生物多样性 ›› 2011, Vol. 19 ›› Issue (4): 432-440. DOI: 10.3724/SP.J.1003.2011.09032
所属专题: 传粉生物学
收稿日期:
2011-02-25
接受日期:
2011-07-09
出版日期:
2011-07-20
发布日期:
2011-07-29
通讯作者:
李新蓉
作者简介:
* E-mail: xinrong16@163.com基金资助:
Xiaoli Ma, Dunyan Tan, Xinrong Li*()
Received:
2011-02-25
Accepted:
2011-07-09
Online:
2011-07-20
Published:
2011-07-29
Contact:
Xinrong Li
摘要:
性分配理论主要研究繁殖资源在雌雄功能间的最优分配, 从雌雄功能的角度考虑其个体适合度。对花序内不同部位花的雌性与雄性资源分配变化的研究, 对于我们理解植物采取哪种繁殖对策保障繁殖成功具有重要意义。本文对生长在中国科学院吐鲁番沙漠植物园内的蒙古沙冬青(Ammopiptanthus mongolicus)连续开花花序内不同部位花的性分配变化、传粉者运动与繁殖成功进行了研究。主要结果如下: (1)从花序的中部早开放花到下部花再到上部晚开放花, 花寿命明显缩短, 雄蕊群质量/(雄蕊群质量+雌蕊质量)、花粉量及花粉量/胚珠数增大, 花冠大小、花冠质量、花蜜量减小, 胚珠数无明显变化, 表现出上部花偏雄的性分配; (2)在一个花序内, 西方蜜蜂(Apis mellifera)和淡脉隧蜂属1种(Lasiglossum sp.1)首先停落在中部花上, 在花序的不同部位间移动, 最后从上部花飞离花序, 因此中部花的首次受访率较高, 最后受访率较低, 而上部花的最后受访率较高, 首次受访率较低; (3)两年间, 给上部花补授异株花粉后, 结籽率、种子质量均明显提高, 给上部花补授异株花粉的同时去除中下部花后, 座果率、结籽率和种子质量也明显增加; 而这两种处理间的座果率、结籽率和种子质量无明显变化。这表明, 蒙古沙冬青自然情况下上部花座果率、结籽率和种子质量较低的主要原因是, 花序内传粉者定向运动而非资源限制是造成上部花缺乏异花花粉。这种情况下, 增加对上部花雄性功能的投入是蒙古沙冬青维持传粉成功的适应策略。
马晓丽, 谭敦炎, 李新蓉 (2011) 蒙古沙冬青花序内性分配的变化、传粉者运动与繁殖成功. 生物多样性, 19, 432-440. DOI: 10.3724/SP.J.1003.2011.09032.
Xiaoli Ma, Dunyan Tan, Xinrong Li (2011) Variation in floral sex allocation, pollinator movement and reproductive success in Ammopiptanthus mongolicus inflorescences. Biodiversity Science, 19, 432-440. DOI: 10.3724/SP.J.1003.2011.09032.
位置 Position | 花数 Number of flowers | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
上部 Upper | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
中部 Intermediate | 1 | 2 | 3 | 2 | 3 | 4 | 3 | 4 | 5 | 4 | 5 | 6 | 5 | 6 | 7 | 6 | 7 | 8 | 7 |
下部 Lower | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
花序总花数 Total on inflorescence | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
表1 花序内位置划分及各位置的花数
Table 1 Classification of flower positions and flower numbers within inflorescences
位置 Position | 花数 Number of flowers | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
上部 Upper | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
中部 Intermediate | 1 | 2 | 3 | 2 | 3 | 4 | 3 | 4 | 5 | 4 | 5 | 6 | 5 | 6 | 7 | 6 | 7 | 8 | 7 |
下部 Lower | 1 | 1 | 1 | 2 | 2 | 2 | 3 | 3 | 3 | 4 | 4 | 4 | 5 | 5 | 5 | 6 | 6 | 6 | 7 |
花序总花数 Total on inflorescence | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
图1 蒙古沙冬青花序内不同部位性分配的变化。图中不同的大写字母和小写字母分别表示变量间的平均值有极显著性差异和显著性差异; 误差条线图代表平均值±标准误。
Fig. 1 Variation in floral sex allocation among different positions within an inflorescence. The means by different uppercase and lowercase letters are significantly different (P<0.01; P<0.05). Bars indicate Mean ± SE.
图2 蒙古沙冬青花序内不同部位花的首次受访率(A)和最后受访率(B)。图中不同的小写字母表示变量间的平均值有显著性差异(P<0.05); 误差条线图代表平均值±标准误。
Fig. 2 The first and last visiting ratio by Lasiglossum sp.1 and Apis mellifera among different positions within inflorescences. A and B represent first visiting ratio and last visiting ratio by main pollinators, respectively. The means by different letters are significantly different (P<0.05). Bars indicate Mean ± SE.
图3 蒙古沙冬青花序内上部花在不同处理中座果率、结籽率和种子质量的比较。图中的C、S、S+R分别表示自然授粉、给上部花补授异株花粉、给上部花补授异株花粉的同时去除下部和中部花。图中不同的大写字母和小写字母分别表示变量间的平均值有极显著性差异和显著性差异。误差条线图代表平均值±标准误。
Fig. 3 Comparison of upper flowers on fruit set rate, seed set rate and seed weight among different treatments within inflorescences. C, S and S + R represent control, pollen supplementation, simultaneous pollen supplementation and intermediate and lower flowers removal, respectively. The means with different uppercase and lowercase letters are significantly different (P<0.01; P<0.05). Bars indicate Mean ± SE.
来源 Source | df | F值 | ||
---|---|---|---|---|
座果率 Fruit set rate | 结籽率 Seed set rate | 种子质量 Seed weight | ||
处理 Treatment | 2 | 8.190* | 13.818* | 7.345* |
年 Year | 1 | 0.209 | 34.575* | 130.165* |
处理×年 Treatment×Year | 2 | 0.336 | 1.508 | 0.018 |
表2 2009年和2010年蒙古沙冬青花序内上部花不同处理的座果率、结籽率和种子质量Two-way ANOVA分析
Table 2 Analysis of fruit set rate, seed set rate and seed weight of the upper flowers among different treatments within inflorescences by Two-way ANOVA
来源 Source | df | F值 | ||
---|---|---|---|---|
座果率 Fruit set rate | 结籽率 Seed set rate | 种子质量 Seed weight | ||
处理 Treatment | 2 | 8.190* | 13.818* | 7.345* |
年 Year | 1 | 0.209 | 34.575* | 130.165* |
处理×年 Treatment×Year | 2 | 0.336 | 1.508 | 0.018 |
[1] |
Ashman TL, Hitchens MS (2000) Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). American Journal of Botany, 87, 197-204.
URL PMID |
[2] |
Biernaskie JM, Cartar RV (2004) Variation in rate of nectar production depends on floral display size: a pollinator manipulation hypothesis. Functional Ecology, 18, 125-129.
DOI URL |
[3] |
Brookes RH, Jesson LK, Burd M (2010) Reproductive investment within inflorescences of Stylidium armeria varies with the strength of early resource commitment. Annals of Botany, 105, 697-705.
DOI URL PMID |
[4] |
Brunet J (1992) Sex allocation in hermaphroditic plants. Trends in Ecology and Evolution, 7, 79-84.
DOI URL PMID |
[5] | Brunet J, Charlesworth D (1995) Floral sex allocation in sequentially blooming plants. Ecology, 49, 70-79. |
[6] | Charnov EL (1982) The Theory of Sex Allocation. Princeton University Press, Princeton. |
[7] |
Cruden RW (1977) Pollen/ovule ratios: a conservative indicator of breeding systems in flowering plants. Evolution, 31, 32-46.
DOI URL PMID |
[8] |
Diggle PK (1995) Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 26, 531-552.
DOI URL |
[9] | Fan BL (樊宝丽), Zhao ZG (赵志刚), Meng JL (孟金柳), Du GZ (杜国祯) (2008) Position-dependent sex allocation within inflorescence of Aconitum gymnandrum Maxim. Acta Ecologica Sinica (生态学报), 28, 2910-2915. (in Chinese with English abstract) |
[10] | Fu LK (傅立国), Jin JM (金鉴明) (1992) The Red Data Book of China’s Plants: Rare and Endangered Plants (中国植物红皮书: 稀有濒危植物 (第一册)). Science Press, Beijing. (in Chinese) |
[11] | Galloni M, Podda L, Vivarelli D, Cristofolini G (2007) Pollen presentation, pollen-ovule ratios, and other reproductive traits in Mediterranean legumes (Fam. Fabaceae-Subfam. Faboideae). Plant Systematics and Evolution, 266, 147-164. |
[12] | Harder LD, Barrett SCH (1996) Pollen dispersal and mating patterns in animal-pollinated plants. In: Floral Biology: Studies on Floral Evolution in Animal-pollinated Plants (eds Lloyd DG, Barrett SCH), pp. 140-189. Chapman & Hall, New York. |
[13] | Harder LD, Barrett SCH, Cole WW (2000) The mating consequences of sexual segregation within inflorescences of flowering plants. Proceedings of the Royal Society B: Biological Science, 267, 315-320. |
[14] | Huang SQ, Tang LL, Yu Q, Guo YH (2004) Temporal floral sex allocation in protogynous Aquilegia yabeana contrasts with protandrous species: support for the mating environment hypothesis. Evolution, 58, 1131-1134. |
[15] | Itagaki T, Sakai S (2006) Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var. oxysepala (Ranunculaceae). American Journal of Botany, 93, 1320-1327. |
[16] | Kliber A, Eckert CG (2004) Sequential decline in allocation among flowers within inflorescences: proximate mechanisms and adaptive significance. Ecology, 85, 1675-1687. |
[17] |
Kudo G, Maeda T, Narita K (2001) Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): pollination efficiency or resource limitation? Journal of Ecology, 89, 48-56.
URL PMID |
[18] | Lee TD (1988) Patterns of fruit and seed production. In: Plant Reproductive Ecology: Patterns and Strategies (eds Doust J L, Doust LL), pp. 179-202. Oxford University Press, New York. |
[19] | Li XR (李新蓉) (2006) The Reproductive Biology of Ammopiptanthus Cheng f. (Fabaceae) (沙冬青属植物繁殖生物学研究). PhD dissertation, Xinjiang Agricultural University, Urumqi. (in Chinese with English abstract) |
[20] | Li XR (李新蓉), Tan DY (谭敦炎), Guo J (郭江) (2006) Comparison of flowering phenology of two species of Ammopiptanthus (Fabaceae) under ex situ conservation in the Turpan Eremophytes Botanical Garden, Xinjiang. Biodiversity Science (生物多样性), 14, 241-249. (in Chinese with English abstract ) |
[21] | Medrano M, Guitian P, Guitian J (2000) Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): nonuniform pollination, resource limitation, or architectural effects? American Journal of Botany, 87, 493-501. |
[22] | Primack RB (1985) Longevity of individual flowers. Annual Review of Ecology and Systematics, 16, 15-37. |
[23] | Stephenson AG (1981) Flower and fruit abortion: proximate causes and ultimate functions. Annual Review of Ecology and Systematics, 12, 253-279. |
[24] | Thomson JD (1989) Deployment of ovules and pollen among flowers within inflorescences. Evolutionary Trends in Plants, 3, 65-68. |
[25] | Tremblay RL (2006) The effect of flower position on male and female reproductive success in a deceptively pollinated tropical orchid. Botanical Journal of the Linnean Society, 151, 405-410. |
[26] | Waddington D, Heinrich B (1979) The foraging movements of bumblebees on vertical “inflorescences”: an experimental analysis. Journal of Comparative Physiology, 134, 113-117. |
[27] | Wang XJ (王晓娟), Zhang LC (张龙冲), Zhao ZG (赵志刚) (2010) The pattern of seed reproduction and its response to resources in Pedicularis semitorta individuals. Acta Prat- aculturae Sinica (草业学报), 19, 236-242. (in Chinese with English abstract) |
[28] | Wolfe LM (1992) Why does the size of reproductive structures decline through time in Hydrophyllum appendiculatum (Hydrophyllaceae)? Developmental constraints vs. resource limitation. American Journal of Botany, 79, 1286-1290. |
[29] | Yin LK (尹林克) (1997) Diversity and ex situ conservation of plants in the desert region of temperate zone in China. Chinese Biodiversity (生物多样性), 5, 40-48. (in Chinese with English abstract) |
[30] | Zeng YF, Bai WN, Zhou Y, Zhang DY (2009) Variation in floral sex allocation and reproductive success in sequentially flowering inflorescence of Corydalis remota var. lineariloba (Fumariaceae). Journal of Integrative Plant Biology, 51, 299-307. |
[31] | Zhao ZG, Meng JL, Fan BL, Du GZ (2008) Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): potential mechanism and among-family variation. Plant Systematics and Evolution, 273, 247-256. |
[32] | Zhang ZQ (张志强), Li QJ (李庆军) (2009) Review of evolutionary ecology of floral longevity. Acta Phytoecologica Sinica (植物生态学报), 26, 385-390. (in Chinese with English abstract) |
[1] | 巴苏艳, 赵春艳, 刘媛, 方强. 通过虫体花粉识别构建植物‒传粉者网络: 人工模型与AI模型高度一致[J]. 生物多样性, 2024, 32(6): 24088-. |
[2] | 丁翔, 余元钧, 宋希强, 罗毅波. 具有泛化访花者的海芋特化传粉系统[J]. 生物多样性, 2024, 32(6): 24069-. |
[3] | 何远思, 张轶宣, 王代平. 配偶行为相容性对动物繁殖的影响[J]. 生物多样性, 2023, 31(6): 22534-. |
[4] | 李慢如, 张玲. 桑寄生植物繁殖物候研究概述[J]. 生物多样性, 2020, 28(7): 833-841. |
[5] | 田昊, 廖万金. 克隆生长对被子植物传粉过程的影响[J]. 生物多样性, 2018, 26(5): 468-475. |
[6] | 童泽宇, 徐环李, 黄双全. 探讨监测传粉者的方法[J]. 生物多样性, 2018, 26(5): 433-444. |
[7] | 黄家兴, 安建东. 中国熊蜂多样性、人工利用与保护策略[J]. 生物多样性, 2018, 26(5): 486-497. |
[8] | 贾翔宇, 白彬, 张洁清, 黄艺. IPBES评估报告对全球生物多样性保护的影响——以美国传粉者保护政策为例[J]. 生物多样性, 2018, 26(5): 527-534. |
[9] | 黄建峰, 徐睿, 彭艳琼. 榕-传粉榕小蜂非一对一共生关系的研究进展[J]. 生物多样性, 2018, 26(3): 295-303. |
[10] | 黄至欢, 陆奇丰, 陈颖卓. 地锦苗在石灰岩土壤和红壤生境中的繁殖成功的比较[J]. 生物多样性, 2017, 25(9): 972-980. |
[11] | 田瑜, 兰存子, 徐靖, 李秀山, 李俊生. IPBES框架下的全球传粉评估及我国对策[J]. 生物多样性, 2016, 24(9): 1084-1090. |
[12] | 李海东, 任宗昕, 吴之坤, 许琨, 王红. 二型花柱植物海仙花报春花部性状随地理梯度的变异[J]. 生物多样性, 2015, 23(6): 747-758. |
[13] | 杜家潇, 孟璐, 孙海芹, 包颖. 盗蜜对角蒿传粉者行为和生殖成功的影响[J]. 生物多样性, 2015, 23(5): 658-664. |
[14] | 戴漂漂, 张旭珠, 刘云慧. 传粉动物多样性的保护与农业景观传粉服务的提升[J]. 生物多样性, 2015, 23(3): 408-418. |
[15] | 夏婧, 郭友好. 开花时间与伴生种对鹤首马先蒿传粉和生殖成功的影响[J]. 生物多样性, 2012, 20(3): 330-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn