生物多样性 ›› 2024, Vol. 32 ›› Issue (6): 24001. DOI: 10.17520/biods.2024001
收稿日期:
2024-01-04
接受日期:
2024-03-30
出版日期:
2024-06-20
发布日期:
2024-06-11
通讯作者:
* E-mail: lizb@swfu.edu.cn基金资助:
Hua Xie1(), Pei Yang2, Zongbo Li1,3,*()()
Received:
2024-01-04
Accepted:
2024-03-30
Online:
2024-06-20
Published:
2024-06-11
Contact:
* E-mail: lizb@swfu.edu.cn摘要:
生存与繁殖对生物体维持和延续种群数量稳定至关重要。表皮碳氢化合物具有维持昆虫水分平衡和信息通讯的双重功能, 目前对于昆虫在不同气候条件下如何权衡防脱水与保持化学信号可靠性的潜在冲突尚不清楚。本文以寄生于鸡嗉子榕(Ficus semicordata)雄花期果内的传粉榕小蜂窝榕小蜂(Ceratosolen gravelyi)为研究对象, 利用气相色谱-质谱联用仪(GC-MS)解析雨季、雾凉季和干热季中雌、雄成虫表皮碳氢化合物的种类及含量, 运用非度量多维尺度排序、相似性分析、置换多元方差分析和随机森林等方法分析了窝榕小蜂表皮碳氢化合物对不同季节变化的响应机制。结果表明: (1)窝榕小蜂表皮碳氢化合物由34种C7-C44的化合物组成, 包括正链烷烃、甲基烷烃、烯烃和甲基烯烃; 其中角鲨烯(squalene)、2-甲基二十八烷(2-Me-C28)、正三十四烷(n-C34)、正三十六烷(n-C36)和正四十四烷(n-C44)为主要成分(> 5%)。(2)不同性别窝榕小蜂表皮碳氢化合物的组成及含量存在显著差异, 正四十二烷(n-C42)、17-三十五烯(17-C35:1)、1-二十九烯(C29:1)、2-Me-C28和角鲨烯是造成两性差异的重要贡献量化合物。(3)雌、雄成虫表皮碳氢化合物均具有明显的季节变化: 在干热季中, 雌蜂正链烷烃(n-C34、n-C36和n-C44)的比例及碳氢化合物的总绝对含量增加, 2-Me-C28和角鲨烯的比例降低; 雄蜂甲基烯烃的比例增加, 正链烷烃和甲基烷烃的比例降低, 碳氢化合物总绝对含量无明显变化。本研究发现窝榕小蜂表皮碳氢化合物具有明显的性二型和强烈的季节可塑性, 2-Me-C28和角鲨烯可作为雄蜂配偶识别时的候选性信息素; 雌、雄成虫在适应高温和/或干燥的气候条件时存在差异化响应, 表明窝榕小蜂两性表皮碳氢化合物在不同季节变化中采取不同的适应性策略。本研究揭示了榕小蜂应对不同气候环境的化学适应机制, 为研究昆虫双重性状和理解生态适应与物种形成之间的功能联系奠定了化学基础。
谢华, 杨培, 李宗波 (2024) 鸡嗉子榕传粉榕小蜂表皮碳氢化合物的性二型及季节变化. 生物多样性, 32, 24001. DOI: 10.17520/biods.2024001.
Hua Xie, Pei Yang, Zongbo Li (2024) Sexual dimorphism and seasonal variations in cuticular hydrocarbons of the pollinating fig wasp in Ficus semicordata. Biodiversity Science, 32, 24001. DOI: 10.17520/biods.2024001.
化合物 Compounds | 保留时间Retention time (min) | 雨季 Rainy | 雾凉季 Fog-cool | 干热季 Dry-hot | 平均下降基尼指数 Mean decrease Gini | |||
---|---|---|---|---|---|---|---|---|
雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | |||
正链烷烃 n-Aikanes | ||||||||
n-C7 | 5.361 | - | - | - | - | 0.40 ± 0.02 | 0.50 ± 0.02 | 0.325 |
n-C17 | 42.119 | 0.18 ± 0.03 | - | - | - | - | - | 0.316 |
n-C19 | 45.751 | 0.08 ± 0.04 | - | - | - | - | - | 0.020 |
n-C24 | 52.046 | - | - | - | 0.31 ± 0.03 | - | - | 0.366 |
n-C25 | 52.822 | - | - | - | 0.43 ± 0.05 | - | - | 0.268 |
n-C27 | 55.728 | - | 2.92 ± 0.53 | 1.75 ± 0.11 | 1.58 ± 0.23 | - | - | 0.671 |
n-C29 | 58.596 | 3.18 ± 0.39 | 9.75 ± 1.95 | 1.60 ± 0.19 | 8.28 ± 1.27 | - | - | 1.229 |
n-C31 | 59.328 | - | - | 8.52 ± 0.63 | 9.84 ± 3.41 | 15.36 ± 1.79 | - | 0.678 |
n-C32 | 59.420 | 7.85 ± 1.19 | - | - | - | - | - | 0.349 |
n-C34 | 60.156 | 71.78 ± 8.79 | 61.07 ± 10.85 | 43.55 ± 2.81 | 25.94 ± 3.41 | 75.67 ± 7.20 | 22.31 ± 3.15 | 1.198 |
n-C35 | 60.792 | 27.15 ± 3.2 | 37.40 ± 17.87 | 16.77 ± 1.65 | 9.62 ± 1.50 | 31.08 ± 3.35 | - | 1.291 |
n-C36 | 61.300 | 255.70 ± 30.86 | 251.75 ± 43.70 | 205.34 ± 11.82 | 124.95 ± 16.78 | 436.56 ± 43.08 | 112.51 ± 13.32 | 1.191 |
n-C40 | 62.070 | 15.52 ± 2.06 | - | 11.35 ± 0.62 | 7.79 ± 1.32 | - | - | 0.874 |
n-C42 | 62.367 | 22.10 ± 2.87 | - | 15.74 ± 0.94 | - | 23.56 ± 2.08 | - | 3.279 |
n-C43 | 63.052 | 6.77 ± 1.03 | - | - | - | - | - | 0.417 |
n-C44 | 63.437 | 50.01 ± 6.59 | 62.85 ± 18.48 | 37.36 ± 1.87 | 23.30 ± 3.11 | 67.31 ± 7.24 | 19.82 ± 2.40 | 1.211 |
甲基烷烃 Methylalkanes | ||||||||
2,6-diMe-C17 | 44.110 | 0.09 ± 0.03 | - | - | - | - | - | 0.119 |
3-Me-C21 | 49.391 | - | - | - | - | 2.92 ± 0.64 | - | 0.452 |
2-Me-C22 | 50.344 | - | - | 1.99 ± 0.21 | 5.00 ± 0.69 | - | 4.01 ± 0.96 | 0.750 |
4-Me-C22 | 50.352 | 4.24 ± 0.68 | 7.84 ± 1.48 | - | - | - | - | 0.533 |
2-Me-C24 | 52.448 | - | - | - | 0.82 ± 0.08 | - | - | 0.277 |
2-Me-C26 | 54.807 | - | - | - | 0.80 ± 0.14 | - | - | 0.257 |
2-Me-C28 | 58.124 | 69.67 ± 8.77 | 34.56 ± 7.04 | 58.37 ± 3.06 | 16.63 ± 2.40 | 90.68 ± 9.68 | 9.28 ± 1.27 | 2.119 |
15-Me-C29 | 58.935 | - | 6.03 ± 1.73 | 2.43 ± 0.31 | - | - | - | 0.569 |
烯烃 Alkenes | ||||||||
10-C21:1 | 48.029 | 1.51 ± 0.32 | - | - | - | 0.47 ± 0.18 | - | 0.974 |
(1E,9E,17Z)-C22:3 | 48.471 | - | 0.37 ± 0.10 | - | - | - | - | 0.329 |
(10E)-C22:1 | 49.415 | - | - | 0.78 ± 0.10 | - | - | - | 0.340 |
C23:1 | 50.474 | - | - | - | - | 1.96 ± 0.75 | 0.79 ± 0.38 | 0.073 |
C24:1 | 51.700 | - | - | 1.44 ± 0.15 | - | - | - | 0.391 |
C25:1 | 52.734 | - | - | - | - | - | 1.30 ± 0.41 | 0.122 |
C27:1 | 55.005 | - | - | - | 0.78 ± 0.19 | - | 2.19 ± 0.27 | 0.850 |
C29:1 | 58.322 | - | 6.07 ± 2.39 | - | 3.63 ± 0.70 | - | 4.96 ± 0.70 | 2.126 |
17-C35:1 | 60.301 | - | 33.72 ± 9.9 | 3.82 ± 0.48 | 18.44 ± 2.93 | - | 21.00 ± 3.39 | 2.571 |
甲基烯烃 Methylalkenes | ||||||||
角鲨烯 Squalene | 57.645 | 11.14 ± 1.5 | 62.34 ± 16.01 | 6.67 ± 0.75 | 21.58 ± 3.43 | 6.16 ± 1.64 | 64.62 ± 9.05 | 1.812 |
表1 窝榕小蜂雌、雄成虫表皮碳氢化合物在3个季节中的平均绝对含量(平均值 ± 标准误, ng/只)与重要性评估
Table 1 Mean absolute content (mean ± SE, ng/unit) and important appraisal of cuticular hydrocarbons of female and male Ceratosolen gravelyi during three seasons
化合物 Compounds | 保留时间Retention time (min) | 雨季 Rainy | 雾凉季 Fog-cool | 干热季 Dry-hot | 平均下降基尼指数 Mean decrease Gini | |||
---|---|---|---|---|---|---|---|---|
雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | 雌性 Female | 雄性 Male | |||
正链烷烃 n-Aikanes | ||||||||
n-C7 | 5.361 | - | - | - | - | 0.40 ± 0.02 | 0.50 ± 0.02 | 0.325 |
n-C17 | 42.119 | 0.18 ± 0.03 | - | - | - | - | - | 0.316 |
n-C19 | 45.751 | 0.08 ± 0.04 | - | - | - | - | - | 0.020 |
n-C24 | 52.046 | - | - | - | 0.31 ± 0.03 | - | - | 0.366 |
n-C25 | 52.822 | - | - | - | 0.43 ± 0.05 | - | - | 0.268 |
n-C27 | 55.728 | - | 2.92 ± 0.53 | 1.75 ± 0.11 | 1.58 ± 0.23 | - | - | 0.671 |
n-C29 | 58.596 | 3.18 ± 0.39 | 9.75 ± 1.95 | 1.60 ± 0.19 | 8.28 ± 1.27 | - | - | 1.229 |
n-C31 | 59.328 | - | - | 8.52 ± 0.63 | 9.84 ± 3.41 | 15.36 ± 1.79 | - | 0.678 |
n-C32 | 59.420 | 7.85 ± 1.19 | - | - | - | - | - | 0.349 |
n-C34 | 60.156 | 71.78 ± 8.79 | 61.07 ± 10.85 | 43.55 ± 2.81 | 25.94 ± 3.41 | 75.67 ± 7.20 | 22.31 ± 3.15 | 1.198 |
n-C35 | 60.792 | 27.15 ± 3.2 | 37.40 ± 17.87 | 16.77 ± 1.65 | 9.62 ± 1.50 | 31.08 ± 3.35 | - | 1.291 |
n-C36 | 61.300 | 255.70 ± 30.86 | 251.75 ± 43.70 | 205.34 ± 11.82 | 124.95 ± 16.78 | 436.56 ± 43.08 | 112.51 ± 13.32 | 1.191 |
n-C40 | 62.070 | 15.52 ± 2.06 | - | 11.35 ± 0.62 | 7.79 ± 1.32 | - | - | 0.874 |
n-C42 | 62.367 | 22.10 ± 2.87 | - | 15.74 ± 0.94 | - | 23.56 ± 2.08 | - | 3.279 |
n-C43 | 63.052 | 6.77 ± 1.03 | - | - | - | - | - | 0.417 |
n-C44 | 63.437 | 50.01 ± 6.59 | 62.85 ± 18.48 | 37.36 ± 1.87 | 23.30 ± 3.11 | 67.31 ± 7.24 | 19.82 ± 2.40 | 1.211 |
甲基烷烃 Methylalkanes | ||||||||
2,6-diMe-C17 | 44.110 | 0.09 ± 0.03 | - | - | - | - | - | 0.119 |
3-Me-C21 | 49.391 | - | - | - | - | 2.92 ± 0.64 | - | 0.452 |
2-Me-C22 | 50.344 | - | - | 1.99 ± 0.21 | 5.00 ± 0.69 | - | 4.01 ± 0.96 | 0.750 |
4-Me-C22 | 50.352 | 4.24 ± 0.68 | 7.84 ± 1.48 | - | - | - | - | 0.533 |
2-Me-C24 | 52.448 | - | - | - | 0.82 ± 0.08 | - | - | 0.277 |
2-Me-C26 | 54.807 | - | - | - | 0.80 ± 0.14 | - | - | 0.257 |
2-Me-C28 | 58.124 | 69.67 ± 8.77 | 34.56 ± 7.04 | 58.37 ± 3.06 | 16.63 ± 2.40 | 90.68 ± 9.68 | 9.28 ± 1.27 | 2.119 |
15-Me-C29 | 58.935 | - | 6.03 ± 1.73 | 2.43 ± 0.31 | - | - | - | 0.569 |
烯烃 Alkenes | ||||||||
10-C21:1 | 48.029 | 1.51 ± 0.32 | - | - | - | 0.47 ± 0.18 | - | 0.974 |
(1E,9E,17Z)-C22:3 | 48.471 | - | 0.37 ± 0.10 | - | - | - | - | 0.329 |
(10E)-C22:1 | 49.415 | - | - | 0.78 ± 0.10 | - | - | - | 0.340 |
C23:1 | 50.474 | - | - | - | - | 1.96 ± 0.75 | 0.79 ± 0.38 | 0.073 |
C24:1 | 51.700 | - | - | 1.44 ± 0.15 | - | - | - | 0.391 |
C25:1 | 52.734 | - | - | - | - | - | 1.30 ± 0.41 | 0.122 |
C27:1 | 55.005 | - | - | - | 0.78 ± 0.19 | - | 2.19 ± 0.27 | 0.850 |
C29:1 | 58.322 | - | 6.07 ± 2.39 | - | 3.63 ± 0.70 | - | 4.96 ± 0.70 | 2.126 |
17-C35:1 | 60.301 | - | 33.72 ± 9.9 | 3.82 ± 0.48 | 18.44 ± 2.93 | - | 21.00 ± 3.39 | 2.571 |
甲基烯烃 Methylalkenes | ||||||||
角鲨烯 Squalene | 57.645 | 11.14 ± 1.5 | 62.34 ± 16.01 | 6.67 ± 0.75 | 21.58 ± 3.43 | 6.16 ± 1.64 | 64.62 ± 9.05 | 1.812 |
图1 3个季节中窝榕小蜂雌、雄蜂表皮碳氢化合物的非度量多维尺度排序(NMDS)结果(图中实心代表雌性, 空心代表雄性)
Fig. 1 Results of non-metric multidimensional scaling (NMDS) of cuticular hydrocarbon profiles of male and female Ceratosolen gravelyi in three seasons (black dots represent female and white dots represent male)
图2 窝榕小蜂雌(A)、雄(B)蜂在不同季节间表皮碳氢化合物的非度量多维尺度排序(NMDS)结果
Fig. 2 Results of non-metric multidimensional scaling (NMDS) of cuticular hydrocarbon profiles of female and male Ceratosolen gravelyi in different seasons
图3 不同季节对窝榕小蜂雌、雄蜂表皮碳氢化合物的影响(平均值 ± 标准误)。不同字母表示不同季节间差异显著(P < 0.05)。
Fig. 3 Effects of different seasons on cuticular hydrocarbons of female and male Ceratosolen gravelyi (mean ± SE). Different letters indicate significant differences between different seasons (P < 0.05).
化合物 Compounds | 环境变量 Environmental variables | 雌性 Female | 雄性 Male | ||
---|---|---|---|---|---|
R2 | P | R2 | P | ||
正链烷烃 n-Aikanes | 温度 Temperature | 0.220 | 0.004 | 0.098 | 0.034 |
降水量 Precipitation | 0.134 | 0.022 | 0.249 | 0.004 | |
甲基烷烃 Methylalkanes | 温度 Temperature | 0.118 | 0.053 | 0.048 | 0.161 |
降水量 Precipitation | 0.131 | 0.042 | 0.349 | 0.001 | |
烯烃 Alkenes | 温度 Temperature | - | - | 0.049 | 0.212 |
降水量 Precipitation | - | - | 0.030 | 0.355 | |
甲基烯烃 Methylalkenes | 温度 Temperature | 0.063 | 0.163 | 0.264 | 0.010 |
降水量 Precipitation | 0.169 | 0.015 | 0.007 | 0.613 | |
总绝对含量 Total absolute content | 温度 Temperature | 0.197 | 0.007 | 0.108 | 0.050 |
降水量 Precipitation | 0.186 | 0.009 | 0.236 | 0.003 |
表2 环境因子对不同类别化合物影响的置换多元方差分析(PERMANOVA)结果。加粗表示P < 0.05。
Table 2 Permutational multivariate analysis of variance (PERMANOVA) assessing the effects of environmental factors on different class of compounds. Significant P values (P < 0.05) are highlighted in bold.
化合物 Compounds | 环境变量 Environmental variables | 雌性 Female | 雄性 Male | ||
---|---|---|---|---|---|
R2 | P | R2 | P | ||
正链烷烃 n-Aikanes | 温度 Temperature | 0.220 | 0.004 | 0.098 | 0.034 |
降水量 Precipitation | 0.134 | 0.022 | 0.249 | 0.004 | |
甲基烷烃 Methylalkanes | 温度 Temperature | 0.118 | 0.053 | 0.048 | 0.161 |
降水量 Precipitation | 0.131 | 0.042 | 0.349 | 0.001 | |
烯烃 Alkenes | 温度 Temperature | - | - | 0.049 | 0.212 |
降水量 Precipitation | - | - | 0.030 | 0.355 | |
甲基烯烃 Methylalkenes | 温度 Temperature | 0.063 | 0.163 | 0.264 | 0.010 |
降水量 Precipitation | 0.169 | 0.015 | 0.007 | 0.613 | |
总绝对含量 Total absolute content | 温度 Temperature | 0.197 | 0.007 | 0.108 | 0.050 |
降水量 Precipitation | 0.186 | 0.009 | 0.236 | 0.003 |
[1] |
Bartelt RJ, Jones RL (1983) (Z)-10-nonadecenal: A pheromonally active air oxidation product of (Z,Z)-9,19 dienes in yellowheaded spruce sawfly. Journal of Chemical Ecology, 9, 1333-1341.
DOI PMID |
[2] | Berson JD, Zuk M, Simmons LW (2019) Natural and sexual selection on cuticular hydrocarbons:A quantitative genetic analysis. Proceedings of the Royal Society B: Biological Sciences, 286, 20190677. |
[3] | Billeter JC, Wolfner MF (2018) Chemical cues that guide female reproduction in Drosophila melanogaster. Journal of Chemical Ecology, 44, 750-769. |
[4] | Blomquist GJ, Bagnères AG (2010) Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge. |
[5] |
Blomquist GJ, Ginzel MD (2021) Chemical ecology, biochemistry, and molecular biology of insect hydrocarbons. Annual Review of Entomology, 66, 45-60.
DOI PMID |
[6] | Blows MW (2002) Interaction between natural and sexual selection during the evolution of mate recognition. Proceedings of the Royal Society B: Biological Sciences, 269, 1113-1118. |
[7] | Boff S, Ayasse M (2023) Exposure to sublethal concentration of flupyradifurone alters sexual behavior and cuticular hydrocarbon profile in Heriades truncorum, an oligolectic solitary bee. Insect Science, 31, 1-11. |
[8] | Brooks R (2000) Negative genetic correlation between male sexual attractiveness and survival. Nature, 406, 67-70. |
[9] | Buellesbach J, Diao WW, Schmitt T, Beukeboom LW (2022) Micro-climate correlations and conserved sexual dimorphism of cuticular hydrocarbons in European populations of the jewel wasp Nasonia vitripennis. Ecological Entomology, 47, 38-51. |
[10] | Capodeanu-Nägler A, Rapkin J, Sakaluk SK, Hunt J, Steiger S (2014) Self-recognition in crickets via on-line processing. Current Biology, 24, R1117-R1118. |
[11] |
Carlson DA, Mayer MS, Silhacek DL, James JD, Beroza M, Bierl BA (1971) Sex attractant pheromone of the house fly: Isolation, identification and synthesis. Science, 174, 76-78.
PMID |
[12] |
Chenoweth SF, Rundle HD, Blows MW (2008) Genetic constraints and the evolution of display trait sexual dimorphism by natural and sexual selection. The American Naturalist, 171, 22-34.
DOI PMID |
[13] |
Chown SL, Sørensen JG, Terblanche JS (2011) Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 57, 1070-1084.
DOI PMID |
[14] |
Chung H, Carroll SB (2015) Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays, 37, 822-830.
DOI PMID |
[15] | Chung H, Loehlin DW, Dufour HD, Vaccarro K, Millar JG, Carroll SB (2014) A single gene affects both ecological divergence and mate choice in Drosophila. Science, 343, 1148-1151. |
[16] | Cook JM, Rasplus JY (2003) Mutualists with attitude: Coevolving fig wasps and figs. Trends in Ecology & Evolution, 18, 241-248. |
[17] | Cook JM, Segar ST (2010) Speciation in fig wasps. Ecological Entomology, 35, 54-66. |
[18] |
Ercit K, Gwynne DT (2015) Darwinian balancing selection: Predation counters sexual selection in a wild insect. Evolution, 69, 419-430.
DOI PMID |
[19] | Everaerts C, Farine JP, Cobb M, Ferveur JF (2010) Drosophila cuticular hydrocarbons revisited: Mating status alters cuticular profiles. PLoS ONE, 5, e9607. |
[20] | Gefen E, Talal S, Brendzel O, Dror A, Fishman A (2015) Variation in quantity and composition of cuticular hydrocarbons in the scorpion Buthus occitanus (Buthidae) in response to acute exposure to desiccation stress. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 182, 58-63. |
[21] | Gibbs A, Pomonis JG (1995) Physical properties of insect cuticular hydrocarbons: The effects of chain length, methyl-branching and unsaturation. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 112, 243-249. |
[22] | Gibbs AG (1998) Water-proofing properties of cuticular lipids. American Zoologist, 38, 471-482. |
[23] |
Gibbs AG (2002) Lipid melting and cuticular permeability: New insights into an old problem. Journal of Insect Physiology, 48, 391-400.
PMID |
[24] | Hadley NF (1977) Epicuticular lipids of the desert tenebrionid beetle, Eleodes armata: Seasonal and acclimatory effects on composition. Insect Biochemistry, 7, 277-283. |
[25] | Hay-Roe MM, Lamas G, Nation JL (2007) Pre- and postzygotic isolation and Haldane rule effects in reciprocal crosses of Danaus erippus and Danaus plexippus (Lepidoptera: Danainae), supported by differentiation of cuticular hydrocarbons, establish their status as separate species. Biological Journal of the Linnean Society, 91, 445-453. |
[26] | Hebets EA, Papaj DR (2005) Complex signal function: Developing a framework of testable hypotheses. Behavioral Ecology and Sociobiology, 57, 197-214. |
[27] |
Hendry CR, Guiher TJ, Pyron RA (2014) Ecological divergence and sexual selection drive sexual size dimorphism in new world pitvipers (Serpentes: Viperidae). Journal of Evolutionary Biology, 27, 760-771.
DOI PMID |
[28] |
Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50, 371-393.
PMID |
[29] |
Kárpáti Z, Deutsch F, Kiss B, Schmitt T (2023) Seasonal changes in photoperiod and temperature lead to changes in cuticular hydrocarbon profiles and affect mating success in Drosophila suzukii. Scientific Reports, 13, 5649.
DOI PMID |
[30] |
Kather R, Martin SJ (2015) Evolution of cuticular hydrocarbons in the Hymenoptera: A meta-analysis. Journal of Chemical Ecology, 41, 871-883.
DOI PMID |
[31] | Kokko H, Brooks R (2003) Sexy to die for? Sexual selection and the risk of extinction. Annales Zoologici Fennici, 40, 207-219. |
[32] | Kováts ES (1965) Gas chromatographic characterization of organic substances in the retention index system. Advances in Chromatography, 1, 229-247. |
[33] | Krishnan A, Joshi KA, Abraham A, Ayyub S, Lahiry M, Mukherjee R, Javadekar SM, Narayan V, Borges RM (2014) Finding hidden females in a crowd: Mate recognition in fig wasps. Acta Oecologica, 57, 80-87. |
[34] | Lacey ES, Ginzel MD, Millar JG, Hanks LM (2008) 7-methylheptacosane is a major component of the contact sex pheromone of the cerambycid beetle Neoclytus acuminatus acuminatus. Physiological Entomology, 33, 209-216. |
[35] | Li CX, Liu ZX, Yang P, Li ZB (2020) Ultramorphology, distribution and ecological significance of antennal sensilla of female and male Sycoscapter trifemmensis (Hymenoptera: Pteromalidae). Journal of Environmental Entomology, 42, 400-409. (in Chinese with English abstract) |
[李成星, 刘志祥, 杨培, 李宗波 (2020) 伪鞘榕小蜂雌雄成虫触角感器的超微形态、分布及适生意义. 环境昆虫学报, 42, 400-409.] | |
[36] | Li ZB, Yang P, Peng YQ, Yang DR (2012) Distribution and ultramorphology of antennal sensilla in female Ceratosolen emarginatus Mayr (Hymenoptera: Agaonidae), a specific pollinator of Ficus auriculata. Acta Entomologica Sinica, 55, 1272-1281. (in Chinese with English abstract) |
[李宗波, 杨培, 彭艳琼, 杨大荣 (2012) 木瓜榕传粉榕小蜂雌蜂触角感器的分布和超微形态. 昆虫学报, 55, 1272-1281.] | |
[37] | Liu ZX, Yang P, Zhang Y, Li ZB, Kjellberg F (2019) Antennae and the role of olfaction and contact stimulation in mate recognition by males of the pollinating fig wasp Ceratosolen gravelyi (Hymenoptera: Agaonidae). Journal of Natural History, 53, 779-795. |
[38] | Liu ZX, Yang P, Li ZB (2021) Antennal sensilla and ecological adaptations of female symbiotic fig wasps in Ficus semicordata. Chinese Journal of Applied Entomology, 58, 736-746. (in Chinese with English abstract) |
[刘志祥, 杨培, 李宗波 (2021) 鸡嗉子榕蜂群落中雌蜂触角感器及适生意义. 应用昆虫学报, 58, 736-746.] | |
[39] | Mair MM, Kmezic V, Huber S, Pannebakker BA, Ruther J (2017) The chemical basis of mate recognition in two parasitoid wasp species of the genus Nasonia. Entomologia Experimentalis et Applicata, 164, 1-15. |
[40] | Menzel F, Zumbusch M, Feldmeyer B (2018) How ants acclimate: Impact of climatic conditions on the cuticular hydrocarbon profile. Functional Ecology, 32, 657-666. |
[41] |
Michelutti KB, Soares ERP, Sguarizi-Antonio D, Piva RC, Súarez YR, Cardoso CAL, Antonialli-Junior WF (2018) Influence of temperature on survival and cuticular chemical profile of social wasps. Journal of Thermal Biology, 71, 221-231.
DOI PMID |
[42] |
Mitchell C, Wylde Z, Del Castillo E, Rapkin J, House CM, Hunt J (2023) Beauty or function? The opposing effects of natural and sexual selection on cuticular hydrocarbons in male black field crickets. Journal of Evolutionary Biology, 36, 1266-1281.
DOI PMID |
[43] |
Otte T, Hilker M, Geiselhardt S (2018) Phenotypic plasticity of cuticular hydrocarbon profiles in insects. Journal of Chemical Ecology, 44, 235-247.
DOI PMID |
[44] |
Partan SR, Marler P (2005) Issues in the classification of multimodal communication signals. The American Naturalist, 166, 231-245.
DOI PMID |
[45] | Pei XJ, Fan YL, Bai Y, Bai TT, Schal C, Zhang ZF, Chen N, Li S, Liu TX (2021) Modulation of fatty acid elongation in cockroaches sustains sexually dimorphic hydrocarbons and female attractiveness. PLoS Biology, 19, e3001330. |
[46] | Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends in Ecology & Evolution, 25, 459-467. |
[47] | Podos J (2022) Costs, constraints and sexual trait elaboration. Animal Behaviour, 184, 209-214. |
[48] | Pu YC, Xiang HJ, Huang B, Hou YM (2020) Categories and dynamics of cuticular hydrocarbons in Octodonta nipae adults with different ages and sexes. Journal of Environmental Entomology, 42, 838-846. (in Chinese with English abstract) |
[蒲宇辰, 向海军, 黄斌, 侯有明 (2020) 水椰八角铁甲不同日龄和性别成虫表皮碳氢化合物的种类及动态. 环境昆虫学报, 42, 838-846.] | |
[49] |
Rajpurohit S, Vrkoslav V, Hanus R, Gibbs AG, Cvačka J, Schmidt PS (2021) Post-eclosion temperature effects on insect cuticular hydrocarbon profiles. Ecology and Evolution, 11, 352-364.
DOI PMID |
[50] | Rourke BC, Gibbs AG (1999) Effects of lipid phase transitions on cuticular permeability: Model membrane and in situ studies. Journal of Experimental Biology, 202, 3255-3262. |
[51] |
Sakata I, Hayashi M, Nakamuta K (2017) Tetramorium tsushimae ants use methyl branched hydrocarbons of aphids for partner recognition. Journal of Chemical Ecology, 43, 966-970.
DOI PMID |
[52] | Scott D (1986) Sexual mimicry regulates the attractiveness of mated Drosophila melanogaster females. Proceedings of the National Academy of Sciences, USA, 83, 8429-8433. |
[53] | Servedio MR, Van Doorn GS, Kopp M, Frame AM, Nosil P (2011) Magic traits in speciation: ‘Magic’ but not rare? Trends in Ecology & Evolution, 26, 389-397. |
[54] | Simmons LW, Lovegrove M, Du XB, Ren YL, Thomas ML (2022) Ontogeny can provide insight into the roles of natural and sexual selection in cricket cuticular hydrocarbon evolution. Journal of Experimental Biology, 225, jeb244375. |
[55] | Sprenger PP, Burkert LH, Abou B, Federle W, Menzel F (2018) Coping with the climate: Cuticular hydrocarbon acclimation of ants under constant and fluctuating conditions. Journal of Experimental Biology, 221, jeb171488. |
[56] |
Thistle R, Cameron P, Ghorayshi A, Dennison L, Scott K (2012) Contact chemoreceptors mediate male-male repulsion and male-female attraction during Drosophila courtship. Cell, 149, 1140-1151.
DOI PMID |
[57] | Thomas ML, Simmons LW (2008) Sexual dimorphism in cuticular hydrocarbons of the Australian field cricket Teleogryllus oceanicus (Orthoptera: Gryllidae). Journal of Insect Physiology, 54, 1081-1089. |
[58] | Wang ZN, Receveur JP, Pu J, Cong HS, Richards C, Liang MX, Chung H (2022) Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons. eLife, 11, e80859. |
[59] |
Weiblen GD, Bush GL (2002) Speciation in fig pollinators and parasites. Molecular Ecology, 11, 1573-1578.
PMID |
[60] | Wicker-Thomas C, Chertemps T (2010) Molecular biology and genetics of hydrocarbon production. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (eds Bagnères AG, Blomquist GJ), pp. 53-74. Cambridge University Press, Cambridge. |
[61] | Xu ZF (1994) Ficus: A keystone plant species in the tropical rain forest ecosystem of South Yunnan. Chinese Biodiversity, 2, 21-23. (in Chinese) |
[许再富 (1994) 榕树——滇南热带雨林生态系统中的一类关键植物. 生物多样性, 2, 21-23.] | |
[62] | Yang DR, Peng YQ, Zhang GM, Song QS, Zhao TZ, Wang QY (2002) Relationship between population variation of fig trees and environment in the tropical rainforests of Xishuangbanna. Chinese Journal of Environmental Science, 23(5), 29-35. (in Chinese with English abstract) |
[杨大荣, 彭艳琼, 张光明, 宋启示, 赵庭周, 王秋艳 (2002) 西双版纳热带雨林榕树种群变化与环境的关系. 环境科学, 23(5), 29-35.] | |
[63] |
Zhang B, Xue HJ, Song KQ, Liu J, Li WZ, Nie RE, Yang XK (2014) Male mate recognition via cuticular hydrocarbons facilitates sexual isolation between sympatric leaf beetle sister species. Journal of Insect Physiology, 70, 15-21.
DOI PMID |
[1] | 黄建峰,徐睿,彭艳琼. 榕树种间杂交研究进展[J]. 生物多样性, 2019, 27(4): 457-467. |
[2] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[3] | 隆沂峄, 杨丽媛, 廖万金. 利用PCR-RFLP技术鉴定传粉榕小蜂隐种混合样品的物种组成[J]. 生物多样性, 2010, 18(4): 414-419. |
[4] | 管俊明, 彭艳琼, 杨大荣. 榕-蜂互惠关系中榕树对未传粉榕小蜂的惩罚效应[J]. 生物多样性, 2007, 15(6): 626-632. |
[5] | 白莉芬, 杨大荣, 石章红, 彭艳琼, 翟树伟. 垂叶榕隐头果内小蜂群落结构与生境关系的初步研究[J]. 生物多样性, 2006, 14(4): 340-344. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn