生物多样性 ›› 2010, Vol. 18 ›› Issue (6): 547-558. DOI: 10.3724/SP.J.2010.547
所属专题: 外来物种入侵:机制、影响与防控; 物种形成与系统进化; 生物入侵
收稿日期:
2010-09-02
接受日期:
2010-11-08
出版日期:
2010-11-20
发布日期:
2011-01-31
通讯作者:
马克平
作者简介:
*E-mail: kpma@ibcas.ac.cn基金资助:
Received:
2010-09-02
Accepted:
2010-11-08
Online:
2010-11-20
Published:
2011-01-31
Contact:
Keping Ma
摘要:
人类活动引起的大规模洲际物种交换与生物入侵, 改变了当地生态系统结构与功能, 使生物多样性受到日益严重的威胁。本文通过综合分析主要国家和地区入侵植物的地理起源, 发现洲际入侵主要包括东亚—北美、东亚—南美、欧洲—南非、欧洲—北美、欧洲—东亚、北美—大洋洲等, 这些洲际入侵造成的后果往往比陆内入侵更为严重。利用物种分布模型(SDMs)预测入侵物种潜在分布范围是有效管理和提早预防生物入侵的重要依据, 但这些模型的一个关键假定是: 入侵物种的生态位在空间和时间上是保守的、稳定的。然而, 对于远离原产地种群并能快速适应新生境的洲际入侵植物来说, 生态位可能发生显著的变化。入侵种能否在入侵地保持原有的生态位, 取决于制约其生态分布的限制因素和生态过程在不同地区间是否发生变化。本文中作者总结了洲际入侵与陆内入侵的生态与进化过程的异同点, 认为这些限制物种原产地分布的因素如扩散限制、种间互作、适应性进化、生态可塑性和种群遗传特性等均可能导致入侵物种生态位的改变。建议下一步的研究应该重视: (1)对生态位属性进行多尺度的研究, 包括时间、空间、环境或系统发育等几个方面; (2)对比生态位稳定与发生偏移的物种特性, 确定什么样的入侵物种更容易改变原有的生态位; (3)进行生态位时间动态格局研究, 探讨生态位变化的倾向、历史速率和偏移程度, 以便判定生态位变化趋势。这些研究结果将会进一步提高物种分布模型的预测能力, 有助于更为准确地揭示气候变化和物种入侵对生物多样性的影响。
朱丽, 马克平 (2010) 洲际入侵植物生态位稳定性研究进展. 生物多样性, 18, 547-558. DOI: 10.3724/SP.J.2010.547.
Li Zhu, Keping Ma (2010) On the niche stasis of intercontinental invasive plants. Biodiversity Science, 18, 547-558. DOI: 10.3724/SP.J.2010.547.
陆内入侵 Intracontinental invasion | 洲际入侵 Intercontinental invasion | 生态位属性 Niche attribute | 参考文献 References | |
---|---|---|---|---|
扩散限制 Dispersal limitation | 程度低 Low | 程度高 High | 原产地受生态因素严重制约的物种, 其生态位更容易发生改变 Niche shifts easily occur in species which are confined in their native range by ecological factors. | |
种间作用 Species interaction | 天敌与竞争释放程度较弱 Weak release from enemies and competitors | 天敌与竞争释放程度较强 Strong release from enemies and competitors | 天敌释放或适应入侵生境新的种间关系的能力导致入侵种现实生态位发生偏移 Enemy release and the ability to adapt the new specific interaction in invaded range result in a realized niche shift. | |
适应性进化 Adapted evolution | 弱(原产地种群的连续基因流降低遗传变异) Weak (continuity of gene flow from native population decreases population variation) | 强(新种群的基因流增大遗传变异) Strong (gene flow from new population increases genetic variation) | 入侵种快速进化改变了原有的基础生态位 Rapid evolutionary of invasive species changes the original fundamental niche. | |
生态可塑性 Ecological plasticity | 存在 Occurred | 存在 Occurred | 生态可塑性增强物种在新生境的适应性, 使外来种在原产地生态位以外地区存活 Ecological plasticity enable the species to persist outside of its native fundamental niche. | |
边缘种群 Marginal population | 存在 Occurred | 存在 Occurred | 入侵边界的边缘种群扩展边缘生境而发生生态位偏移 Marginal populations on the invaded boundary spread beyond the margin, constituting the niche shift. | |
基因流连续性 Continuity of gene flow from original population | 是 Yes | 否 No | 长距离扩散和种群瓶颈导致生态位偏移, 而连续基因流会缩小这种偏移 Niche shifts are associated with long-distance dispersal and population bottlenecks, but continuity of gene flow from original populations decreases the niche shift. | |
杂交Hybridization | 种内、种间杂交均可 Both intraspecific and interspecific hybridization occur | 种内杂交依赖于引入种群数量, 可以种间杂交 Intraspecific hybridization depends on number of introduced populations; and interspecific hybridization occurs | 杂交后代比母本具有更高的适合度和更宽的生态幅 Hybrid offspring has a higher fitness and a wider niche breadth. |
表1 陆内入侵与洲际入侵异同点以及影响生态位属性的主要生态过程
Table 1 Overview of similarities and differences of the ecological processes influencing niche attributes between intercontinental invasion and intracontinental invasion
陆内入侵 Intracontinental invasion | 洲际入侵 Intercontinental invasion | 生态位属性 Niche attribute | 参考文献 References | |
---|---|---|---|---|
扩散限制 Dispersal limitation | 程度低 Low | 程度高 High | 原产地受生态因素严重制约的物种, 其生态位更容易发生改变 Niche shifts easily occur in species which are confined in their native range by ecological factors. | |
种间作用 Species interaction | 天敌与竞争释放程度较弱 Weak release from enemies and competitors | 天敌与竞争释放程度较强 Strong release from enemies and competitors | 天敌释放或适应入侵生境新的种间关系的能力导致入侵种现实生态位发生偏移 Enemy release and the ability to adapt the new specific interaction in invaded range result in a realized niche shift. | |
适应性进化 Adapted evolution | 弱(原产地种群的连续基因流降低遗传变异) Weak (continuity of gene flow from native population decreases population variation) | 强(新种群的基因流增大遗传变异) Strong (gene flow from new population increases genetic variation) | 入侵种快速进化改变了原有的基础生态位 Rapid evolutionary of invasive species changes the original fundamental niche. | |
生态可塑性 Ecological plasticity | 存在 Occurred | 存在 Occurred | 生态可塑性增强物种在新生境的适应性, 使外来种在原产地生态位以外地区存活 Ecological plasticity enable the species to persist outside of its native fundamental niche. | |
边缘种群 Marginal population | 存在 Occurred | 存在 Occurred | 入侵边界的边缘种群扩展边缘生境而发生生态位偏移 Marginal populations on the invaded boundary spread beyond the margin, constituting the niche shift. | |
基因流连续性 Continuity of gene flow from original population | 是 Yes | 否 No | 长距离扩散和种群瓶颈导致生态位偏移, 而连续基因流会缩小这种偏移 Niche shifts are associated with long-distance dispersal and population bottlenecks, but continuity of gene flow from original populations decreases the niche shift. | |
杂交Hybridization | 种内、种间杂交均可 Both intraspecific and interspecific hybridization occur | 种内杂交依赖于引入种群数量, 可以种间杂交 Intraspecific hybridization depends on number of introduced populations; and interspecific hybridization occurs | 杂交后代比母本具有更高的适合度和更宽的生态幅 Hybrid offspring has a higher fitness and a wider niche breadth. |
图1 各大洲与主要国家入侵植物的原产地来源比例。洲际入侵主要包括东亚—北美、东亚—南美、欧洲—南非、欧洲—北美、欧洲—东亚、北美—大洋洲, 且各地区洲际入侵(实线)比例大于陆内入侵(虚线)。线粗细代表地区间贸易往来导致入侵种繁殖体压力的大小, 箭头代表入侵方向。黑线为东亚与北美间的植物入侵, 北美入侵至东亚多为草本植物, 东亚入侵至北美多为木本(Guo et al., 2006); 灰线为原产于南非植物的洲际入侵, 数字为当地遭受南非植物入侵的自然保护区数量(数字源于Weber, 2003); 各地区入侵植物的原产地的数据来源于Milton(2004)、Harris等(2007)、Lambdon等(2008)、Fridley(2008)、 Weber等(2008)。
Fig. 1 Percentage in relative contributions of various origins of the invasive plants to each region. Intercontinental invasions (solid lines) were more prevalent than intracontinental invasions (dashed lines), primarily including the exchange of species among Eastern Asia-North America, Eastern Asia-South America, Europe-South Africa, Europe-North America, Europe-Eastern Asia, and North America-Oceania. Arrows indicating propagule pressure increased in thickness with increasing tourism and trade between regions. The black lines meant species invasion between Eastern Asia and North America suggesting that relatively more woody species migrated to North America whereas more herbaceous species migrated to Asia from North America (Guo et al., 2006). The grey lines represented species invaded to other continents from South Africa. Numbers indicated the number of South African plant species recorded as invasive in natural areas in the given region (from Weber, 2003). Data of the origins of the invasive plants to each region from Milton (2004), Harris et al. (2007), Fridley (2008), Lambdon et al. (2008) and Weber et al. (2008)
生态位属性 Niche attribute | 物种 Species | 原产地 Native range | 入侵地 Invasive range | 参考文献 References |
---|---|---|---|---|
生态位稳定 Niche stasis | 葱芥 Alliaria petiolata | 欧亚大陆 Eurasia | 北美 North America | |
莫邪菊 Carpobrotus edulis | 南非 South Africa | 欧洲、澳大利亚 Europe and Australia | ||
猪屎豆 Crotalaria pallida | 热带非洲 Tropical Africa | 巴西 Brazil | ||
飞机草 Chromolaena odorata | 中美洲 Central America | 热带非洲、亚洲 Tropical Africa, Asia | ||
大叶醉鱼草 Buddleja davidii | 中国 China | 欧洲、北美、新西兰 Europe, North America and New Zealand | ||
生态位偏移 Niche shift | 斑点矢车菊 Centaurea maculosa | 欧洲 Europe | 北美North America | |
3种山柳菊属植物 Hieracium spp. | 欧洲 Europe | 澳大利亚、新西兰和北美 Australia, New Zealand and North America |
表2 洲际入侵植物生态位稳定性与偏移的证据
Table 2 Evidence of niche stasis and niche shift of intercontinental invasive plants
生态位属性 Niche attribute | 物种 Species | 原产地 Native range | 入侵地 Invasive range | 参考文献 References |
---|---|---|---|---|
生态位稳定 Niche stasis | 葱芥 Alliaria petiolata | 欧亚大陆 Eurasia | 北美 North America | |
莫邪菊 Carpobrotus edulis | 南非 South Africa | 欧洲、澳大利亚 Europe and Australia | ||
猪屎豆 Crotalaria pallida | 热带非洲 Tropical Africa | 巴西 Brazil | ||
飞机草 Chromolaena odorata | 中美洲 Central America | 热带非洲、亚洲 Tropical Africa, Asia | ||
大叶醉鱼草 Buddleja davidii | 中国 China | 欧洲、北美、新西兰 Europe, North America and New Zealand | ||
生态位偏移 Niche shift | 斑点矢车菊 Centaurea maculosa | 欧洲 Europe | 北美North America | |
3种山柳菊属植物 Hieracium spp. | 欧洲 Europe | 澳大利亚、新西兰和北美 Australia, New Zealand and North America |
[1] | Ackerly DD (2003) Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences, 164, S165-S184. |
[2] | Alcaraz C, García-Berthou E (2007) Life history variation of an invasive fish ( Gambusia holbrooki) along a salinity gradient. Biological Conservation, 139, 83-92. |
[3] |
Alexander JM, Edwards PJ, Poll M, Parks CG, Dietz H (2009) Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology, 90, 612-622.
DOI URL PMID |
[4] |
Alleume-Benharira M, Pen IR, Ronce O (2006) Geographical patterns of adaptation within a species’ range: interaction between drift and gene flow. Journal of Evolutionary Biology, 19, 203-215.
DOI URL PMID |
[5] | Arroyo M (2006) Ecology in an era of globalization: challenges and opportunities for environmental scientists in the Americas. Proceedings of the Ecological Society of America International Conference. ESA, Washington, DC. |
[6] |
Barrett SCH, Colautti RI, Eckert CG (2008) Plant reproductive systems and evolution during biological invasion. Molecular Ecology, 17, 373-383.
DOI URL PMID |
[7] | Barrett SCH, Husband BC (1990) Genetics of plant migration and colonization. In: Plant Population Genetics, Breeding, and Genetic Resources (eds Brown AHD, Clegg MT, Kahler AL), pp. 254-277. Sinauer, Sunderland. |
[8] |
Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Diversity and Distributions, 15, 409-420.
DOI URL |
[9] | Blossey B, Nötzold R (1995) Evolution of increased competitive ability in invasive nonindigenous plants: a hypothesis. Journal of Ecology, 83, 887-889. |
[10] |
Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters, 4, 585-589.
URL PMID |
[11] |
Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecology Letters, 10, 701-709.
DOI URL PMID |
[12] |
Callaway RM, Maron JL (2006) What have exotic plant invasions taught us over the past 20 years? Trends in Ecology and Evolution, 21, 369-374.
DOI URL PMID |
[13] |
Cappuccino N, Arnason JT (2006) Novel chemistry of invasive exotic plants. Biology Letters, 2, 189-193.
URL PMID |
[14] | Castro SA, Figueroa JA, Muñoz-Schick M, Jaksic FM (2005) Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Diversity and Distributions, 11, 183-191. |
[15] |
Chun YJ, Collyer ML, Moloney KA, Nason JD (2007) Phenotypic plasticity of native vs. invasive purple loosestrife: a two-state multivariate approach. Ecology, 88, 1499-1512.
DOI URL PMID |
[16] |
Crisp MD, Arroyo MTK, Cook LG, Gandolfo MA, Jordan GJ, McGlone MS, Weston PH, Westoby M, Wilf P, Linder HP (2009) Phylogenetic biome conservatism on a global scale. Nature, 458, 754-756.
DOI URL PMID |
[17] | di Castri F(1989) History of biology invasions with special emphasis on the Old World. In: Biology Invasions: A Global Perspective (eds Mooney HA, Drake JA), pp. 1-29. John Wiley, Chichester. |
[18] |
Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology, 87, 1359-1367.
DOI URL PMID |
[19] |
Dlugosch KM, Parker IM (2008) Invading populations of an ornamental shrub show rapid life history evolution despite genetic bottlenecks. Ecology Letters, 11, 701-709.
DOI URL PMID |
[20] | Ebeling SK, Welk E, Auge H, Bruelheide H (2008) Predicting the spread of an invasive plant: combining experiments and ecological niche model. Ecography, 31, 709-719. |
[21] |
Engelkes T, Morrien E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature, 456, 946-948.
DOI URL PMID |
[22] | Feng YL, Lei YB, Wang RF, Callaway RM, Inderjit AV, Li YP, Zheng YL (2009) Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences, USA, 106, 1853-1856. |
[23] | Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecology and Biogeography, 16, 24-33. |
[24] | Fonseca RL, Guimarães PR, Morbiolo SR, Scachetti-Pereira R, Peterson AT (2006) Predicting invasive potential of smooth crotalaria ( Crotalaria pallida) in Brazilian national parks based on African records. Weed Science, 54, 458-463. |
[25] | Fridley JD (2008) Of Asian forests and European fields: eastern U.S. plant invasions in a global floristic context. PLoS ONE, 3, 1-8. |
[26] |
Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in denderobatid frogs. Evolution, 58, 1781-1793.
URL PMID |
[27] |
Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecology Letters, 8, 993-1009.
DOI URL |
[28] |
Guo QF, Qian H, Ricklefs RE, Xi WM (2006) Distribution of exotic plants in eastern Asia and North America. Ecology Letters, 9, 827-834.
DOI URL PMID |
[29] | Harris CJ, Murray BR, Hose GC, Hamilton MA (2007) Introduction history and invasion success in exotic vines introduced to Australia. Diversity and Distributions, 13, 467-475. |
[30] |
Harrison RG, Bogdanowicz SM, Hoffman RS, Yensen E, Sherman PW (2003) Phylogeny and evolutionary history of ground squirrels (Rodentia: Marmotinae). Journal of Mammalian Evolution, 10, 249-276.
DOI URL |
[31] | Hierro JL, Maron JL, Callaway RM (2005) A biogeographical approach to plant invasions: the importance of studying exotics in their introduced and native range. Journal of Ecology, 93, 5-15. |
[32] | Holt RD, Barfield M, Gomulkiewicz R (2005) Theories of niche conservatism and evolution: could exotic species be potential tests? In: Species Invasions: Insights into Ecology, Evolution, and Biogeography (eds Sax DF, Stachowicz JJ, Gaines SD), pp. 259-290. Sinauer Associates, Sunderland, MA. |
[33] |
Jakob SS, Heibl C, Rödder D, Blattner FR (2010) Population demography influences climatic niche evolution: evidence from diploid American Hordeum species (Poaceae). Molecular Ecology, 19, 1423-1438.
DOI URL PMID |
[34] |
Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology, 87, S29-S38.
DOI URL PMID |
[35] | Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M, Essl F, Jarošík V, Pergl J, Winter M, Anastasiu P, Andriopoulos P, Bazos I, Brundu G, Celesti-Grapow L, Chassot P, Delipetrou P, Josefsson M, Kark S, Klotz S, Kokkoris Y, Kühn I, Marchante H, Perglová I, Pino J, Vilà M, Zikos A, Roy D, Hulme PE (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia, 80, 101-149. |
[36] |
Lee CE, Remfert JL, Gelembiuk GW (2003) Evolution of physiological tolerance and performance during freshwater invasions. Integrative and Comparative Biology, 43, 439-449.
DOI URL PMID |
[37] | Levin DA (2005) Niche shifts: the primary driver of novelty within angiosperm genera. Systematic Botany, 30, 9-15. |
[38] | Levin DA (2009) Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytologist, 183, 661-666. |
[39] |
Levine J, Vilà M, D'Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London Series B: Biological Sciences, 270, 775-781.
URL PMID |
[40] | Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytologist, 177, 706-714. |
[41] |
Liu J, Liang SC, Liu FH, Wang RQ, Dong M (2005) Invasive alien plant species in China: regional distribution patterns. Diversity and Distributions, 11, 341-347.
DOI URL |
[42] |
Lodge DM, Williams S, Macisaac HJ, Hayes KR, Leung B, Reichard S, Mack RN, Moyle PB, Smith M, Andow DA, Carlton JT, McMichael A (2006) Biological invasions: recommendations for U.S. policy and management. Ecological Applications, 16, 2035-2054.
URL PMID |
[43] |
Loo SE, MacNally R, Lake PS (2007) Forecasting New Zealand mudsnail invasion range: model comparisons using native and invaded ranges. Ecological Applications, 17, 181-189.
DOI URL PMID |
[44] | Losos JB (2008a) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 955-1003. |
[45] |
Losos JB (2008b) Rejoinder to Wiens (2008): phylogenetic niche conservatism, its occurrence and importance. Ecology Letters, 11, 1005-1007.
DOI URL |
[46] |
Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an invasive plant. Ecological Monographs, 74, 261-280.
DOI URL |
[47] | Martinez-Meyer E, Peterson AT (2006) Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-recent transition. Journal of Biogeography, 33, 1779-1789. |
[48] | Martinez-Meyer E, Peterson AT, Hargrove WW (2004) Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography, 13, 305-314. |
[49] | Milton SJ (2004) Grasses as invasive alien plants in South Africa. South African Journal of Science, 100, 69-75. |
[50] |
Montague JL, Barrett SCH, Eckert CG (2008) Re-establishment of clinal variation in flowering time among introduced populations of purple loosestrife ( Lythrum salicaria, Lythraceae). Journal of Evolutionary Biology, 21, 234-245.
DOI URL PMID |
[51] |
Monty A, Mahy G (2009) Clinal differentiation during invasion: Senecio inaequidens (Asteraceae) along altitudinal gradients in Europe. Oecologia, 159, 305-315.
URL PMID |
[52] |
Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution of invasive plants: implications for biological control. Trends in Ecology and Evolution, 19, 417-422.
DOI URL PMID |
[53] |
Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends in Ecology and Evolution, 23, 149-158.
DOI URL PMID |
[54] | Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modelling. Quarterly Review of Biology, 78, 419-433. |
[55] | Peterson AT, Nakazawa Y (2008) Environmental data sets matter in ecological niche modelling: an example with Solenopsis invicta and Solenopsis richteri. Global Ecology and Biogeography, 17, 135-144. |
[56] |
Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science, 285, 1265-1267.
DOI URL PMID |
[57] |
Qian H, Ricklefs RE (2004) Taxon richness and climate in angiosperms: is there a globally consistent relationship that precludes region effects? The American Naturalist, 163, 773-779.
URL PMID |
[58] | Raimundo RLG., Fonseca RL, Schachetti-Pereira R, Peterson AT, Lewinsohn TM (2007) Native and exotic distributions of Siamweed ( Chromolaena odorata) modeled using the genetic algorithm for rule-set production. Weed Science, 55, 41-48. |
[59] | Randin CF, Dirnböck T, Dullinger S, Zimmermann NE, Zappa M, Guisan A (2006) Are niche-based species distribution models transferable in space? Journal of Biogeography, 33, 1689-1703. |
[60] | Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991) The evolution of Spartina anglica C.E. Hubbard (Gramineae): genetic variation and status of the parent species in Britain. Biological Journal of the Linnean Society, 44, 369-380. |
[61] | Richardson DM, Thuiller W (2007) Home away from home― objective mapping of high-risk source areas for plant introductions. Diversity and Distributions, 13, 299-312. |
[62] | Rödder D, Kielgast J, Bielby J, Schmidtlein S, Bosch J, Garner TWJ, Veith M, Walker S, Fisher MC, Lötters S (2009a) Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity, 1, 52-66. |
[63] | Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics within the native and invasive ranges of the Mediterranean housegecko ( Hemidactylus turcicus). Global Ecology and Biogeography, 18, 674-687. |
[64] |
Rödder D, Schmidtlein S, Veith M, Lötters S (2009b) Alien invasive slider turtle in unpredicted habitat: a matter of niche shift or of predictors studied? PLoS ONE, 4, e7843. doi: 10.1371/journal.pone.0007843.
URL PMID |
[65] | Roy S, Simon JP, Lapointe FJ (2000) Determination of the origin of the cold-adapted populations of barnyard grass ( Echinochloa crus-galli) in eastern North America: a total-evidence approach using RAPD DNA and DNA sequences. Canadian Journal of Botany, 78, 1505-1513. |
[66] |
Sala OE, Chapin III FS, Armesto JJ, Berlow R, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge D, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
DOI URL PMID |
[67] | Sax DF (2001) Latitudinal gradients and geographic ranges of exotic species: implications for biogeography. Journal of Biogeography, 28, 139-150. |
[68] | Segurado P, Araujo MB (2004) An evaluation of methods for modelling species distributions. Journal of Biogeography, 31, 1555-1568. |
[69] | Sexton JP, McIntyre PJ, Angert AL, Rice KJ (2009) Evolution and ecology of species range limits. Annual Review of Ecology, Evolution and Systematics, 40, 415-436. |
[70] | Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology, 4, 727-731. |
[71] |
Stratton LC, Goldstein G (2001) Carbon uptake, growth and resource-use efficiency in one invasive and six native Hawaiian dry forest tree species. Tree Physiology, 21, 1327-1334.
URL PMID |
[72] | Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are more invasive. Proceedings of the National Academy of Sciences, USA, 103, 5841-5845. |
[73] | Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Global Change Biology, 11, 2234-2250. |
[74] |
Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology and Evolution, 21, 208-216.
URL PMID |
[75] |
Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, Steinger T, Müller-Schärer H (2009) Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology, 90, 1366-1377.
URL PMID |
[76] |
Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantative approaches to niche evolution. Evolution, 62, 2868-2883.
URL PMID |
[77] |
Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. The American Naturalist, 156, 145-155.
DOI URL PMID |
[78] | Weber E (2003) Invasive Plant Species of the World: A Reference Guide to Environmental Weeds, pp. 560. CABI Publishing, Wallingford, UK. |
[79] | Weber E, Sun SG, Li B (2008) Invasive alien plants in China: diversity and ecological insights. Biological Invasions, 10, 1411-1429. |
[80] | Welk E, Schubert K, Hoffmann MH (2002) Present and potential distribution of invasive garlic mustard ( Alliaria petiolata) in North America. Diversity and Distributions, 8, 219-233. |
[81] |
Wiens JJ (2008) Commentary on Losos (2008): niche conservatism déjà vu. Ecology Letters, 11, 1004-1005.
DOI URL PMID |
[82] | Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annual Review of Ecology, Evolution and Systematics, 36, 519-539. |
[83] | Young TP, Stanton ML, Christian CE (2003) Effects of natural and simulated herbivory on spine lengths of Acacia drepanolobium in Kenya. Oikos, 101, 171-179. |
[84] |
Zhu L, Sang W (2008) Effects of defoliation on competitive interactions between invasive crofton weed ( Eupatorium adenophorum) and its native neighbors: implication for biocontrol. Weed Science, 56, 112-118.
DOI URL |
[85] |
Zhu L, Sun OJ, Sang WG, Li ZY, Ma KP (2007) Predicting the spatial distribution of an invasive plant species ( Eupatorium adenophorum) in China. Landscape Ecology, 22, 1143-1154.
DOI URL |
[86] |
Zou J, Rogers WE, Siemann E (2009) Plasticity of Sapium sebiferum seedlings growth to light and water resources: inter- and intraspecific comparisons. Basic and Applied Ecology, 10, 79-88.
DOI URL |
[1] | 孙维悦, 舒江平, 顾钰峰, 莫日根高娃, 杜夏瑾, 刘保东, 严岳鸿. 基于保护基因组学揭示荷叶铁线蕨的濒危机制[J]. 生物多样性, 2022, 30(7): 21508-. |
[2] | 余元钧, 罗火林, 刘南南, 熊冬金, 罗毅波, 杨柏云. 气候变化对中国大黄花虾脊兰及其传粉者适生区的影响[J]. 生物多样性, 2020, 28(7): 769-778. |
[3] | 李熠,唐志尧,闫昱晶,王科,蔡磊,贺金生,古松,姚一建. 物种分布模型在大型真菌红色名录评估及保护中的应用: 以冬虫夏草为例[J]. 生物多样性, 2020, 28(1): 99-106. |
[4] | 史晓昀,施小刚,胡强,官天培,付强,张剑,姚蒙,李晟. 四川邛崃山脉雪豹与散放牦牛潜在分布重叠与捕食风险评估[J]. 生物多样性, 2019, 27(9): 951-959. |
[5] | 张晓玲, 李亦超, 王芸芸, 蔡宏宇, 曾辉, 王志恒. 未来气候变化对不同国家茶适宜分布区的影响[J]. 生物多样性, 2019, 27(6): 595-606. |
[6] | 余建平, 申云逸, 宋小友, 陈小南, 李晟, 申小莉. 钱江源国家公园体制试点区功能分区对黑麂保护的有效性评估[J]. 生物多样性, 2019, 27(1): 5-12. |
[7] | 雷军成, 王莎, 王军围, 吴军. 未来气候变化对我国特有濒危动物黑麂 适宜生境的潜在影响[J]. 生物多样性, 2016, 24(12): 1390-1399. |
[8] | 吴文, 李月辉, 胡远满, 陈龙, 李悦, 李泽鸣, 聂志文, 陈探. 小兴安岭南麓马鹿冬季适宜生境评价[J]. 生物多样性, 2016, 24(1): 20-29. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn