生物多样性 ›› 2011, Vol. 19 ›› Issue (4): 476-484. DOI: 10.3724/SP.J.1003.2011.09002
所属专题: 土壤生物与土壤健康
罗菲1,2, 汪涯2, 曾庆桂1, 颜日明1, 张志斌1, 朱笃1,2,*()
收稿日期:
2011-01-12
接受日期:
2011-06-09
出版日期:
2011-07-20
发布日期:
2011-07-29
通讯作者:
朱笃
作者简介:
* E-mail: zhudu12@163.com基金资助:
Fei Luo1,2, Ya Wang2, Qinggui Zeng1, Riming Yan1, Zhibin Zhang1, Du Zhu1,2,*()
Received:
2011-01-12
Accepted:
2011-06-09
Online:
2011-07-20
Published:
2011-07-29
Contact:
Du Zhu
摘要:
为了解江西东乡野生稻(Oryza rufipogon)不同生育期根际可培养细菌群落多样性动态, 从中寻找新的具有植物促生活性的微生物资源, 分别于2009年5月、8月和11月采集了东乡野生稻秧苗期、抽穗期和成熟期根际土 壤, 采用稀释平板法分离到118株根际细菌, 并检测了其植物促生活性。16S rRNA基因序列分析结合菌体形态 观察表明: 分离获得的118株细菌属于5大类群11个属20个种, 其中29株(24.6%)属于变形菌门α亚群(α-Proteobacteria)、9株(7.6%)属于变形菌门β亚群(β-Proteobacteria)、37株(31.4%)属于变形菌门γ亚群(γ-Proteobacteria)、41株(34.7%)属于厚壁菌门(Firmicutes)、2株(1.7%)属于产水菌门(Aquificae)。芽孢杆菌属(Bacillus)、泛菌属(Pantoea)和鞘氨醇单胞菌属(Sphingomonas)的菌株数占优势。东乡野生稻根际可培养细菌多样性丰富, Shannon-Wiener指数为2.037-2.741, 且细菌类群随水稻的生育期不同而改变。分离菌株的植物促生活性检测表明: 东乡野生稻根际蕴含着丰富的固氮、溶磷、产IAA和分泌铁载体等生物活性细菌, 其中泛菌属为优势根际促生细菌。此外, 根际可培养细菌数量、促生细菌数量和植物促生活性等在东乡野生稻秧苗期开始升高, 抽穗期到达高峰, 成熟期下降。研究结果表明东乡野生稻根际土壤微生物多样性丰富, 是根际促生细菌的重要资源库。
罗菲, 汪涯, 曾庆桂, 颜日明, 张志斌, 朱笃 (2011) 东乡野生稻根际可培养细菌多样性及其植物促生活性分析. 生物多样性, 19, 476-484. DOI: 10.3724/SP.J.1003.2011.09002.
Fei Luo, Ya Wang, Qinggui Zeng, Riming Yan, Zhibin Zhang, Du Zhu (2011) Diversity and plant growth promoting activities of the cultivable rhizobacteria of Dongxiang wild rice (Oryza rufipogon). Biodiversity Science, 19, 476-484. DOI: 10.3724/SP.J.1003.2011.09002.
图1 东乡野生稻不同生长期根际可培养细菌的分离数量(不同字母表示差异显著)
Fig. 1 Cultivable rhizobacterial numbers in the three growth stages of Dongxiang wild rice. RS, rice seedling stage; HS, heading stage; GF, grain filling stage. Different small letters indicate significant difference at P < 0. 05.
类群 Microbe groups | 代表菌株 Representative strains | 基因登录号 GenBank accession no. | 最近缘物种(基因登录号) Closest relatives in NCBI (GenBank accession no.) | 最大相似度 Max. identity (%) | 生长阶段(单菌落数) Growing stage (Colony number) |
---|---|---|---|---|---|
变形菌门α亚群 α-Proteobacteria | S109 | GU998805 | Sphingomonas sp. (AB461702) | 99 | HS(21)a; GF(2) |
S22 | HQ647260 | Rhodopseudomonas palustris (AB250613.1) | 99 | HS(1); GF(1) | |
S13 | HQ647259 | Methylobacterium fujisawaense(AB558142) | 100 | RS(2); HS(1); GF(1) | |
变形菌门β亚群 β-Proteobacteria | T26 | HQ443228 | Uncultured Cupriavidus sp. (GQ417899) | 98 | GF(1) |
T24 | HQ647268 | C. basilensis (GU171379.1) | 98 | RS(2); HS(1); GF(2) | |
TS20 | GU998815 | Burkholderia cepacia (FJ652618) | 99 | HS(2); GF(1) | |
变形菌门γ亚群 γ-Proteobacteria | TS4 | GU998802 | Pantoea dispersa (GQ246183) | 99 | RS(4)a; HS(6)a; GF(1) |
T2 | HQ443233 | P. agglomerans (HM130693) | 100 | RS(6)a; HS(6)a; GF(1) | |
TS52 | GU998808 | Uncultured Pseudomonadales bacterium (DQ169126) | 99 | GF(1) | |
TS57 | GU998820 | P. aeruginosa (FJ907193) | 99 | GF(1) | |
P6 | GU998813 | P. poae (FJ937922) | 99 | RS(2); HS(3) | |
F32 | HQ647251 | P. fluorescens (GU198119) | 100 | RS(1) | |
TS51 | GU998810 | Stenotrophomonas maltophilia (GU358076) | 99 | RS(2); HS(1); GF(2) | |
产水菌门 Aquificae | TS54 | HQ647283 | Chryseobacterium indologenes (AY050493) | 98 | GF(2) |
厚壁菌门 Firmicutes | S71 | GU998803 | Bacillus subtilis (FJ392727) | 99 | RS(6)a; HS(5)a; GF(4)a |
T184 | HQ647278 | B. megaterium (EU594558) | 99 | RS(3); HS(2); GF(5)a | |
T47 | GU998812 | B. koreensis (AY667496) | 100 | GF(3)a | |
S59 | HQ443223 | B. aryabhattai (GU563348) | 99 | HS(1); GF(2) | |
T111 | HQ443236 | B. cereus (HM752769) | 98 | RS(1); HS(1); GF(3)a | |
T172 | HQ647277 | B. pumilus (FJ763642) | 99 | RS(2); HS(1); GF(2) |
表1 东乡野生稻根际可培养细菌组成
Table 1 Cultivable bacteria isolates from rhizosphere soil of Dongxiang wild rice
类群 Microbe groups | 代表菌株 Representative strains | 基因登录号 GenBank accession no. | 最近缘物种(基因登录号) Closest relatives in NCBI (GenBank accession no.) | 最大相似度 Max. identity (%) | 生长阶段(单菌落数) Growing stage (Colony number) |
---|---|---|---|---|---|
变形菌门α亚群 α-Proteobacteria | S109 | GU998805 | Sphingomonas sp. (AB461702) | 99 | HS(21)a; GF(2) |
S22 | HQ647260 | Rhodopseudomonas palustris (AB250613.1) | 99 | HS(1); GF(1) | |
S13 | HQ647259 | Methylobacterium fujisawaense(AB558142) | 100 | RS(2); HS(1); GF(1) | |
变形菌门β亚群 β-Proteobacteria | T26 | HQ443228 | Uncultured Cupriavidus sp. (GQ417899) | 98 | GF(1) |
T24 | HQ647268 | C. basilensis (GU171379.1) | 98 | RS(2); HS(1); GF(2) | |
TS20 | GU998815 | Burkholderia cepacia (FJ652618) | 99 | HS(2); GF(1) | |
变形菌门γ亚群 γ-Proteobacteria | TS4 | GU998802 | Pantoea dispersa (GQ246183) | 99 | RS(4)a; HS(6)a; GF(1) |
T2 | HQ443233 | P. agglomerans (HM130693) | 100 | RS(6)a; HS(6)a; GF(1) | |
TS52 | GU998808 | Uncultured Pseudomonadales bacterium (DQ169126) | 99 | GF(1) | |
TS57 | GU998820 | P. aeruginosa (FJ907193) | 99 | GF(1) | |
P6 | GU998813 | P. poae (FJ937922) | 99 | RS(2); HS(3) | |
F32 | HQ647251 | P. fluorescens (GU198119) | 100 | RS(1) | |
TS51 | GU998810 | Stenotrophomonas maltophilia (GU358076) | 99 | RS(2); HS(1); GF(2) | |
产水菌门 Aquificae | TS54 | HQ647283 | Chryseobacterium indologenes (AY050493) | 98 | GF(2) |
厚壁菌门 Firmicutes | S71 | GU998803 | Bacillus subtilis (FJ392727) | 99 | RS(6)a; HS(5)a; GF(4)a |
T184 | HQ647278 | B. megaterium (EU594558) | 99 | RS(3); HS(2); GF(5)a | |
T47 | GU998812 | B. koreensis (AY667496) | 100 | GF(3)a | |
S59 | HQ443223 | B. aryabhattai (GU563348) | 99 | HS(1); GF(2) | |
T111 | HQ443236 | B. cereus (HM752769) | 98 | RS(1); HS(1); GF(3)a | |
T172 | HQ647277 | B. pumilus (FJ763642) | 99 | RS(2); HS(1); GF(2) |
图2 东乡野生稻根际细菌的16S rRNA系统进化树(分枝上数字为1,000次抽样的Bootstrap支持率, 括号内为序列登录号)
Fig. 2 Neighbor-joining tree based on 16S rRNA gene sequences analysis showing the phylogenetic relationships among the strains and their closely related taxa. Bootstrap values (percent) calculated from 1,000 resamplings are shown at branch nodes. GenBank accession numbers are given in the parentheses.
生长阶段 Growth stages | 多样性 指数 H | 均匀度 指数 J | 优势度 指数 D | 丰富度 指数 S |
---|---|---|---|---|
秧苗期 RS | 2.232 | 0.931 | 0.097 | 11 |
抽穗期 HS | 2.037 | 0.772 | 0.208 | 14 |
成熟期 GF | 2.741 | 0.948 | 0.074 | 18 |
表2 东乡野生稻根际可培养细菌群落多样性、丰富度、均匀度及优势度指数
Table 2 The diversity index (H), richness (S), evenness index (J) and dominance index (D) of cultivable rhizobacteria from Dongxiang wild rice
生长阶段 Growth stages | 多样性 指数 H | 均匀度 指数 J | 优势度 指数 D | 丰富度 指数 S |
---|---|---|---|---|
秧苗期 RS | 2.232 | 0.931 | 0.097 | 11 |
抽穗期 HS | 2.037 | 0.772 | 0.208 | 14 |
成熟期 GF | 2.741 | 0.948 | 0.074 | 18 |
表3 东乡野生稻不同生育期可培养根际促生细菌数量及其植物促生活性(括号内数字代表菌株数)
Table 3 Number and PGPA of cultivable PGPR's isolated from rhizospheric soil of Dongxiang wild rice in the three growth stages. Number in parentheses represents number of isolates.
[1] | Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1995) Short Protocols in Molecular Biology, 3rd edn. pp. 11-13. John Wiley & Sons, Chichester. |
[2] | Beneduzi A, Peres D, Vargas LK, Bodanese-Zanettini MH, Passaglia LMP (2008) Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Eco- logy, 39, 311-320. |
[3] | Camargo JA (1992) Can dominance influence stability in competitive interactions? Oikos, 64, 605-609. |
[4] |
Chen HK (陈华癸) (1981) Soil Microbiology (土壤微生物学). Shanghai Scientific & Technical Publishers, Shanghai. (in Chinese)
URL PMID |
[5] | Chen JK (陈家宽), Wang HY (王海洋), He GQ (何国庆) (1998) A survey on the habitats of Oryza rufipogon and Isoetes sinensis in Jiangxi Province. Chinese Biodiversity (生物多样性), 6, 260-266. (in Chinese with English abstract) |
[6] |
Devereux R, Hines ME, Stahl DA (1996) S cycling: characterization of natural communities of sulfate-reducing bacteria by 16S rRNA sequence comparisons. Microbial Ecology, 32, 283-292.
URL PMID |
[7] | Dong XZ (东秀珠), Cai MY (蔡妙英) (2001) Manual for Systematic Identification of Common Bacteria (常见细菌系统鉴定手册). Science Press, Beijing. (in Chinese) |
[8] | Duan HP (段红平), Zhang NM (张乃明), Li JX (李进学), Yang GQ (杨高群), Shi CJ (师常俊) (2007) Preliminary study on physiological populations and quantity of rhizosphere main microorganism in super-yield rice fields. Chinese Agricultural Science Bulletin (中国农学通报), 23(2), 285-289. (in Chinese with English abstract) |
[9] |
Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. Journal of Applied Microbiology, 100, 938-945.
DOI URL PMID |
[10] | Fuentes-Ramirez LE, Jimenez-Salgado T, Abarca-Ocampo IR, Caballero-Mellado J (1993) Acetobacter diazotrophicus, an indoleacetic acid producing bacterium isolated from sugarcane cultivars of México. Plant and Soil, 154, 145-150. |
[11] |
Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Applied and Environmental Microbiology, 61, 793-796.
URL PMID |
[12] | Grover M, Ali Sk Z, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology, 27, 1231-1240. |
[13] | Guo ZG (郭正刚), Wang GX (王根绪), Shen YY (沈禹颖), Cheng GD (程国栋) (2004) Plant species diversity of grassland plant communities in permafrost regions of the northern Qinghai-Tibet Plateau. Acta Ecologica Sinica (生态学报), 24, 149-155. (in Chinese with English abstract) |
[14] | Hu GP (胡桂萍), You MS (尤民生), Liu B (刘波), Zhu YQ (朱育菁), Zheng XF (郑雪芳), Lin YZ (林营志) (2010) Relationship between the stem endophytic and rhizosphere bacteria and the variety characteristics of Oryza sativa. Chinese Journal of Tropical Crops (热带作物学报), 31, 1026-1030. (in Chinese with English abstract) |
[15] | Hu YS (胡元森), Wu K (吴坤), Liu N (刘娜), Chen HG (陈红歌), Jia XC (贾新成) (2004) Studies on microbial population dynamics in the cucumber rhizospheres at different developmental stages. Scientia Agricultura Sinica (中国农业科学), 37, 1521-1526. (in Chinese with English abstract) |
[16] | Kloepper JW, Lifshitz R, Schroth MN (1988) Pseudomonas inoculants to benefit plant production. In: ISI Atlas of Science: Animal and Plant Sciences, pp. 60-64. Institute for Scientific Information, Philadelphia. |
[17] | Kumar K, Kumari Sugitha TC (2004) Diazotrophic diversity in rice ecosystem. Paper presented in the International Symposium on Microbial Ecology, Aug. 22-27, 2004. Cancan, Mexico. |
[18] | Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.), on the diversity of soilborne populations of Fluorescent pseudamonads. Applied and Environmental Microbiology, 61, 1004-1012. |
[19] | Li RH (李如华), Ye SY (叶水英), Yu JG (于建国) (1999) Determination of nitrogen-fixing activity in soil-bacterial fertilizer. Modern Instruments (现代仪器使用与维修), (1), 34-36. (in Chinese with English abstract) |
[20] | Li XM (李湘民), Huang RR (黄瑞荣), Lan B (兰波), Xiao YQ (肖叶青), Chen DZ (陈大洲) (2006) Studies on the resistance of plasm germ resources of Oryzae sativa f. spontanea Roschev. to rice diseases. Acta Agriculturae Universitatis Jiangxiensis (江西农业大学学报), 28, 493-497. (in Chinese with English abstract) |
[21] | Lin QM (林启美), Zhao XR (赵小蓉), Sun YX (孙焱鑫), Yao J (姚军) (2000) Community characters of soil phosphobacteria in four ecosystems. Soil Environmental Sciences (土壤与环境), 9, 34-37. (in Chinese with English abstract) |
[22] | Liu M (刘敏), Li LB (李潞滨), Yang K (杨凯), Han JG (韩继刚), Zhu BC (朱宝成), Peng ZH (彭镇华) (2008) Culturable bacterial diversity in rhizosphere of Bashania fangiana. Biodiversity Science (生物多样性), 16, 91-95. (in Chinese with English abstract) |
[23] | Liu XL (刘训理), Wang C (王超), Wu F (吴凡), Xue DH (薛东红), Chen K (陈凯) (2006) Studies on tobacco rhizosphere microbes. Acta Ecologica Sinica (生态学报), 26, 552-557. (in Chinese with English abstract) |
[24] | Lu RK (鲁如坤) (1998) Soil-Plant Nutrition Principle and Fertilization (土壤-植物营养学原理和施肥). Chemical Industry Press, Beijing. (in Chinese) |
[25] | Mehnaz S, Mirza MS, Haurat J, Bally R, Normand P, Bano A, Malik KA (2001) Isolation and 16S rRNA sequence analysis of the beneficial bacteria from the rhizosphere of rice. Canadian Journal of Microbiology, 47, 110-117. |
[26] | Muthukumarasamy R, Kang UG, Park KD, Jeon WT, Park CY, Cho YS, Kwon SW, Son J, Roh DH, Revathi G (2007) Enumeration, isolation and identification of diazotrophs from Korean wetland rice varieties grown with long-term application of N and compost and their short-term inoculation effect on rice plants. Journal of Applied Microbiology, 102, 981-991. |
[27] | Ramezanpour MR (2009) Identification of phosphate solubilizing Pseudomonas sp. of rice rhizophere based on 16S rDNA genotyping. Middle-East Journal of Scientific Research, 4, 348-353. |
[28] |
Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry, 160, 47-56.
URL PMID |
[29] | Sun HX (孙海新), Liu XL (刘训理) (2004) Microbes studies of tea rhizosphere. Acta Ecologica Sinica (生态学报), 24, 1353-1357. (in Chinese with English abstract) |
[30] | Wang Y, Zeng QG, Zhang ZB, Yan RM, Zhu D (2010) Antagonistic bioactivity of an endophytic bacterium H-6. African Journal of Biotechnology, 9, 6140-6145. |
[31] | Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: Molecular Ecology of Rhizosphere Microorganisms (eds O’Gara F, Dowling DN, Boesten B), pp. 1-18. VCH, Weinheim, Germany. |
[32] | Wissuwa M, Mazzola M, Picard C (2009) Novel approaches in plant breeding for rhizosphere-related traits. Plant and Soil, 321, 409-430 |
[33] | Xie GH, Cai MY, Tao GC, Steingberger Y (2003) Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biology and Fertility Soils, 37, 29-38. |
[34] | Xie JK (谢建坤), Hu BL (胡标林), Wan Y (万勇), Zhang T (张弢), Li X (李霞), Liu RL (刘如龙), Huang YH (黄运红), Dai LF (戴亮芳), Luo XD (罗向东) (2010) Comparison of the drought resistance characters at seedling stage between Dongxiang common wild rice (Oryza rufipogon Griff.) and cultivars (Oryza sativa L.). Acta Ecologica Sinica (生态学报), 30, 1665-1674. (in Chinese with English abstract) |
[35] | Xu GH (许光辉), Zheng HY (郑洪元) (1986) Manual of Soil Microbial Analysis (土壤微生物分析方法手册). China Agricultural Press, Beijing. (in Chinese) |
[36] | Yi T (易婷), Miao YX (缪煜轩), Feng YJ (冯永君) (2008) Plant-endophyte interaction: growth-promoting effect of endophytes and their biofilm formation. Microbiology (微生物学通报), 35, 1774-1780. (in Chinese with English abstract) |
[37] | Zeng QG, Luo F, Zhang ZB, Yan RM, Zhu D (2010) Phosphate solubilizing rhizospherebacterial T21 isolated from Dongxiang wild rice species promotes cultivated rice growth. In: First International Conference on Cellular, Molecular Biology, Biophysics and Bioengineering, pp. 75-80. Qiqihar, China. |
[38] | Zhang GX (张国霞), Mao Q (茅庆), He ZY (何忠义), Tan ZY (谭志远) (2006) Detection of nitrogenase activity and phosphorus dissolving ability of endophytic isolates from Oryza rufipogon in Lingshui. Chinese Journal of Applied & Environmental Biology (应用与环境生物学报), 12, 457-460. (in Chinese with English abstract) |
[39] | Zhao S (赵爽), Hu J (胡江), Shen QR (沈其荣) (2010) Difference in community structure of bacteria and ammonia-oxidizing bacteria in rhizosphere between two different rice cultivars. Acta Pedologica Sinica (土壤学报), 47, 939-945. (in Chinese with English abstract) |
[40] | Zhao ZW (赵之伟) (1995) Study on the biodiversity of bacterial community in the rhizosphere of wetland rice. Journal of Yunnan University (Natural Sciences) (云南大学学报(自然科学版)), 17, 269-274. (in Chinese with English abstract) |
[41] | Zhong WH (钟文辉), Cai ZC (蔡祖聪) (2004) Methods for studying soil microbial diversity. Chinese Journal of Applied Ecology (应用生态学报), 15, 899-904. (in Chinese with English abstract) |
[1] | 李斌, 宋鹏飞, 顾海峰, 徐波, 刘道鑫, 江峰, 梁程博, 张萌, 高红梅, 蔡振媛, 张同作. 昆仑山青海片区鸟类群落多样性格局及其驱动因素[J]. 生物多样性, 2024, 32(4): 23406-. |
[2] | 郑梦瑶, 李媛, 王雪蓉, 张越, 贾彤. 芦芽山不同植被类型土壤原生动物群落构建机制[J]. 生物多样性, 2024, 32(4): 23419-. |
[3] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
[4] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[5] | 刘厶瑶, 李柱, 柯欣, 孙丽娜, 吴龙华, 赵杰杰. 贵州省典型汞铊矿区周边农田土壤跳虫群落特征[J]. 生物多样性, 2022, 30(12): 22265-. |
[6] | 洪芳, 向颖, 陈朝阳, 孙亮先, 罗春首, 蒋国芳. 龙栖山自然保护区蝴蝶群落多样性及区系组成[J]. 生物多样性, 2020, 28(8): 1003-1007. |
[7] | 徐承香, 李子忠, 黎道洪. 贵州织金洞洞穴动物群落多样性与光照强度及土壤重金属含量的关系[J]. 生物多样性, 2013, 21(1): 62-70. |
[8] | 朱璧如, 张大勇. 基于过程的群落生态学理论框架[J]. 生物多样性, 2011, 19(4): 389-399. |
[9] | 李儒海, 强胜, 邱多生, 储秋华, 潘根兴. 长期不同施肥方式对稻油两熟制油菜田杂草群落多样性的影响[J]. 生物多样性, 2008, 16(2): 118-125. |
[10] | 刘敏, 李潞滨, 杨凯, 韩继刚, 朱宝成, 彭镇华. 冷箭竹根际土壤中可培养细菌的多样性[J]. 生物多样性, 2008, 16(1): 91-95. |
[11] | 苏永春, 勾影波, 郁达, 王继元. 江苏常熟虞山土壤动物群落多样性研究[J]. 生物多样性, 2004, 12(3): 333-338. |
[12] | 肖治术, 王玉山, 张知彬, 马勇. 都江堰地区小型哺乳动物群落与生境类型关系的初步研究[J]. 生物多样性, 2002, 10(2): 163-169. |
[13] | 许木启, 曹宏, 贾沁贤, 高玉荣, 陈声贵. 青藏高原柴达木盆地尕海盐湖浮游生物群落多样性特征的初步研究[J]. 生物多样性, 2002, 10(1): 38-43. |
[14] | 向昌国, 李文芳, 于德珍. 八大公山自然保护区森林土壤动物群落多样性的初步研究[J]. 生物多样性, 2000, 08(3): 304-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn