生物多样性 ›› 2012, Vol. 20 ›› Issue (6): 710-715. DOI: 10.3724/SP.J.1003.2012.06090 cstr: 32101.14.SP.J.1003.2012.06090
所属专题: 昆虫多样性与生态功能
收稿日期:
2012-04-01
接受日期:
2012-06-16
出版日期:
2012-11-20
发布日期:
2013-01-04
通讯作者:
张敏
作者简介:
* E-mail: zhangmin451@snnu.edu.cn基金资助:
Xinxin Guo, Xue Mao, Min Zhang*()
Received:
2012-04-01
Accepted:
2012-06-16
Online:
2012-11-20
Published:
2013-01-04
Contact:
Min Zhang
摘要:
为了初步探讨微量元素锌对不同发育阶段子代果蝇基因组DNA甲基化的影响及可能机制, 以黑腹果蝇(Drosophila melanogaster)Canton-S品系为实验材料, 应用改良的AFLP分子标记技术分析了果蝇基因组DNA甲基化多态性, 以及不同浓度(2.5%、5%、10%)锌处理亲代果蝇后, 不同发育时期的子代果蝇基因组DNA甲基化的改变。结果显示: 胚胎、三龄幼虫、蛹期、雌及雄蝇DNA甲基化多态条带比率均存在显著性差异; 亲本果蝇经锌处理后, 其5-8 h胚胎DNA甲基化多态条带比率在3个实验组中均显著高于对照组; 锌浓度为2.5%时, 子代果蝇DNA甲基化所受影响最大, 在5-8 h胚胎、12-15 h胚胎、18-21 h胚胎及雌蝇中, DNA甲基化多态条带比率均显著高于对照组。结果表明胚胎期DNA甲基化多样性最高, 同时适当浓度锌处理, 可提高子代果蝇基因组DNA甲基化多 态性。
郭欣欣, 毛雪, 张敏 (2012) 锌对不同发育时期子代果蝇基因组DNA甲基化的影响. 生物多样性, 20, 710-715. DOI: 10.3724/SP.J.1003.2012.06090.
Xinxin Guo, Xue Mao, Min Zhang (2012) Effect of zinc on DNA methylation diversity at different developmental stages of filial generation in Drosophila. Biodiversity Science, 20, 710-715. DOI: 10.3724/SP.J.1003.2012.06090.
接头及引物 Adapter and primer | 序列 Sequence |
---|---|
E-adapter 1 | 5′-CTCGTAGACTGCGTACC |
E-adapter 2 | CTGACGCATGGTTAA-5′ |
A-adapter 1 | 5′-GACGATGAGTCCTGAG |
A-adapter 2 | GCTACTCAGGACTC-5′ |
E00 | 5′-GACTGCGTACCAATTC |
A00 | 5′-GATGAGTCCTGAGCT |
E+3 | E-AAC, E-AAG, E-ACA, E-ACT, E-ACC, E-AGC, E-ACG, E-AGG |
A+3 | A-CAA, A-CAC, A-CAG, A-CAT, A-CTA, A-CTC, A-CTG, A-CTT |
表1 AFLP所用引物及接头序列
Table 1 Sequences of adapters and primers used for AFLP
接头及引物 Adapter and primer | 序列 Sequence |
---|---|
E-adapter 1 | 5′-CTCGTAGACTGCGTACC |
E-adapter 2 | CTGACGCATGGTTAA-5′ |
A-adapter 1 | 5′-GACGATGAGTCCTGAG |
A-adapter 2 | GCTACTCAGGACTC-5′ |
E00 | 5′-GACTGCGTACCAATTC |
A00 | 5′-GATGAGTCCTGAGCT |
E+3 | E-AAC, E-AAG, E-ACA, E-ACT, E-ACC, E-AGC, E-ACG, E-AGG |
A+3 | A-CAA, A-CAC, A-CAG, A-CAT, A-CTA, A-CTC, A-CTG, A-CTT |
引物组合 Primer combination | 总条带数 Total bands | 多态条带 No. of polymorphic bands (%) |
---|---|---|
E-AAC/A-CTT | 19 | 14(73.68±0.44) |
E-ACT/A-CTA | 24 | 17(70.83±0.43) |
E-ACT/A-CTC | 18 | 11(61.11±0.42) |
E-ACT/A-CTG | 15 | 5(33.33±0.42) |
E-AGC/A-CAC | 23 | 17(73.91±0.50) |
E-AGC/A-CAT | 17 | 10(58.82±0.47) |
E-ACG/A-CAA | 16 | 8(50.00±0.43) |
E-AGG/A-CAC | 16 | 9(56.25±0.43) |
E-ACC/A-CAC | 14 | 11(78.51±0.46) |
E-AAC/A-CTC | 16 | 8(50.00±0.42) |
E-AGC/A-CTT | 18 | 9(50.00±0.51) |
E-ACG/A-CTA | 22 | 18(81.82±0.45) |
总计 Total | 218 | 137(62.84±0.48) |
表2 不同引物扩增的多态条带比率
Table 2 Percentage of polymorphic bands with different primer combinations
引物组合 Primer combination | 总条带数 Total bands | 多态条带 No. of polymorphic bands (%) |
---|---|---|
E-AAC/A-CTT | 19 | 14(73.68±0.44) |
E-ACT/A-CTA | 24 | 17(70.83±0.43) |
E-ACT/A-CTC | 18 | 11(61.11±0.42) |
E-ACT/A-CTG | 15 | 5(33.33±0.42) |
E-AGC/A-CAC | 23 | 17(73.91±0.50) |
E-AGC/A-CAT | 17 | 10(58.82±0.47) |
E-ACG/A-CAA | 16 | 8(50.00±0.43) |
E-AGG/A-CAC | 16 | 9(56.25±0.43) |
E-ACC/A-CAC | 14 | 11(78.51±0.46) |
E-AAC/A-CTC | 16 | 8(50.00±0.42) |
E-AGC/A-CTT | 18 | 9(50.00±0.51) |
E-ACG/A-CTA | 22 | 18(81.82±0.45) |
总计 Total | 218 | 137(62.84±0.48) |
不同发育时期 Developmental stages | 不同处理组多态条带比率(%) Percentage of polymorphic bands of different treatments | |||
---|---|---|---|---|
对照 Control group | 实验组F1-1 Experimental group F1-1 | 实验组F1-2 Experimental group F1-2 | 实验组F1-3 Experimental group F1-3 | |
0-3 h胚胎 0-3 h embryo | 27.52±0.42a | 28.72±0.42a | 29.94±0.36a | 28.35±0.40a |
5-8 h胚胎 5-8 h embryo | 28.44±0.59a | 31.74±0.59a* | 33.52±0.50a* | 32.36±0.62a* |
12-15 h胚胎 12-15 h embryo | 28.02±0.44a | 29.92±0.44a | 31.05±0.49a* | 31.01±0.44a* |
18-21 h胚胎 18-21 h embryo | 26.31±0.42a | 29.21±0.42a | 29.93±0.28a* | 28.97±0.71a |
三龄幼虫 Third instar larvae | 11.95±0.34b | 12.87±0.34b | 13.65±0.65b | 13.60±0.39b |
蛹 Pupae | 13.02±0.56b | 12.53±0.56b | 13.01±0.42b | 12.98±0.42b |
雌蝇 Adult female | 16.49±0.49c | 18.79±0.49c | 19.41±0.43c * | 18.80±0.53c |
雄蝇 Adult male | 19.96±0.62d | 19.56±0.60c | 20.03±0.55c | 20.01±0.28c |
表3 对照组及不同实验组果蝇不同发育时期的多态条带比率
Table 3 Percentage of polymorphic bands at different developmental stages
不同发育时期 Developmental stages | 不同处理组多态条带比率(%) Percentage of polymorphic bands of different treatments | |||
---|---|---|---|---|
对照 Control group | 实验组F1-1 Experimental group F1-1 | 实验组F1-2 Experimental group F1-2 | 实验组F1-3 Experimental group F1-3 | |
0-3 h胚胎 0-3 h embryo | 27.52±0.42a | 28.72±0.42a | 29.94±0.36a | 28.35±0.40a |
5-8 h胚胎 5-8 h embryo | 28.44±0.59a | 31.74±0.59a* | 33.52±0.50a* | 32.36±0.62a* |
12-15 h胚胎 12-15 h embryo | 28.02±0.44a | 29.92±0.44a | 31.05±0.49a* | 31.01±0.44a* |
18-21 h胚胎 18-21 h embryo | 26.31±0.42a | 29.21±0.42a | 29.93±0.28a* | 28.97±0.71a |
三龄幼虫 Third instar larvae | 11.95±0.34b | 12.87±0.34b | 13.65±0.65b | 13.60±0.39b |
蛹 Pupae | 13.02±0.56b | 12.53±0.56b | 13.01±0.42b | 12.98±0.42b |
雌蝇 Adult female | 16.49±0.49c | 18.79±0.49c | 19.41±0.43c * | 18.80±0.53c |
雄蝇 Adult male | 19.96±0.62d | 19.56±0.60c | 20.03±0.55c | 20.01±0.28c |
图1 锌处理后子代不同发育时期及不同性别果蝇DNA采用E-AAC/A-CTT扩增的银染结果。1: 0-3 h胚胎; 2: 6-9 h胚胎; 3: 12-15 h胚胎; 4: 18-21 h胚胎; 5: 三龄幼虫; 6: 蛹; 7: 雌蝇; 8: 雄蝇。
Fig. 1 Silver stained results of selective amplification products with E-AAC/A-CTT combination of different developmental stages after zinc treatment. 1, 0-3 h embryos; 2, 6-9 h embryos; 3, 12-15 h embryos; 4, 18-21 h embryos; 5, 3rd instar larvae; 6, Pupae; 7, Adult females ; 8, Adult males.
[1] |
Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science, 308, 1466-1469.
URL PMID |
[2] | Corsini G, Manubens A, Lladser PM, Lobos S, Seelenfreund D (1999) AFLP analysis of the fruit fly Ceratitis capitata. Agricultural Biotechnology, 21, 72-73. |
[3] | D’Ávila MF, Garcia RN, Panzera Y, da Silva Valente VL (2010) Sex-specific methylation in Drosophila: an investigation of the Sophophora subgenus. Genetica, 138, 907-913. |
[4] | Fan WH, Tang G, Zhao CM, Duan Y, Zhang R (2009) Metal accumulation and biomarker responses in Daphnia magna following cadmium and zinc exposure. Environmental Toxicology and Chemistry, 28, 305-310. |
[5] | Gama-Sosa MA, Midgett RM, Slagel VA, Githens S, Kuo KC, Gehrke CW, Ehrlich M (1983) Tissue-specific differences in DNA methylation in various mammals. Biochimica et Biophysica Acta, 740, 212-219. |
[6] | Gao B (高斌), Ji LQ (冀莲勤), Ma C (马超), Qi ZG (齐志广), Liu JZ (刘敬泽), Guo GY (郭光艳), Bai F (柏峰) (2008) The analysis of black blister Drosophila mutant by AFLP. Journal of Hebei Normal University (Natural Science Edition) (河北师范大学学报(自然科学版)), 32, 672, 678. (in Chinese with English abstract) |
[7] | Garcia RN, D’Ávila MF, Robe LJ, da Silva Loreto EL, Panzera Y, de Heredia FO, da Silva Valente VL (2007) First evidence of methylation in the genome of Drosophila willistoni. Genetica, 131, 91-105. |
[8] | Guo XX (郭欣欣), Mao X (毛雪), Zhang M (张敏) (2011) Establishment and optimization of AFLP analysis system for DNA methylation in Drosophila. Life Science Research (生命科学研究), 15, 6-12. (in Chinese with English abstract) |
[9] | Han XL (韩晓磊), Xu JR (徐建荣), Li XR (李小蕊), Yi JF (伊纪峰), Yang JX (杨家新), Xu P (许璞) (2009) Analysis of genetic diversity of Elopichthys bambusa by AFLP markers. Journal of Nanjing Normal University (Natural Science Edition) (南京师大学报(自然科学版)), 32, 110-114. (in Chinese with English abstract) |
[10] | Jiggins CD, Mavarez J, Beltrán M, McMillan WO, Johnston JS, Bermingham E (2005) A genetic linkage map of the mimetic butterfly Heliconius melpomene. Genetics, 171, 557-570. |
[11] | Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nature Reviews Genetics, 3, 415-428. |
[12] | Liang HW (梁宏伟), Wang CZ (王长忠), Li Z (李忠), Luo XZ (罗相忠), Zou GW (邹桂伟) (2008) Improvement of the silver-stained technique of polyacrylamide gel electrophoresis. Hereditas (Beijing) (遗传), 30, 1379-1382. (in Chinese with English abstract) |
[13] | Loyd V (2000) Parental imprinting in Drosophila. Genetica, 109, 35-44. |
[14] | Lyko F, Ramsahoye BH, Jaenisch R (2000a) DNA methylation in Drosophila melanogaster. Nature, 408, 538-540. |
[15] |
Lyko F, Whittaker AJ, Orr-Weaver TL, Jaenisch R (2000b) The putative Drosophila methyltransferase gene dDnmt2 is contained in a transposon-like element and is expressed specifically in ovaries. Mechanisms of Development, 95, 215-217.
DOI URL PMID |
[16] | Marhold J, Rothe N, Pauli A, Mund C, Kuehle K, Brueckner B, Lyko F (2004) Conservation of DNA methylation in dipteran insects. Insect Biochemistry and Molecular Biology, 13, 117-123. |
[17] | Meng P (孟鹏), Liu XM (刘晓敏), Wang WJ (王伟继), Kong J (孔杰), Li XJ (李晓静), Wang QY (王清印) (2008) AFLP analysis of family level genetic diversity of shrimp Fenneropenaeus chinensis. Marine Fisheries Research (海洋水产研究), 29(3), 21-26. (in Chinese with English abstract) |
[18] |
Salzberg A, Fisher O, Siman-Tov R, Ankri S (2004) Identification of methylated sequences in genomic DNA of adult Drosophila melanogaster. Biochemical and Biophysical Research Communications, 322, 465-469.
URL PMID |
[19] | Tong B (童备), Zhang ZY (张宗玉) (1991) DNA methylation and aging DNA. Chemistry of Life (生命的化学), 11, 7-8. (in Chinese) |
[20] | Vandegehuchte MB, Lemière F, Janssen CR (2009) Quantitative DNA-methylation in Daphnia magna and effects of multigeneration Zn exposure. Comparative Biochemistry and Physiology, Part C: Toxicology and Pharmacology, 150, 343-348. |
[21] | Vandegehuchte MB, Vandenbrouck T, De Coninck D, De Coen WM, Janssen CR (2010) Gene transcription and higher-level effects of multigenerational Zn exposure in Daphnia magna. Chemosphere, 80, 1014-1020. |
[22] | Waterland RA, Jirtle RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Molecular and Cellular Biology, 23, 5293-5300. |
[23] | Xu SH (徐书华), Zeng QT (曾庆韬) (2002) Large-scale extraction of genomic DNA from Drosophila and optimization of its RAPD-PCR. Journal of Hubei University (Natural Science Edition) (湖北大学学报(自然科学版)), 24, 342-346. (in Chinese with English abstract) |
[1] | 金泉泉, 向颖, 王华, 习新强. 南京仙林大学城三种绿地类型中果蝇多样性及其被寄生率[J]. 生物多样性, 2024, 32(8): 24156-. |
[2] | 丁翔, 余元钧, 宋希强, 罗毅波. 具有泛化访花者的海芋特化传粉系统[J]. 生物多样性, 2024, 32(6): 24069-. |
[3] | 公欣桐, 陈飞, 高欢欢, 习新强. 两种果蝇成虫与幼虫期的竞争及其对二者共存的影响[J]. 生物多样性, 2023, 31(8): 22603-. |
[4] | 李安, 徐桂霞, 孔宏智. F-box基因拷贝数目变异的机制研究:以12种果蝇为例[J]. 生物多样性, 2011, 19(1): 3-16. |
[5] | 张俊红, 黄华宏, 童再康, 程龙军, 梁跃龙, 陈奕良. 光皮桦6个南方天然群体的遗传多样性[J]. 生物多样性, 2010, 18(3): 233-240. |
[6] | 闫志峰, 张本刚, 张昭, 于俊林. 珍稀濒危药用植物黄檗野生种群遗传多样性的AFLP分析[J]. 生物多样性, 2006, 14(6): 488-497. |
[7] | 钱远槐, 张文燕, 邓秋红, 张菁, 曾庆韬, 刘艳玲, 李守涛. 中国黑腹果蝇种组40种果蝇的核型多样性研究[J]. 生物多样性, 2006, 14(3): 188-205. |
[8] | 郑向忠, 朱定良, 庚镇城, 张亚平. 果蝇Drosophila nasuta亚群系统发育问题的探讨[J]. 生物多样性, 1999, 07(3): 226-233. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn