生物多样性 ›› 2024, Vol. 32 ›› Issue (2): 23274. DOI: 10.17520/biods.2023274
何智荣1, 吴思雨1, 时莹莹1, 王雨婷1, 江艺欣1, 张春娜1, 赵娜2,*(), 王苏盆1,*()
收稿日期:
2023-07-31
接受日期:
2023-11-20
出版日期:
2024-02-20
发布日期:
2023-11-29
通讯作者:
E-mail: 基金资助:
Zhirong He1, Siyu Wu1, Yingying Shi1, Yuting Wang1, Yixin Jiang1, Chunna Zhang1, Na Zhao2,*(), Supen Wang1,*()
Received:
2023-07-31
Accepted:
2023-11-20
Online:
2024-02-20
Published:
2023-11-29
Contact:
E-mail: 摘要:
加强生物多样性保护与共建地球生命共同体是我国的重大战略。两栖动物是脊椎动物中生物多样性受威胁最严重的类群, 两种壶菌Batrachochytrium dendrobatidis (Bd)和B. salamandrivorans (Bsal)的感染是两栖动物多样性下降的主要因素之一。Bd主要感染两栖动物无尾目、有尾目和蚓螈目的皮肤, 可能引起两栖动物淋巴细胞凋亡和全身电解质失衡。Bsal主要感染有尾目, 可能导致两栖动物致命的败血症。针对壶菌及其感染对两栖动物种群影响的研究在国外已经开展了大量工作, 然而我国在该领域的研究有限。本文通过检索1990-2022年国内外文献, 梳理和总结了壶菌病原的可能起源与传播、壶菌感染的发病机制、壶菌毒力的影响因素和壶菌病原体的诊断与防治等领域的研究, 并提出了未来的研究方向和技术方法的改进需求, 如利用全基因组测序技术溯源、开发RPA技术进行野外检测和应用转录组学研究宿主-病原体的免疫等。最后, 提出以下4条建议: (1)建设壶菌病原基础数据平台, 建立壶菌病常规检测部门, 并将壶菌病监测纳入野生动物疫病监测体系; (2)深入开展我国两栖动物不同地理区系壶菌感染情况的相关研究; (3)探索学科交叉与部门合作, 如流行病学、免疫学、微生物学和生态学等; (4)加强国际交流合作, 构建符合特殊亚洲环境的壶菌感染和预测模型。本研究将为两栖动物保护拓展新思路, 助力我国两栖动物保护的可持续发展。
何智荣, 吴思雨, 时莹莹, 王雨婷, 江艺欣, 张春娜, 赵娜, 王苏盆 (2024) 壶菌感染对两栖动物种群影响的研究现状与挑战. 生物多样性, 32, 23274. DOI: 10.17520/biods.2023274.
Zhirong He, Siyu Wu, Yingying Shi, Yuting Wang, Yixin Jiang, Chunna Zhang, Na Zhao, Supen Wang (2024) Current status and challenges on the effects of chytrid infection on amphibian populations. Biodiversity Science, 32, 23274. DOI: 10.17520/biods.2023274.
图2 两栖动物的不同物种对壶菌的敏感性。每个条形图代表一个物种, 颜色表示其敏感程度。同心圆表示, 从内到外分别为目(有尾目或无尾目)、科和属。所有分类单元的详细信息见附录1。
Fig. 2 Sensitivity of different species of amphibians to Chytrid. Each bar represents one species, color denotes its sensitivity. Concentric circles represent the orders (Caudata or Anura), family, and genus from the inside out. The detailed information of all classification units is shown in Appendix 1.
图3 两种真菌Batrachochytrium dendrobatidis (Bd)和B. salamandrivorans (Bsal)皮肤感染病理生理学的异同
Fig. 3 Similarities and differences in pathophysiology of skin infections caused by Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal)
[1] |
Abu Bakar A, Bower DS, Stockwell MP, Clulow S, Clulow J, Mahony MJ (2016) Susceptibility to disease varies with ontogeny and immunocompetence in a threatened amphibian. Oecologia, 181, 997-1009.
DOI PMID |
[2] |
Bai C, Garner TWJ, Li Y (2010) First evidence of Batrachochytrium dendrobatidis in China: Discovery of chytridiomycosis in introduced American bullfrogs and native amphibians in the Yunnan Province, China. EcoHealth, 7, 127-134.
DOI URL |
[3] |
Bai CM, Liu X, Fisher MC, Garner TWJ, Li YM (2012) Global and endemic Asian lineages of the emerging pathogenic fungus Batrachochytrium dendrobatidis widely infect amphibians in China. Diversity and Distributions, 18, 307-318.
DOI URL |
[4] |
Baitchman EJ, Pessier AP (2013) Pathogenesis, diagnosis, and treatment of amphibian chytridiomycosis. Veterinary Clinics of North America: Exotic Animal Practice, 16, 669-685.
DOI PMID |
[5] | Bataille A, Cashins SD, Grogan L, Skerratt LF, Hunter D, McFadden M, Scheele B, Brannelly LA, Macris A, Harlow PS, Bell S, Berger L, Waldman B (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proceedings of the Royal Society B: Biological Sciences, 282, 20143127. |
[6] | Becares E (2013) Chytridiomycosis: A global threat to amphibians. Revue scientifique et technique (International Office of Epizootics), 32, 857-867. |
[7] |
Belasen AM, Amses KR, Clemons RA, Becker CG, Toledo LF, James TY (2022a) Habitat fragmentation in the Brazilian Atlantic Forest is associated with erosion of frog immunogenetic diversity and increased fungal infections. Immunogenetics, 74, 431-441.
DOI |
[8] |
Belasen AM, Russell ID, Zamudio KR, Bletz MC (2022b) Endemic lineages of Batrachochytrium dendrobatidis are associated with reduced chytridiomycosis-induced mortality in amphibians: Evidence from a meta-analysis of experimental infection studies. Frontiers in Veterinary Science, 9, 756686.
DOI URL |
[9] | Bender MC, Hu C, Pelletier C, Denver RJ (2018) To eat or not to eat:Ontogeny of hypothalamic feeding controls and a role for leptin in modulating life-history transition in amphibian tadpoles. Proceedings of the Royal Society B: Biological Sciences, 285, 20172784. |
[10] |
Berger L, Hyatt AD, Speare R, Longcore JE (2005) Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 68, 51-63.
PMID |
[11] | Berger L, Speare R, Daszak P, Green DE, Cunningham AA, Goggin CL, Slocombe R, Ragan MA, Hyatt AD, McDonald KR, Hines HB, Lips KR, Marantelli G, Parkes H (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proceedings of the National Academy of Sciences, USA, 95, 9031-9036. |
[12] |
Beukema W, Pasmans F, Van Praet S, Ferri-Yáñez F, Kelly M, Laking AE, Erens J, Speybroeck J, Verheyen K, Lens L, Martel A (2020) Microclimate limits thermal behaviour favourable to disease control in a nocturnal amphibian. Ecology Letters, 24, 27-37.
DOI URL |
[13] | Beyer SE, Phillips CA, Schooley RL (2015) Canopy cover and drought influence the landscape epidemiology of an amphibian chytrid fungus. Ecosphere, 6, 78. |
[14] |
Blaustein AR, Johnson PTJ (2010) When an infection turns lethal: Losses in biodiversity and the emergence of new infectious diseases are among the greatest threats to life on the planet. The declines in amphibian populations lie at the interface between these issues. Nature, 465, 881-883.
DOI |
[15] | Bletz MC, Kelly M, Sabino-Pinto J, Bales E, Van Praet S, Bert W, Boyen F, Vences M, Steinfartz S, Pasmans F, Martel A (2018) Disruption of skin microbiota contributes to salamander disease. Proceedings of the Royal Society B: Biological Sciences, 285, 20180758. |
[16] |
Blooi M, Pasmans F, Longcore JE, Spitzen-van der Sluijs A, Vercammen F, Martel A (2013) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. Journal of Clinical Microbiology, 51, 4173-4177.
DOI PMID |
[17] |
Blooi M, Pasmans F, Rouffaer L, Haesebrouck F, Vercammen F, Martel A (2015) Successful treatment of Batrachochy- trium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature. Scientific Reports, 5, 11788.
DOI PMID |
[18] | Boyle DG, Boyle DB, Olsen V, Morgan JAT, Hyatt AD (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms, 60, 141-148. |
[19] |
Brannelly LA, Chatfield MWH, Sonn J, Robak M, Richards-Zawacki CL (2018) Fungal infection has sublethal effects in a lowland subtropical amphibian population. BMC Ecology, 18, 34.
DOI PMID |
[20] | Buck JC, Perkins SE (2018) Study scale determines whether wildlife loss protects against or promotes tick-borne disease. Proceedings of the Royal Society B: Biological Sciences, 285, 20180218. |
[21] | Byrne AQ, Vredenburg VT, Martel A, Pasmans F, Bell RC, Blackburn DC, Bletz MC, Bosch J, Briggs CJ, Brown RM, Catenazzi A, Familiar López M, Figueroa-Valenzuela R, Ghose SL, Jaeger JR, Jani AJ, Jirku M, Knapp RA, Muñoz A, Portik DM, Richards-Zawacki CL, Rockney H, Rovito SM, Stark T, Sulaeman H, Tao NT, Voyles J, Waddle AW, Yuan ZY, Rosenblum EB (2019) Cryptic diversity of a widespread global pathogen reveals expanded threats to amphibian conservation. Proceedings of the National Academy of Sciences, USA, 116, 20382-20387. |
[22] |
Carey C, Bruzgul JE, Livo LJ, Walling ML, Kuehl KA, Dixon BF, Pessier AP, Alford RA, Rogers KB (2006) Experimental exposures of boreal toads (Bufo boreas) to a pathogenic chytrid fungus (Batrachochytrium dendro- batidis). EcoHealth, 3, 5-21.
DOI |
[23] | Cohen JM, Civitello DJ, Brace AJ, Feichtinger EM, Ortega CN, Richardson JC, Sauer EL, Liu X, Rohr JR (2016) Spatial scale modulates the strength of ecological processes driving disease distributions. Proceedings of the National Academy of Sciences, USA, 113, E3359-E3364. |
[24] |
Cohen JM, McMahon TA, Ramsay C, Roznik EA, Sauer EL, Bessler S, Civitello DJ, Delius BK, Halstead N, Knutie SA, Nguyen KH, Ortega N, Sears B, Venesky MD, Young S, Rohr JR (2019) Impacts of thermal mismatches on chytrid fungus Batrachochytrium dendrobatidis prevalence are moderated by life stage, body size, elevation and latitude. Ecology letters, 22, 817-825.
DOI URL |
[25] |
Colombo BM, Scalvenzi T, Benlamara S, Pollet N (2015) Microbiota and mucosal immunity in amphibians. Frontiers in Immunology, 6, 111.
DOI PMID |
[26] |
Conlon JM (2011) The contribution of skin antimicrobial peptides to the system of innate immunity in anurans. Cell and Tissue Research, 343, 201-212.
DOI PMID |
[27] |
Daszak P, Berger L, Cunningham AA, Hyatt AD, Green DE, Speare R (1999) Emerging infectious diseases and amphibian population declines. Emerging Infectious Diseases, 5, 735-748.
DOI PMID |
[28] |
Daszak P, Cunningham AA, Hyatt AD (2003) Infectious disease and amphibian population declines. Diversity and Distributions, 9, 141-150.
DOI URL |
[29] |
Daversa DR, Manica A, Bosch J, Jolles JW, Garner TWJ (2018) Routine habitat switching alters the likelihood and persistence of infection with a pathogenic parasite. Functional Ecology, 32, 1262-1270.
DOI URL |
[30] | Farrer RA, Weinert LA, Bielby J, Garner TWJ, Balloux F, Clare F, Bosch J, Cunningham AA, Weldon C, du Preez LH, Anderson L, Pond SLK, Shahar-Golan R, Henk DA, Fisher MC (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proceedings of the National Academy of Sciences, USA, 108, 18732-18736. |
[31] | Fei L, Hu SQ, Ye CY, Huang YZ (2006) Fauna Sinica·Amphibian (Vol. 1). Science Press, Beijing. (in Chinese) |
[费梁, 胡淑琴, 叶昌媛, 黄永昭 (2006) 中国动物志·两栖纲(上卷). 科学出版社, 北京.] | |
[32] |
Fisher MC (2017) In peril from a perfect pathogen. Nature, 544, 300-301.
DOI URL |
[33] |
Fisher MC, Bosch J, Yin ZK, Stead DA, Walker J, Selway L, Brown AJP, Walker LA, Gow NAR, Stajich JE, Garner TWJ (2009a) Proteomic and phenotypic profiling of the amphibian pathogen Batrachochytrium dendrobatidis shows that genotype is linked to virulence. Molecular Ecology, 18, 415-429.
DOI URL |
[34] |
Fisher MC, Garner TWJ (2007) The relationship between the emergence of Batrachochytrium dendrobatidis, the international trade in amphibians and introduced amphibian species. Fungal Biology Reviews, 21, 2-9.
DOI URL |
[35] |
Fisher MC, Garner TWJ (2020) Chytrid fungi and global amphibian declines. Nature Reviews Microbiology, 18, 332-343.
DOI PMID |
[36] |
Fisher MC, Garner TWJ, Walker SF (2009b) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annual Review of Microbiology, 63, 291-310.
DOI URL |
[37] |
Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature, 484, 186-194.
DOI |
[38] |
Fisher MC, Pasmans F, Martel A (2021) Virulence and pathogenicity of chytrid fungi causing amphibian extinctions. Annual Review of Microbiology, 75, 673-693.
DOI PMID |
[39] |
Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, Gayek AS, Dermody TS, Aune TM, Oswald-Richter K, Rollins-Smith LA (2013) The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science, 342, 366-369.
DOI PMID |
[40] | Forrest MJ, Schlaepfer MA (2011) Nothing a hot bath won’t cure: Infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings. PLoS ONE, 6, e28444. |
[41] | Fu MJ, Waldman B (2019) Ancestral chytrid pathogen remains hypervirulent following its long coevolution with amphibian hosts. Proceedings of the Royal Society B: Biological Sciences, 286, 20190833. |
[42] |
Gahl MK, Longcore JE, Houlahan JE (2012) Varying responses of northeastern North American amphibians to the chytrid pathogen Batrachochytrium dendrobatidis. Conservation Biology, 26, 135-141.
DOI URL |
[43] | Garner TWJ, Perkins MW, Govindarajulu P, Seglie D, Walker S, Cunningham AA, Fisher MC (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the North American bullfrog, Rana catesbeiana. Biology Letters, 2, 455-459. |
[44] | Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica, 16, 183-190. |
[45] |
Gray MJ, Carter ED, Piovia-Scott J, Cusaac JPW, Peterson AC, Whetstone RD, Hertz A, Muniz-Torres AY, Bletz MC, Woodhams DC, Romansic JM, Sutton WB, Sheley W, Pessier A, McCusker CD, Wilber MQ, Miller DL (2023) Broad host susceptibility of North American amphibian species to Batrachochytrium salamandrivorans suggests high invasion potential and biodiversity risk. Nature Communications, 14, 3270.
DOI |
[46] |
Grogan LF, Humphries JE, Robert J, Lanctôt CM, Nock CJ, Newell DA, McCallum HI (2020) Immunological aspects of chytridiomycosis. Journal of Fungi, 6, 234.
DOI URL |
[47] | Grogan LF, Mangan MJ, McCallum HI (2023) Amphibian infection tolerance to chytridiomycosis. Philosophical Transactions of Society B: Biological Sciences, 378, 20220133. |
[48] |
Grogan LF, Robert J, Berger L, Skerratt LF, Scheele BC, Castley JG, Newell DA, McCallum HI (2018) Review of the amphibian immune response to chytridiomycosis, and future directions. Frontiers in Immunology, 9, 2536.
DOI PMID |
[49] | Guernier V, Hochberg ME, Guégan JF (2004) Ecology drives the worldwide distribution of human diseases. PLoS Biology, 2, e141. |
[50] |
Halliday T (1998) A declining amphibian conundrum. Nature, 394, 418-419.
DOI |
[51] |
Hanlon SM, Lynch KJ, Kerby J, Parris MJ (2015) Batrachochytrium dendrobatidis exposure effects on foraging efficiencies and body size in anuran tadpoles. Diseases of Aquatic Organisms, 112, 237-242.
DOI PMID |
[52] |
Heard GW, Thomas CD, Hodgson JA, Scroggie MP, Ramsey DSL, Clemann N (2015) Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecology Letters, 18, 853-863.
DOI PMID |
[53] | Hechinger RF, Lafferty KD (2005) Host diversity begets parasite diversity:Bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society B: Biological Sciences, 272, 1059-1066. |
[54] | Hite JL, Bosch J, Fernández-Beaskoetxea S, Medina D, Hall SR (2016) Joint effects of habitat, zooplankton, host stage structure and diversity on amphibian chytrid. Proceedings of the Royal Society B: Biological Sciences, 283, 20160832. |
[55] |
Hof C, Araújo MB, Jetz W, Rahbek C (2011) Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480, 516-519.
DOI |
[56] | Humphries JE, Lanctôt CM, Robert J, McCallum HI, Newell DA, Grogan LF (2022) Do immune system changes at metamorphosis predict vulnerability to chytridiomycosis? An update. Developmental & Comparative Immunology, 136, 104510. |
[57] | Hyatt AD, Boyle DG, Olsen V, Boyle DB, Berger L, Obendorf D, Dalton A, Kriger K, Hero M, Hines H, Phillott R, Campbell R, Marantelli G, Gleason F, Colling A (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 73, 175-192. |
[58] | Iwanowicz DD, Schill WB, Olson DH, Adams MJ, Densmore C, Cornman RS, Adams C, Figiel Jr CR, Anderson CW, Blaustein AR, Chestnut T (2017) Potential concerns with analytical methods used for the detection of Batrachochytrium salamandrivorans from archived DNA of amphibian swab samples. Herpetological Review, 48, 352-355. |
[59] | Jiang JP, Xie F, Li C, Wang B (2021) China’s Red List of Biodiversity·Vertebrates (Vol. IV): Amphibians (I). Science Press, Beijing. (in Chinese) |
[江建平, 谢锋, 李成, 王斌 (2021) 中国生物多样性红色名录·脊椎动物(第四卷): 两栖纲(上册). 科学出版社, 北京.] | |
[60] |
Jiang JP, Xie F, Zang CX, Cai L, Li C, Wang B, Li JT, Wang J, Hu JH, Wang Y, Liu JY (2016) Assessing the threat status of amphibians in China. Biodiversity Science, 24, 588-597. (in Chinese with English abstract)
DOI |
[江建平, 谢锋, 臧春鑫, 蔡蕾, 李成, 王斌, 李家堂, 王杰, 胡军华, 王燕, 刘炯宇 (2016) 中国两栖动物受威胁现状评估. 生物多样性, 24, 588-597.]
DOI |
|
[61] |
Jiang YX, Shi YY, Gao S, Wang SP (2023) The impact of anthropogenic noise, artificial light at night and road kills on amphibians. Biodiversity Science, 31, 22427. (in Chinese with English abstract)
DOI URL |
[江艺欣, 时莹莹, 高朔, 王苏盆 (2023) 人为噪音、夜间人造光和路杀对两栖动物的影响. 生物多样性, 31, 22427.] | |
[62] |
Johnson ML, Speare R (2005) Possible modes of dissemination of the amphibian chytrid Batrachochytrium dendrobatidis in the environment. Diseases of Aquatic Organisms, 65, 181-186.
PMID |
[63] |
Johnson PTJ, Preston DL, Hoverman JT, Richgels KLD (2013) Biodiversity decreases disease through predictable changes in host community competence. Nature, 494, 230-233.
DOI |
[64] |
Kielgast J, Rödder D, Veith M, Lötters S (2010) Widespread occurrence of the amphibian chytrid fungus in Kenya. Animal Conservation, 13, 36-43.
DOI URL |
[65] |
Kilpatrick AM, Briggs CJ, Daszak P (2010) The ecology and impact of chytridiomycosis: An emerging disease of amphibians. Trends in Ecology & Evolution, 25, 109-118.
DOI URL |
[66] |
Laking AE, Ngo HN, Pasmans F, Martel A, Nguyen TT (2017) Batrachochytrium salamandrivorans is the predominant chytrid fungus in Vietnamese salamanders. Scientific Reports, 7, 44443.
DOI |
[67] |
Le Sage EH, LaBumbard BC, Reinert LK, Miller BT, Richards-Zawacki CL, Woodhams DC, Rollins-Smith LA (2021) Preparatory immunity: Seasonality of mucosal skin defences and Batrachochytrium infections in Southern leopard frogs. Journal of Animal Ecology, 90, 542-554.
DOI URL |
[68] | Lips KR, Brem F, Brenes R, Reeve JD, Alford RA, Voyles J, Carey C, Livo L, Pessier AP, Collins JP (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the National Academy of Sciences, USA, 103, 3165-3170. |
[69] | Liu X, Rohr JR, Li YM (2013) Climate, vegetation, introduced hosts and trade shape a global wildlife pandemic. Proceedings of the Royal Society B: Biological Sciences, 280, 20122506. |
[70] |
Longcore JE, Pessier AP, Nichols DK (1999) Batrachochy- trium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91, 219-227.
DOI URL |
[71] | Lowe S, Browne M, Boudjelas S, Poorter MD (2000) 100 of the World’s Worst Invasive Alien Species a Selection from the Global Invasive Species Database. The Invasive Species Specialist Group (ISSG), Auckland. |
[72] |
Luedtke JA, Chanson J, Neam K, Hobin L, Maciel AO, Catenazzi A, Borzée A, Hamidy A, Aowphol A, Jean A, Sosa-Bartuano Á, Fong G A, de Silva A, Fouquet A, Angulo A, Kidov AA, Muñoz Saravia A, Diesmos AC, Tominaga A, Shrestha B, Gratwicke B, Tjaturadi B, Martínez Rivera CC, Vásquez Almazán CR, Señaris C, Chandramouli SR, Strüssmann C, Cortez Fernández CF, Azat C, Hoskin CJ, Hilton-Taylor C, Whyte DL, Gower DJ, Olson DH, Cisneros-Heredia DF, Santana DJ, Nagombi E, Najafi-Majd E, Quah ESH, Bolaños F, Xie F, Brusquetti F, Álvarez FS, Andreone F, Glaw F, Castañeda FE, Kraus F, Parra-Olea G, Chaves G, Medina-Rangel GF, González-Durán G, Ortega-Andrade HM, Machado IF, Das I, Dias IR, Urbina-Cardona JN, Crnobrnja-Isailović J, Yang JH, Jiang JP, Wangyal JT, Rowley JJL, Measey J, Vasudevan K, Chan KO, Gururaja KV, Ovaska K, Warr LC, Canseco-Márquez L, Toledo LF, Díaz LM, Khan MMH, Meegaskumbura M, Acevedo ME, Napoli MF, Ponce MA, Vaira M, Lampo M, Yánez-Muñoz MH, Scherz MD, Rödel MO, Matsui M, Fildor M, Kusrini MD, Ahmed MF, Rais M, Kouamé NG, García N, Legrand Gonwouo N, Burrowes PA, Imbun PY, Wagner P, Kok PJR, Joglar RL, Auguste RJ, Albuquerque Brandão R, Ibáñez R, von May R, Hedges SB, Biju SD, Ganesh SR, Wren S, Das S, Flechas SV, Ashpole SL, Robleto-Hernández SJ, Loader SP, Incháustegui SJ, Garg S, Phimmachak S, Richards SJ, Slimani T, Osborne-Naikatini T, Abreu-Jardim TPF, Condez TH, De Carvalho TR, Cutajar TP, Pierson TW, Nguyen TQ, Kaya U, Yuan ZY, Long B, Langhammer P, Stuart SN (2023) Ongoing declines for the world’s amphibians in the face of emerging threats. Nature, 622, 308-314.
DOI |
[73] |
Marantelli G, Berger L, Speare R, Keegan L (2004) Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pacific Conservation Biology, 10, 173-179.
DOI URL |
[74] |
Martel A, Blooi M, Adriaensen C, Van Rooij P, Beukema W, Fisher MC, Farrer RA, Schmidt BR, Tobler U, Goka K, Lips KR, Muletz C, Zamudio KR, Bosch J, Lötters S, Wombwell E, Garner TWJ, Cunningham AA, Spitzen-van der Sluijs A, Salvidio S, Ducatelle R, Nishikawa K, Nguyen TT, Kolby JE, Van Bocxlaer I, Bossuyt F, Pasmans F (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science, 346, 630-631.
DOI PMID |
[75] | Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the National Academy of Sciences, USA, 110, 15325-15329. |
[76] |
McCallum H (2005) Inconclusiveness of chytridiomycosis as the agent in widespread frog declines. Conservation Biology, 19, 1421-1430.
DOI URL |
[77] |
McDonald CA, Longo AV, Lips KR, Zamudio KR (2020) Incapacitating effects of fungal coinfection in a novel pathogen system. Molecular Ecology, 29, 3173-3186.
DOI PMID |
[78] | McMahon TA, Brannelly LA, Chatfield MWH, Johnson PTJ, Joseph MB, McKenzie VJ, Richards-Zawacki CL, Venesky MD, Rohr JR (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proceedings of the National Academy of Sciences, USA, 110, 210-215. |
[79] |
McMahon TA, Rohr JR (2015) Transition of chytrid fungus infection from mouthparts to hind limbs during amphibian metamorphosis. EcoHealth, 12, 188-193.
DOI PMID |
[80] |
McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA, Raffel TR, Rohr JR (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature, 511, 224-227.
DOI |
[81] | Money NP (2016) Fungal diversity. In: The Fungi (eds Watkinson SC, Boddy L), pp. 1-36. Academic Press, Boston. |
[82] | Murphy K, Weaver C (2016) Janeway’s Immunobiology, 9nd edn. Garland Science, New York. |
[83] |
O’hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA, Murray KA, Brankovics B, Fumagalli M, Martin MD, Wales N, Alvarado-Rybak M, Bates KA, Berger L, Böll S, Brookes L, Clare F, Courtois EA, Cunningham AA, Doherty-Bone TM, Ghosh P, Gower DJ, Hintz WE, Höglund J, Jenkinson TS, Lin C, Laurila A, Loyau A, Martel A, Meurling S, Miaud C, Minting P, Pasmans F, Schmeller DS, Schmidt BR, Shelton JMG, Skerratt LF, Smith F, Soto-Azat C, Spagnoletti M, Tessa G, Toledo LF, Valenzuela-Sánchez A, Verster R, Vörös J, Webb RJ, Wierzbicki C, Wombwell E, Zamudio KR, Aanensen DM, James TY, Gilbert MTP, Weldon C, Bosch J, Balloux F, Garner TWJ, Fisher MC (2018) Recent Asian origin of chytrid fungi causing global amphibian declines. Science, 360, 621-627.
DOI PMID |
[84] | Ohmer MEB, Cramp RL, White CR, Harlow PS, McFadden MS, Merino-Viteri A, Pessier AP, Wu NC, Bishop PJ, Franklin CE (2019) Phylogenetic investigation of skin sloughing rates in frogs:Relationships with skin characteristics and disease-driven declines. Proceedings of the Royal Society B: Biological Sciences, 286, 20182378. |
[85] | Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, The Bd Mapping Group, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS ONE, 8, e56802. |
[86] |
Ouellet M, Mikaelian I, Pauli BD, Rodríguez J, Green DM (2005) Historical evidence of widespread chytrid infection in North American amphibian populations. Conservation Biology, 19, 1431-1440.
DOI URL |
[87] | Pask JD, Cary TL, Rollins-Smith LA (2013) Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis. Journal of Experimental Biology, 216, 2908-2916. |
[88] |
Pereira KE, Woodley SK (2021) Skin defenses of North American salamanders against a deadly salamander fungus. Animal Conservation, 24, 552-567.
DOI URL |
[89] |
Pessier AP (2002) An overview of amphibian skin disease. Seminars in Avian and Exotic Pet Medicine, 11, 162-174.
DOI URL |
[90] |
Piotrowski JS, Annis SL, Longcore JE (2004) Physiology of Batrachochytrium dendrobatidis, a chytrid pathogen of amphibians. Mycologia, 96, 9-15.
PMID |
[91] |
Pounds JA, Bustamante MR, Coloma LA, Consuegra JA, Fogden MPL, Foster PN, Marca EL, Masters KL, Merino-Viteri A, Puschendorf R, Ron SR, Sánchez-Azofeifa GA, Still CJ, Young BE (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature, 439, 161-167.
DOI |
[92] |
Rachowicz LJ, Hero JM, Alford RA, Taylor JW, Morgan JAT, Vredenburg VT, Collins JP, Briggs CJ (2005) The novel and endemic pathogen hypotheses: Competing explanations for the origin of emerging infectious diseases of wildlife. Conservation Biology, 19, 1441-1448.
DOI URL |
[93] |
Randolph SE, Dobson ADM (2012) Pangloss revisited: A critique of the dilution effect and the biodiversity-buffers- disease paradigm. Parasitology, 139, 847-863.
DOI PMID |
[94] | Retallick RWR, McCallum H, Speare R (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biology, 2, e351. |
[95] | Rohr JR, Civitello DJ, Halliday FW, Hudson PJ, Lafferty KD, Wood CL, Mordecai EA (2020) Towards common ground in the biodiversity-disease debate. Nature Ecology & Evolution, 4, 24-33. |
[96] | Rohr JR, Raffel TR (2010) Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proceedings of the National Academy of Sciences, USA, 107, 8269-8274. |
[97] | Rohr JR, Raffel TR, Halstead NT, McMahon TA, Johnson SA, Boughton RK, Martin LB (2013) Early-life exposure to a herbicide has enduring effects on pathogen-induced mortality. Proceedings of the Royal Society B: Biological Sciences, 281, 20140629. |
[98] |
Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KPC (2015) Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. Infection and Immunity, 83, 4565-4570.
DOI PMID |
[99] |
Rollins-Smith LA, Le Sage EH (2021) Batrachochytrium fungi: Stealth invaders in amphibian skin. Current Opinion in Microbiology, 61, 124-132.
DOI PMID |
[100] | Rollins-Smith LA, Reinert LK, Le Sage M, Linney KN, Gillard BM, Umile TP, Minbiole KPC (2022) Lymphocyte inhibition by the Salamander-Killing chytrid fungus, Batrachochytrium salamandrivorans. Infection and Immunity, 90, e00020-22. |
[101] | Rollins-Smith LA, Woodhams DC (2012) Amphibian immunity. In: Ecoimmunology (eds Demas GE, Nelson RJ), pp. 92-143. Oxford University Press, New York. |
[102] |
Roy HE, Tricarico E, Hassall R, Johns CA, Roy KA, Scalera R, Smith KG, Purse BV (2023) The role of invasive alien species in the emergence and spread of zoonoses. Biological Invasions, 25, 1249-1264.
DOI |
[103] |
Ruggeri J, Martins AGDS, Domingos AHR, Santos I, Viroomal IB, Toledo LF (2020) Seasonal prevalence of the amphibian chytrid in a tropical pond-dwelling tadpole species. Diseases of Aquatic Organisms, 142, 171-176.
DOI PMID |
[104] | Russell DM, Goldberg CS, Waits LP, Rosenblum EB (2010) Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA. Diseases of Aquatic Organisms, 92, 223-230. |
[105] | Sauer EL, Fuller RC, Richards-Zawacki CL, Sonn J, Sperry JH, Rohr JR (2018) Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Proceedings of the Royal Society B: Biological Sciences, 285, 20181111. |
[106] |
Scheele BC, Hunter DA, Grogan LF, Berger L, Kolby JE, McFadden MS, Marantelli G, Skerratt LF, Driscoll DA (2014) Interventions for reducing extinction risk in chytridiomycosis-threatened amphibians. Conservation Biology, 28, 1195-1205.
DOI PMID |
[107] | Scheele BC, Pasmans F, Skerratt LF, Berger L, Martel A, Beukema W, Acevedo AA, Burrowes PA, Carvalho T, Catenazzi A, De la Riva I, Fisher MC, Flechas SV, Foster CN, Frías-Álvarez P, Garner TWJ, Gratwicke B, Guayasamin JM, Hirschfeld M, Kolby JE, Kosch TA, Marca EL, Lindenmayer DB, Lips KR, Longo AV, Maneyro R, McDonald CA, Mendelson J, Palacios-Rodriguez P, Parra-Olea G, Richards-Zawacki CL, Rödel M, Rovito SM, Soto-Azat C, Toledo LF, Voyles J, Weldon C, Whitfield SM, Wilkinson M, Zamudio KR, Canessa S (2019) Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science, 363, 1459-1463. |
[108] |
Schlaepfer MA, Sredl MJ, Rosen PC, Ryan MJ (2007) High prevalence of Batrachochytrium dendrobatidis in wild populations of lowland leopard frogs Rana yavapaiensis in Arizona. EcoHealth, 4, 421-427.
DOI URL |
[109] | Searle CL, Biga LM, Spatafora JW, Blaustein AR (2011) A dilution effect in the emerging amphibian pathogen Batrachochytrium dendrobatidis. Proceedings of the National Academy of Sciences, USA, 108, 16322-16326. |
[110] | Sheets CN, Schmidt DR, Hurtado PJ, Byrne AQ, Rosenblum EB, Richards-Zawacki CL, Voyles J (2021) Thermal performance curves of multiple isolates of Batrachochy- trium dendrobatidis, a lethal pathogen of amphibians. Frontiers in Veterinary Science, 8, 687084. |
[111] |
Spitzen-van der Sluijs A, Spikmans F, Bosman W, de Zeeuw M, van der Meij T, Goverse E, Kik M, Pasmans F, Martel A (2013) Rapid enigmatic decline drives the fire salamander (Salamandra salamandra) to the edge of extinction in the Netherlands. Amphibia-Reptilia, 34, 233-239.
DOI URL |
[112] |
Stegen G, Pasmans F, Schmidt BR, Rouffaer LO, Van Praet S, Schaub M, Canessa S, Laudelout A, Kinet T, Adriaensen C, Haesebrouck F, Bert W, Bossuyt F, Martel A (2017) Drivers of salamander extirpation mediated by Batrachochytrium salamandrivorans. Nature, 544, 353-356.
DOI URL |
[113] |
Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783-1786.
DOI PMID |
[114] | Sun D, Ellepola G, Herath J, Liu H, Liu Y, Murray K, Meegaskumbura M (2023) New climatically specialized lineages of Batrachochytrium dendrobatidis and their sub-lethal effects on amphibians establish the Asiatic origins of the pathogen. BioRxiv, doi: 10.1101/2023.01.23.525302. |
[115] |
Swafford AJM, Hussey SP, Fritz-Laylin LK (2020) High-efficiency electroporation of chytrid fungi. Scientific Reports, 10, 15145.
DOI PMID |
[116] | Swei A, Rowley JJL, Rödder D, Diesmos MLL, Diesmos AC, Briggs CJ, Brown R, Cao TT, Cheng TL, Chong RA, Han B, Hero JM, Hoang HD, Kusrini MD, Le DTT, McGuire JA, Meegaskumbura M, Min MS, Mulcahy DG, Neang T, Phimmachak S, Rao DQ, Reeder NM, Schoville SD, Sivongxay N, Srei N, Stöck M, Stuart BL, Torres LS, Tran DTA, Tunstall TS, Vieites D, Vredenburg VT (2011) Is chytridiomycosis an emerging infectious disease in Asia? PLoS ONE, 6, e23179. |
[117] | Van Rooij P, Martel A, D’Herde K, Brutyn M, Croubels S, Ducatelle R, Haesebrouck F, Pasmans F (2012) Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. PLoS ONE, 7, e41481. |
[118] |
Varga JFA, Bui-Marinos MP, Katzenback BA (2019) Frog skin innate immune defences: Sensing and surviving pathogens. Frontiers in Immunology, 9, 3128.
DOI URL |
[119] |
Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of chytridiomycosis, a cause of catastrophic amphibian declines. Science, 326, 582-585.
DOI PMID |
[120] |
Waddle AW, Levy JE, Rivera R, Van Breukelen F, Nash M, Jaeger JR (2019) Population-level resistance to chytridiomycosis is life-stage dependent in an imperiled anuran. EcoHealth, 16, 701-711.
DOI PMID |
[121] | Wang SP, Zhu W, Fan LQ, Li JQ, Li YM (2017) Amphibians Testing Negative for Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans on the Qinghai-Tibetan Plateau, China. Asian Herpetological Research, 8, 190-198. |
[122] |
Weldon C, du Preez LH, Hyatt AD, Muller R, Speare R (2004) Origin of the amphibian chytrid fungus. Emerging Infectious Diseases, 10, 2100-2105.
DOI PMID |
[123] | Wells KD (2007) The Ecology and Behavior of Amphibians. University of Chicago Press, Chicago. |
[124] | West J (2018) Importance of amphibians:A synthesis of their environmental functions, benefits to humans, and need for conservation. In: BSU Honors Program Theses and Projects, Item 261. Bridgewater State University, Bridgewater. |
[125] | Wood CL, McInturff A, Young HS, Kim D, Lafferty KD (2017) Human infectious disease burdens decrease with urbanization but not with biodiversity. Philosophical Transactions of Society B: Biological Sciences, 372, 20160122. |
[126] |
Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Diseases of aquatic organisms, 55, 65-67.
PMID |
[127] |
Woodhams DC, LaBumbard BC, Barnhart KL, Becker MH, Bletz MC, Escobar LA, Flechas SV, Forman ME, Iannetta AA, Joyce MD, Rabemananjara F, Gratwicke B, Vences M, Minbiole KPC (2018) Prodigiosin, violacein, and volatile organic compounds produced by widespread cutaneous bacteria of amphibians can inhibit two Batrachochytrium fungal pathogens. Microbial Ecology, 75, 1049-1062.
DOI PMID |
[128] | Ye CY, Fei L, Hu SQ (1993) Rare and Economic Amphibians of China. Sichuan Publishing House of Science & Technology, Chengdu. (in Chinese) |
[叶昌媛, 费梁, 胡淑琴 (1993) 中国珍稀及经济两栖动物. 四川科学技术出版社, 成都.] | |
[129] | Yuan ZY, Martel A, Wu J, Van Praet S, Canessa S, Pasmans F (2018) BWidespread occurrence of an emerging fungal pathogen in heavily traded Chinese urodelan species. Conservation Letters, 11, e12436. |
[130] |
Zhang L, Rohr J, Cui RN, Xin YS, Han LX, Yang XN, Gu SM, Du YB, Liang J, Wang XY, Wu ZJ, Hao Q, Liu X (2022) Biological invasions facilitate zoonotic disease emergences. Nature Communications, 13, 1762.
DOI PMID |
[131] |
Zornosa-Torres C, Lambertini C, Toledo LF (2021) Amphibian chytrid infections along the highest elevational gradient of the Brazilian Atlantic Forest. Diseases of Aquatic Organisms, 144, 99-106.
DOI PMID |
[1] | 江艺欣, 时莹莹, 高朔, 王苏盆. 人为噪音、夜间人造光和路杀对两栖动物的影响[J]. 生物多样性, 2023, 31(3): 22427-. |
[2] | 侯东敏, 辉洪, 张栋儒, 肖能文, 饶定齐. 云岭山脉云南地区两栖爬行类动物多样性[J]. 生物多样性, 2023, 31(2): 22316-. |
[3] | 李婷婷, 朱锡红, 吴光年, 宋虓, 徐爱春. 镇海棘螈产卵场微生境选择[J]. 生物多样性, 2023, 31(1): 22293-. |
[4] | 刘高慧, 崔建国, 王玥, 王洪良, 香宝, 肖能文. 四川省康定市两栖动物多样性及其时空分布格局[J]. 生物多样性, 2022, 30(6): 21494-. |
[5] | 高志伟, 钱天宇, 江建平, 侯德佳, 邓学建, 杨道德. 湖南省两栖、爬行动物物种多样性及其地理分布[J]. 生物多样性, 2022, 30(2): 21290-. |
[6] | 王存璐,陈浒,肖华,张红梅,李林芝,郭城,陈静,魏强. 黔西北石漠化地区两栖动物多样性及其生境选择[J]. 生物多样性, 2020, 28(4): 485-495. |
[7] | 王剀, 任金龙, 陈宏满, 吕植桐, 郭宪光, 蒋珂, 陈进民, 李家堂, 郭鹏, 王英永, 车静. 中国两栖、爬行动物更新名录[J]. 生物多样性, 2020, 28(2): 189-218. |
[8] | 王波, 黄勇, 李家堂, 戴强, 王跃招, 杨道德. 西南喀斯特地貌区两栖动物丰富度分布格局与环境因子的关系[J]. 生物多样性, 2018, 26(9): 941-950. |
[9] | 李成, 谢锋, 车静, 江建平. 中国关键地区两栖爬行动物多样性监测与研究[J]. 生物多样性, 2017, 25(3): 246-254. |
[10] | 耿宝荣. 福建省两栖类物种多样性评估[J]. 生物多样性, 2004, 12(6): 618-625. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn