双顶嗡蜣螂 Onthophagus bivertex | 6 | 0.19 | 1 | 0.14 | 7 | 0.18 |
小驼嗡蜣螂 Onthophagus gibbulus | 2 | 0.06 | 42 | 5.80 | 173 | 4.33 |
黑缘嗡蜣螂 Onthophagus marginalis nigrimargo | 4 | 0.13 | 1 | 0.03 | ||
立叉嗡蜣螂 Onthophagus olsoufieffi | 4 | 0.09 | ||||
游荡蜉金龟 Aphodius erraticus | 1 | 0.03 | ||||
直蜉金龟 Aphodius rectus | 3,733 | 93.38 | ||||
马粪蜉金龟 Aphodius subterraneus | 1 | 0.03 | 1 | 0.03 | ||
泥蜉金龟 Aphodius sordescens | 2,647 | 85.41 | 672 | 93.79 | 3 | 0.08 |
符号蜉金龟 Aphodius comma | 435 | 14.04 | ||||
布尔蜉金龟 Aphodius burgaltaicus | 76 | 1.89 | ||||
甫拉蜉金龟 Aphodius praeustus | 1 | 0.14 | ||||
Aphodius insularis | 1 | 0.14 | ||||
Aphodius corallifer | 1 | 0.03 | ||||
Aphodius chinensis | 2 | 0.06 | ||||
个体数 No. of individuals | 3,099 | 717 | 3,998 | |||
物种数 Species richness | 9 | 5 | 8 |
表1 不同季节马粪中的金龟子群落组成
Table 1 Composition of dung beetle communities in the horse dung in different seasons
物种 Species | 春季 Spring | 夏季 Summer | 秋季 Autumn | |||
---|---|---|---|---|---|---|
多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | |
双顶嗡蜣螂 Onthophagus bivertex | 6 | 0.19 | 1 | 0.14 | 7 | 0.18 |
小驼嗡蜣螂 Onthophagus gibbulus | 2 | 0.06 | 42 | 5.80 | 173 | 4.33 |
黑缘嗡蜣螂 Onthophagus marginalis nigrimargo | 4 | 0.13 | 1 | 0.03 | ||
立叉嗡蜣螂 Onthophagus olsoufieffi | 4 | 0.09 | ||||
游荡蜉金龟 Aphodius erraticus | 1 | 0.03 | ||||
直蜉金龟 Aphodius rectus | 3,733 | 93.38 | ||||
马粪蜉金龟 Aphodius subterraneus | 1 | 0.03 | 1 | 0.03 | ||
泥蜉金龟 Aphodius sordescens | 2,647 | 85.41 | 672 | 93.79 | 3 | 0.08 |
符号蜉金龟 Aphodius comma | 435 | 14.04 | ||||
布尔蜉金龟 Aphodius burgaltaicus | 76 | 1.89 | ||||
甫拉蜉金龟 Aphodius praeustus | 1 | 0.14 | ||||
Aphodius insularis | 1 | 0.14 | ||||
Aphodius corallifer | 1 | 0.03 | ||||
Aphodius chinensis | 2 | 0.06 | ||||
个体数 No. of individuals | 3,099 | 717 | 3,998 | |||
物种数 Species richness | 9 | 5 | 8 |
图6 不同季节马粪中金龟子群落多度(A)和物种数(B)的变化。虚线表示该时间段未进行取样。采用Duncan检验进行事后比较, *代表不同季节间在P < 0.05水平上差异显著。
Fig. 6 Changes in the abundance (A) and species richness (B) of dung beetle communities in the horse dung in different seasons. The dashed line indicates no sampling at the time period. The significant differences between seasons at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
亚科 Subfamily | 属 Genus | 春季 Spring | 夏季 Summer | 秋季 Autumn | |||
---|---|---|---|---|---|---|---|
多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | ||
前角隐翅虫亚科 Aleocharinae | Ocalea | 15 | 22.39 | 16 | 6.11 | ||
Oxypoda | 9 | 13.43 | 5 | 5.33 | 81 | 31.19 | |
Parapimela | 6 | 8.96 | 68 | 26.18 | |||
Silusa | 45 | 48.04 | 71 | 27.34 | |||
Aleachara | 6 | 8.96 | 6 | 6.40 | 1 | 0.51 | |
胸片隐翅虫亚科 Xantholininae | Saurohypnus | 5 | 5.05 | ||||
异形隐翅虫亚科 Oxytelinae | Neoxus | 3 | 4.48 | ||||
Oncoparia | 3 | 4.48 | |||||
Oxytelopsis | 9 | 13.43 | |||||
背筋隐翅虫属 Oxytelus | 13 | 19.40 | 24 | 25.59 | 21 | 7.90 | |
Sartallus | 1 | 0.39 | |||||
粪隐翅虫属 Coprophilus | 3 | 4.48 | 9 | 9.59 | |||
隐翅虫亚科 Staphylinidae | Staphylinaus | 1 | 0.39 | ||||
个体数 No. of individuals | 67 | 94 | 260 | ||||
属数 No. of genus | 9 | 6 | 8 |
表2 不同季节马粪中隐翅虫群落组成
Table 2 Composition of Staphylinidae community in horse dung in different seasons
亚科 Subfamily | 属 Genus | 春季 Spring | 夏季 Summer | 秋季 Autumn | |||
---|---|---|---|---|---|---|---|
多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | 多度 Abundance (N) | 优势度 Dominance (%) | ||
前角隐翅虫亚科 Aleocharinae | Ocalea | 15 | 22.39 | 16 | 6.11 | ||
Oxypoda | 9 | 13.43 | 5 | 5.33 | 81 | 31.19 | |
Parapimela | 6 | 8.96 | 68 | 26.18 | |||
Silusa | 45 | 48.04 | 71 | 27.34 | |||
Aleachara | 6 | 8.96 | 6 | 6.40 | 1 | 0.51 | |
胸片隐翅虫亚科 Xantholininae | Saurohypnus | 5 | 5.05 | ||||
异形隐翅虫亚科 Oxytelinae | Neoxus | 3 | 4.48 | ||||
Oncoparia | 3 | 4.48 | |||||
Oxytelopsis | 9 | 13.43 | |||||
背筋隐翅虫属 Oxytelus | 13 | 19.40 | 24 | 25.59 | 21 | 7.90 | |
Sartallus | 1 | 0.39 | |||||
粪隐翅虫属 Coprophilus | 3 | 4.48 | 9 | 9.59 | |||
隐翅虫亚科 Staphylinidae | Staphylinaus | 1 | 0.39 | ||||
个体数 No. of individuals | 67 | 94 | 260 | ||||
属数 No. of genus | 9 | 6 | 8 |
图7 不同季节马粪中隐翅虫群落多度(A)和属数(B)变化。虚线表示该时间段未进行取样。采用Duncan检验进行事后比较, *代表不同季节间在P < 0.05水平上差异显著。
Fig. 7 Changes in the abundance (A) and genera number (B) of Staphylinidae community in the horse dung in different seasons. The dashed line indicates no sampling at the time period. The significant differences between seasons at P < 0.05 are denoted using * (one-way ANOVA with Duncan’s multiple-range tests for post hoc comparisons).
分解阶段 Decomposition stage | 变量 Variable | 贡献率 Contribution (%) | F | P |
---|---|---|---|---|
早期 Early stage | 粪有机质含量 Dung organic matter content | 29.8 | 18.249 | 0.002 |
粪含水量 Dung water content | 17.6 | 9.181 | 0.006 | |
土壤温度 Soil temperature | 8.1 | 3.787 | 0.062 | |
土壤湿度 Soil moisture content | 3.6 | 1.611 | 0.212 | |
粪的pH值 Dung pH | 0.7 | 0.283 | 0.686 | |
第一排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of the first ordinal axis | F = 22.32, P = 0.002 | |||
所有排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of all ordinal axes | F = 4.93, P = 0.002 | |||
后期 Late stage | 粪有机质含量 Dung organic matter content | 6.5 | 2.98 | 0.066 |
粪含水量 Dung water content | 6.2 | 2.83 | 0.102 | |
土壤温度 Soil temperature | 9.5 | 4.53 | 0.014 | |
土壤湿度 Soil moisture content | 12.5 | 6.15 | 0.002 | |
粪的pH值 Dung pH | 0.9 | 0.397 | 0.592 | |
第一排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of the first ordinal axis | F = 13.39, P = 0.026 | |||
所有排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of all ordinal axes | F = 3.762, P = 0.004 |
表3 环境因子对节肢动物群落组成的相对贡献偏冗余分析
Table 3 Relative contribution of partial redundancy analysis of environmental factors to composition of arthropods community
分解阶段 Decomposition stage | 变量 Variable | 贡献率 Contribution (%) | F | P |
---|---|---|---|---|
早期 Early stage | 粪有机质含量 Dung organic matter content | 29.8 | 18.249 | 0.002 |
粪含水量 Dung water content | 17.6 | 9.181 | 0.006 | |
土壤温度 Soil temperature | 8.1 | 3.787 | 0.062 | |
土壤湿度 Soil moisture content | 3.6 | 1.611 | 0.212 | |
粪的pH值 Dung pH | 0.7 | 0.283 | 0.686 | |
第一排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of the first ordinal axis | F = 22.32, P = 0.002 | |||
所有排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of all ordinal axes | F = 4.93, P = 0.002 | |||
后期 Late stage | 粪有机质含量 Dung organic matter content | 6.5 | 2.98 | 0.066 |
粪含水量 Dung water content | 6.2 | 2.83 | 0.102 | |
土壤温度 Soil temperature | 9.5 | 4.53 | 0.014 | |
土壤湿度 Soil moisture content | 12.5 | 6.15 | 0.002 | |
粪的pH值 Dung pH | 0.9 | 0.397 | 0.592 | |
第一排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of the first ordinal axis | F = 13.39, P = 0.026 | |||
所有排序轴显著性蒙特卡洛置换检验 Monte-Carlo permutation test for significance of all ordinal axes | F = 3.762, P = 0.004 |
图8 马粪分解早期(A)和后期(B)节肢动物群落分布与环境因子关系的RDA二维排序图。DOC: 粪有机质含量; DW: 粪含水量; ST: 土壤温度; SW: 土壤湿度; DPH: 粪的pH值; 1: 线蚓科; 2: 地蜈蚣科; 3: 盾螨科; 4: 派盾螨科; 5: 厉螨科; 6: 尾足螨科; 7: 革螨亚目; 8: 隐爪螨科; 9: 隐颚螨科; 10: 吸螨科; 11: 绒螨科; 12: 赤螨科; 13: 辐螨亚目; 14: 奥甲螨科; 15: 尖棱甲螨科; 16: 跳甲螨科; 17: 蟹蛛科; 18: 平腹蛛科; 19: 狼蛛科; 20: 光盔蛛科; 21: 长角跳科; 22: 园跳科; 23: 球角跳科; 24: 等节跳科; 25: 管蓟马科; 26: 缨翅目; 27: 蚁科; 28: 姬小蜂科; 29: 肿腿蜂科; 30: 膜翅目; 31: 小蜂总科; 32: 书虱科; 33: 金龟子科; 34: 蜉金龟科; 35: 鳃金龟科; 36: 拟步甲科; 37: 拟天牛科; 38: 隐翅虫科; 39: 蚁形甲科; 40: 缨甲科; 41: 阎甲科; 42: 牙甲科; 43: 薪甲科; 44: 步甲科; 45: 谷盗科; 46: 长蝽科; 47: 丽蝇科; 48: 环裂亚目; 49: 蚧总科; 50: 夜蛾科幼虫; 51: 步甲科幼虫; 52: 隐翅虫科幼虫; 53: 鳃金龟科幼虫; 54: 丽金龟科幼虫; 55: 蜉金龟科幼虫; 56: 拟步甲科幼虫; 57: 叶甲科幼虫; 58: 叩甲科幼虫; 59: 家蝇科幼虫; 60: 丽蝇科幼虫; 61: 食蚜蝇科幼虫; 62: 瘿蚊科幼虫; 63: 剑虻科幼虫; 64: 双翅目幼虫。
Fig. 8 RDA two-dimensional diagram of the relationship between arthropods and environmental factors at early (A) and late (B) decomposition of horse dung. DOC, Dung organic matter content; DW, Dung water content; ST, Soil temperature; SW, Soil moisture content; DPH, Dung pH; 1, Enchytraeidae; 2, Geophilidae; 3, Scutacaridae; 4, Parholaspidae; 5, Laelapidae; 6, Uropodoidea; 7, Gamasida; 8, Nanorchestidae; 9, Cryptognathidae; 10, Bdellidae; 11, Trombidiidae; 12, Erythraeidae; 13, Actinedida; 14, Oppidae; 15, Ceratozetidae; 16, Zetorchestidae; 17, Thomisidae; 18, Gnaphosidae; 19, Lycosidae; 20, Liocranidae; 21, Entomobryidae; 22, Sminthuridae; 23, Hypogastruridae; 24, Isotomidae; 25, Phlaeothripidae; 26, Thysanoptera; 27, Formicidae; 28, Eulophidae; 29, Bethylidae; 30, Hymenoptera; 31, Chalcidoidea; 32, Liposcelidae; 33, Scarabaeidae; 34, Aphodiidae; 35, Melolonthidae; 36, Tenebrionidae; 37, Oedemeridae; 38, Staphylinidae; 39, Anthicidae; 40, Ptiliidae; 41, Histeridae; 42, Hydrophilidae; 43, Lathridiidae; 44, Carabidae; 45, Ostomatidae; 46, Lygaeidae; 47, Calliphoridae; 48, Cyclorrhapha; 49, Coccoidea; 50, Noctuidae larvae; 51, Carabidae larvae; 52, Staphylinidae larvae; 53, Melolonthidae larvae; 54, Rutelidae larvae; 55, Aphodiidae larvae; 56, Tenebrionidae larvae; 57, Chrysomelidae larvae; 58, Elateridae larvae; 59, Muscidae larvae; 60, Calliphoridae larvae; 61, Syrphidae larvae; 62, Cecidomyiidae larvae; 63, Therevidae larvae; 64, Diptera larvae.
[1] | Cheng JW, Li FY, Liu XM, Wang XY, Zhao D, Feng XC, Baoyin T (2021) Seasonal patterns of the abundance of ground-dwelling arthropod guilds and their responses to livestock grazing in a semi-arid steppe. Pedobiologia, 85, 150711. |
[2] | Cheng JW, Li FY, Wang YD, Wang YN, Liu XM, Zhang JZ, Wang ZY, Li YL, Wang H, Yang ZP, Potter MA (2022) Dweller and tunneler dung beetles synergistically accelerate decomposition of cattle and horse dung in a semi-arid steppe. Agriculture, Ecosystems & Environment, 329, 107873. |
[3] |
Cheng JW, Wang YD, Wang YN, Li Y, Guo Y, Bai Z, Liu XM, Li FY (2022) Effects of soil macro- and meso-fauna on the decomposition of cattle and horse dung pats in a semi-arid steppe. Biodiversity Science, 30, 22575. (in Chinese with English abstract)
DOI |
[程建伟, 王亚东, 王桠楠, 李莹, 郭颖, 白正, 刘新民, 李永宏 (2022) 半干旱草原大中型土壤动物在畜粪分解中的作用. 生物多样性, 30, 22575.]
DOI |
|
[4] | Du ZY, Cai YJ, Wang XD, Zhang B, Du Z (2019) Research progress on grazing livestock dung decomposition and its influence on the dynamics of grassland soil nutrients. Acta Ecologica Sinica, 39, 4627-4637. (in Chinese with English abstract) |
[杜子银, 蔡延江, 王小丹, 张斌, 杜忠 (2019) 放牧牲畜粪便降解及其对草地土壤养分动态的影响研究进展. 生态学报, 39, 4627-4637.] | |
[5] | Duddigan S, Fraser T, Green I, Diaz A, Sizmur T, Tibbett M (2021) Plant, soil and faunal responses to a contrived pH gradient. Plant and Soil, 462, 505-524. |
[6] | Englmeier J, Mitesser O, Benbow ME, Hothorn T, von Hoermann C, Benjamin C, Fricke U, Ganuza C, Haensel M, Redlich S, Riebl R, Rojas Botero S, Rummler T, Steffan-Dewenter I, Stengel E, Tobisch C, Uhler J, Uphus L, Zhang J, Müller J (2023) Diverse effects of climate, land use, and insects on dung and carrion decomposition. Ecosystems, 26, 397-411. |
[7] | Frouz J (2018) Effects of soil macro- and mesofauna on litter decomposition and soil organic matter stabilization. Geoderma, 332, 161-172. |
[8] |
He JJ (2012) Precipitation variation characteristics of Xilinhot City for 50 years. Chinese Agricultural Science Bulletin, 28(29), 271-278. (in Chinese with English abstract)
DOI |
[贺俊杰 (2012) 锡林浩特市50年降水量变化特征分析. 中国农学通报, 28(29), 271-278.] | |
[9] | Jiang SC, Zhou DW (2005) Composition and seasonal variations of macro arthropod fauna associated with cattle dung pats in Songnen Grassland, China. Acta Ecologica Sinica, 25, 2983-2991. (in Chinese with English abstract) |
[姜世成, 周道玮 (2005) 松嫩草地牛粪中大型节肢动物种类组成及种群动态变化. 生态学报, 25, 2983-2991.] | |
[10] | Li LS, Li YR (1989) Acarology. Chongqing Press, Chongqing. (in Chinese) |
[李隆术, 李云瑞 (1989) 蜱螨学. 重庆出版社, 重庆.] | |
[11] | Liang JY, Jiao T, Wu JP, Gong XY, Du WH, Liu HB, Xiao YM (2015) The relationship between seasonal forage digestibility and forage nutritive value in different grazing pastures. Acta Prataculturae Sinica, 24(6), 108-115. (in Chinese with English abstract) |
[梁建勇, 焦婷, 吴建平, 宫旭胤, 杜文华, 刘海波, 肖元明 (2015) 不同类型草地牧草消化率季节动态与营养品质的关系研究. 草业学报, 24(6), 108-115.]
DOI |
|
[12] | Liu RT, Steinberger Y (2018) Seasonal distribution and diversity of ground-active arthropods between shrub microhabitats in the Negev Desert, Israel. Arid Land Research and Management, 32, 91-110. |
[13] |
Liu X, Zhao D, Cheng JW, Chen HY, Liu XM, Baoyin T, Li FY (2017) Effects of grazing and mowing on macrofauna communities in a typical steppe of Inner Mongolia, China. Chinese Journal of Applied Ecology, 28, 1869-1878. (in Chinese with English abstract)
DOI |
[刘霞, 赵东, 程建伟, 陈海燕, 刘新民, 宝音陶格涛, 李永宏 (2017) 放牧和刈割对内蒙古典型草原大型土壤动物的影响. 应用生态学报, 28, 1869-1878.]
DOI |
|
[14] | Liu XM (2011) Assemblage characteristics of dung beetles in livestock dung in Inner Mongolian typical steppe. Chinese Journal of Ecology, 30, 24-29. (in Chinese with English abstract) |
[刘新民 (2011) 内蒙古典型草原家畜粪中的粪金龟子群落特征. 生态学杂志, 30, 24-29.] | |
[15] | Liu XM, Hai Y (2011) Dung beetle species composition and decomposition function in horse dung in desert steppe of Inner Mongolia. Chinese Journal of Ecology, 30, 2269-2276. (in Chinese with English abstract) |
[刘新民, 海英 (2011) 荒漠草原马粪中粪金龟子组成及分解作用. 生态学杂志, 30, 2269-2276.] | |
[16] | Lu RK (1999) Methods of Soil Agrochemical Analysis. China Agricultural Science and Technology Press, Beijing. (in Chinese) |
[鲁如坤 (1999) 土壤农化分析方法. 中国农业科技出版社, 北京.] | |
[17] | Menéndez R, Webb P, Orwin KH (2016) Complementarity of dung beetle species with different functional behaviours influence dung-soil carbon cycling. Soil Biology and Biochemistry, 92, 142-148. |
[18] | Njoroge DM, Chen SC, Zuo J, Dossa G, Cornelissen J (2022) Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. Journal of Ecology, 110, 659-672. |
[19] | Peng SS, Piao SL, Shen ZH, Ciais P, Sun ZZ, Chen SP, Bacour C, Peylin P, Chen AP (2013) Precipitation amount, seasonality and frequency regulate carbon cycling of a semi-arid grassland ecosystem in Inner Mongolia, China: A modeling analysis. Agricultural and Forest Meteorology, 178, 46-55. |
[20] | Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, Cadotte MW, Lindenmayer DB, Adhikari YP, Aragón R, Bae S, Baldrian P, Varandi HB, Barlow J, Bässler C, Beauchêne J, Berenguer E, Bergamin RS, Birkemoe T, Boros G, Brandl R, Brustel H, Burton PJ, Cakpo-Tossou YT, Castro J, Cateau E, Cobb TP, Farwig N, Fernández RD, Firn J, Gan KS, González G, Gossner MM, Habel JC, Hébert C, Heibl C, Heikkala O, Hemp A, Hemp C, Hjältén J, Hotes S, Kouki J, Lachat T, Liu J, Liu Y, Luo YH, Macandog DM, Martina PE, Mukul SA, Nachin B, Nisbet K, O’Halloran J, Oxbrough A, Pandey JN, Pavlíček T, Pawson SM, Rakotondranary JS, Ramanamanjato JB, Rossi L, Schmidl J, Schulze M, Seaton S, Stone MJ, Stork NE, Suran B, Sverdrup-Thygeson A, Thorn S, Thyagarajan G, Wardlaw TJ, Weisser WW, Yoon S, Zhang NL, Müller J (2021) The contribution of insects to global forest deadwood decomposition. Nature, 597, 77-81. |
[21] |
Sladecek FXJ, Dötterl S, Schäffler I, Segar ST, Konvicka M (2021) Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. Journal of Chemical Ecology, 47, 433-443.
DOI PMID |
[22] | Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[23] | Wu XW, Duffy JE, Reich PB, Sun SC (2011) A brown-world cascade in the dung decomposer food web of an alpine meadow: Effects of predator interactions and warming. Ecological Monographs, 81, 313-328. |
[24] |
Wu XW, Niklas KJ, Sun SC (2021) Climate change affects detritus decomposition rates by modifying arthropod performance and species interactions. Current Opinion in Insect Science, 47, 62-66.
DOI PMID |
[25] | Xiang J, Gu J, Wang GM, Bol R, Yao L, Fang YM, Zhang HC (2024) Soil pH controls the structure and diversity of bacterial communities along elevational gradients on Huangshan, China. European Journal of Soil Biology, 120, 103586. |
[26] | Xu GL, Schleppi P, Li MH, Fu SL (2009) Negative responses of Collembola in a forest soil (Alptal, Switzerland) under experimentally increased N deposition. Environmental Pollution, 157, 2030-2036. |
[27] | Yang ZM, Ha S, Liu XM (2016) Effects of grazing on the composition of soil animals and their decomposition function to Stipa grandis litter in Inner Mongolia typical steppe, China. Chinese Journal of Applied Ecology, 27, 2864-2874. (in Chinese with English abstract) |
[杨志敏, 哈斯塔米尔, 刘新民 (2016) 放牧对内蒙古典型草原大针茅凋落物中土壤动物组成及其分解功能的影响. 应用生态学报, 27, 2864-2874.]
DOI |
|
[28] | Yin WY (1998) Pictorical Keys to Soil Animals of China. Science Press, Beijing. (in Chinese) |
[尹文英 (1998) 中国土壤动物检索图鉴. 科学出版社, 北京.] | |
[29] | Zhai N, Alatenbagen, Liu XM (2018) Feeding preferences and daily activity rhythms of dung beetles on the Inner Mongolian steppe. Chinese Journal of Applied Entomology, 55, 428-437. (in Chinese with English abstract) |
[翟娜, 阿拉腾巴根, 刘新民 (2018) 内蒙古典型草原粪食性金龟的取食偏好和日活动节律特征. 应用昆虫学报, 55, 428-437.] | |
[30] | Zhang JE (2006) Common Experimental Research Methods and Techniques in Ecology. Chemical Industry Press, Beijing. (in Chinese) |
[章家恩 (2006) 生态学常用实验研究方法与技术. 化学工业出版社, 北京.] |
[1] | 谢华, 杨培, 李宗波. 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化[J]. 生物多样性, 2024, 32(6): 24001-. |
[2] | 牛永杰, 马全会, 朱玉, 刘海荣, 吕佳乐, 邹元春, 姜明. 氮沉降对草地昆虫多样性影响的研究进展[J]. 生物多样性, 2023, 31(9): 23130-. |
[3] | 陈哲涵, 尹进, 叶吉, 刘冬伟, 毛子昆, 房帅, 蔺菲, 王绪高. 增温对东北温带次生林草本群落季节动态的影响[J]. 生物多样性, 2023, 31(5): 23059-. |
[4] | 赵也茜, 张家语, 李子涵, 解秦米佳, 邓歆, 王楠. 北京城市鸟类夜栖时对本土和外来植物的利用[J]. 生物多样性, 2023, 31(3): 22399-. |
[5] | 李佳奇, 郭屹立, 李冬兴, 王斌, 向悟生, 黄甫昭, 陆芳, 文淑均, 李健星, 陆树华, 李先琨. 桂西南北热带喀斯特季节性雨林土壤钾、钙、镁空间分布特征及其影响因素[J]. 生物多样性, 2023, 31(2): 22352-. |
[6] | 马瑞霞, 郭屹立, 李冬兴, 王斌, 向悟生, 黄甫昭, 陆芳, 文淑均, 李健星, 陆树华, 李先琨. 桂西南喀斯特季节性雨林幼树更新的空间分布格局及机制[J]. 生物多样性, 2023, 31(2): 22251-. |
[7] | 张超, 李娟, 程海云, 段家充, 潘昭. 秦岭西段地区蝴蝶群落多样性与环境因子相关性[J]. 生物多样性, 2023, 31(1): 22272-. |
[8] | 邓雪琴, 刘统, 刘天时, 徐恺, 姚松, 黄小群, 肖治术. 河南内乡宝天曼国家级自然保护区豹猫及其潜在猎物之间日活动节律的季节性[J]. 生物多样性, 2022, 30(9): 22263-. |
[9] | 杨华林, 程跃红, 周天祥, 冯茜, 胡强, 张贵权, 杨建, 张晋东, 王彬, 周材权. 四川卧龙国家级自然保护区多空间尺度下绿尾虹雉的生境选择[J]. 生物多样性, 2022, 30(7): 21535-. |
[10] | 史丹阳, 廖书跃, 朱磊, 李彬彬. 鸟撞建筑现象概述及系统性调查案例分析[J]. 生物多样性, 2022, 30(3): 21321-. |
[11] | 程建伟, 王亚东, 王桠楠, 李莹, 郭颖, 白正, 刘新民, 李永宏. 半干旱草原大中型土壤动物在畜粪分解中的作用[J]. 生物多样性, 2022, 30(12): 22575-. |
[12] | 陈燕南, 梁铖, 陈军. 亚热带不同树种组成森林中土壤甲螨群落结构特征: 以江西新岗山为例[J]. 生物多样性, 2022, 30(12): 22334-. |
[13] | 林永一, 王永珍, 冯怡琳, 赵文智, 高俊伟, 刘继亮. 河西走廊中部戈壁地表甲虫群落动态变化及其影响因素[J]. 生物多样性, 2022, 30(12): 22343-. |
[14] | 刘笑彤, 田艺佳, 刘汉文, 梁翠影, 姜思维, 梁文举, 张晓珂. 下辽河平原农田土壤线虫群落组成的季节变化[J]. 生物多样性, 2022, 30(12): 22222-. |
[15] | 黄方倩, 王超, 刘明庆, 陈秋会, 韩笑, 王磊, 席运官, 张纪兵. 有机种植对农田节肢动物多样性影响的整合分析[J]. 生物多样性, 2022, 30(1): 21243-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn