生物多样性 ›› 2022, Vol. 30 ›› Issue (7): 22245. DOI: 10.17520/biods.2022245
所属专题: 土壤生物与土壤健康
收稿日期:
2022-05-05
接受日期:
2022-06-15
出版日期:
2022-07-20
发布日期:
2022-07-07
通讯作者:
王永龙
作者简介:
*E-mail: wylongceltics@163.com基金资助:
Xuan Zhang1, Wei Du2, Ying Xu1, Yonglong Wang1,*()
Received:
2022-05-05
Accepted:
2022-06-15
Online:
2022-07-20
Published:
2022-07-07
Contact:
Yonglong Wang
摘要:
土壤微生物是城市公园生态系统中物质循环的主要驱动者, 但目前对于半干旱型城市公园森林土壤细菌群落结构和功能研究较少。本研究以包头市为例, 选取奥林匹克公园(AL)、劳动公园(LD)和阿尔丁植物园(ZW) 3个典型的森林公园, 利用Illumina高通量测序的方法对细菌16S rRNA V4-V5片段进行测序, 分析城市森林公园土壤细菌的多样性、群落构成以及背后的生态学构建机制, 并使用Tax4Fun对细菌群落代谢功能进行分析。结果表明, 土壤细菌丰富度指数为LD (2,443.00 ± 9.37) > ZW (2,392.90 ± 8.23) > AL (2,305.57 ± 17.48); 细菌群落以放线菌门、变形菌门、酸杆菌门、绿弯菌门和芽单胞菌门为优势门。细菌群落组成在三个公园间存在显著差异, 同时线性判别分析效应大小(LEfSe)结果表明, 所有公园都具有多度显著差异的细菌可操作分类单元(OTUs); 中性群落模型(NCM)、标准化随机率(NST)和基于系统发育结合的零模型推断群落组装机制(iCAMP)分析显示, 城市森林土壤细菌群落的构建是由随机性过程和确定性过程共同驱动, 其中漂变和同质化选择占主导作用。Tax4Fun功能预测结果表明涉及膜运输、碳水化合物代谢、氨基酸代谢、能量代谢和信号转导的代谢是该城市公园林下土壤微生物的主要代谢功能, 进一步分析表明微生物群落的代谢功能在不同公园之间存在很大差异。本研究初步探究了半干旱型城市公园细菌的多样性、群落构建机制及其功能, 为城市公园绿地建设以及生态改善等提供一定的科学依据和实践指导。
张旋, 杜薇, 徐颖, 王永龙 (2022) 包头市半干旱型森林公园土壤细菌多样性与功能. 生物多样性, 30, 22245. DOI: 10.17520/biods.2022245.
Xuan Zhang, Wei Du, Ying Xu, Yonglong Wang (2022) Soil bacterial diversity and function in semi-arid forest parks in Baotou City. Biodiversity Science, 30, 22245. DOI: 10.17520/biods.2022245.
图1 包头市三个森林公园土壤细菌多样性。(a)物种累积曲线; (b)丰富度指数。*表示Wilcoxon检验P < 0.05。AL: 奥林匹克公园; LD: 劳动公园; ZW: 阿尔丁植物园。
Fig. 1 Alpha diversity of soil bacteria in three forest parks in Baotou City. (a) Species accumulation curves; (b) Richness index, * indicates Wilcoxon test P < 0.05. AL, Olympic Park; LD, Laodong Park; ZW, Aerding Botanical Garden.
图2 土壤细菌群落前15个门和科水平的相对多度?(a)门水平; (b)科水平?AL: 奥林匹克公园; LD: 劳动公园; ZW: 阿尔丁植物园? Actinobacteriota: 放线菌门 Proteobacteria: 变形菌门 Acidobacteriota: 酸杆菌门 Chloroflexi: 绿弯菌门 Gemmatimonadota: 芽单胞菌门 Planctomycetota: 浮霉菌门 Myxococcota: 粘球菌门 Bcteroidota: 拟杆菌门 Armatimonadota: 装甲菌门 Firmicutes: 厚壁菌门 Entotheonellaeota: 肠杆菌门 Nitrospirota: 硝化螺旋菌门 Desulfobacterota: 脱硫杆菌门 Latescibacterota: 隐性菌门 Gemmatimonadaceae: 芽单胞菌科 Solirubrobacteraceae: 土壤红杆菌科Nitrosomonadaceae: 亚硝化单胞菌科 Geodermatophilaceae: 地嗜皮菌科 Comamonadaceae: 丛毛单胞菌科 Pseudonocardiaceae: 假诺卡氏菌科 Micromonosporaceae: 小单孢菌科 Xanthobacteraceae: 黄色杆菌科 Others: 其他类群
Fig. 2 Relative abundance of top 15 phyla and families of soil bacterial communities. (a) Phylum level, (b) Family level. AL, Olympic Park; LD, Laodong Park; ZW, Aerding Botanical Garden.
图3 包头市三个森林公园土壤细菌群落组成。(a)基于Bray-Curtis距离的细菌群落非度量多维尺度(NMDS)排序分析; (b)土壤细菌与土壤理化性状的冗余分析(RDA)。AP: 有效磷; AK: 速效钾; AN: 有效氮。AL: 奥林匹克公园; LD: 劳动公园; ZW: 阿尔丁植物园。
Fig. 3 Composition of soil bacterial communities in three forest parks in Baotou City. (a) Nonmetric multi-dimensional scaling (NMDS) analysis ranking analysis of bacterial communities based on Bray-Curtis distances. (b) Redundancy analysis (RDA) of soil bacteria and soil physicochemical. AP, Available phosphorus; AK, Available kalium; AN, Available nitrogen; AL, Olympic Park; LD, Laodong Park; ZW, Aerding Botanical Garden.
图4 基于可操纵分类单元(OTU)水平的土壤细菌群落差异(线性判别分析效应大小: LDA > 3, P < 0.05)。AL: 奥林匹克公园; LD: 劳动公园; ZW: 阿尔丁植物园。
Fig. 4 Differences in soil bacterial communities based on operational taxonomic units (OTUs) levels (linear discriminant analysis effect size: LDA > 3, P < 0.05). AL, Olympic Park; LD, Laodong Park; ZW, Aerding Botanical Garden.
图5 土壤细菌群落的生态过程。(a)奥林匹克公园、(b)劳动公园和(c)阿尔丁植物园土壤细菌的中性群落模型(NCM); (d)三个公园的标准化随机率(NST)。
Fig. 5 Ecological processes in soil bacterial communities. Neutral community model (NCM) of soil bacteria in Olympic Park (a), Labor Park (c) and Aerding Botanical Garden (c); (d) The normalized stochasticity ratio (NST) in the three parks.
图6 各生态过程对土壤细菌构建的重要性。基于零模型(iCAMP)表示生态过程的重要性, (a) AL: 奥林匹克公园; (b) LD劳动公园; (c) ZW: 阿尔丁植物园。HeS: 异质选择; HoS: 同质化选择; HD: 均质扩散; DL: 扩散限制; DR: 漂变。
Fig. 6 The relative importance of ecological processes in soil bacterial community assembly. The importance of ecological processes was indicated by infer community assembly mechanisms by phylogenetic-bin-based null model analysis (iCAMP), (a) AL, Olympic Park; (b) LD, Laodong Park; (c) ZW, Aerding Botanical Garden. HeS, Heterogeneous selection, HoS, Homogeneous selection, HD, Homogenizing dispersal, DL, Dispersal limitation, DR, Drift.
图7 土壤细菌代谢功能差异。*表示Kruskal-Wallis P < 0.05。AL: 奥林匹克公园; LD: 劳动公园; ZW: 阿尔丁植物园。比例尺为代谢相对丰度的归一化值。
Fig.7 Differences in soil bacterial metabolic functions. * indicates Kruskal-Wallis P < 0.05. AL, Olympic Park; LD, Laodong Park; ZW, Aerding Botanical Garden. Scale bar is normalized value of metabolic relative abundance.
[1] |
Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics, 31, 2882-2884.
DOI URL |
[2] |
Bahram M, Kohout P, Anslan S, Harend H, Abarenkov K, Tedersoo L (2016) Stochastic distribution of small soil eukaryotes resulting from high dispersal and drift in a local environment. The ISME Journal, 10, 885-896.
DOI URL |
[3] |
Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391.
DOI URL |
[4] |
Chen WD, Ren KX, Isabwe A, Chen HH, Liu M, Yang J (2019) Stochastic processes shape microeukaryotic community assembly in a subtropical river across wet and dry seasons. Microbiome, 7, 1-16.
DOI URL |
[5] |
Delgado-Baquerizo M, Eldridge DJ, Liu YR, Sokoya B, Wang JT, Hu HW, He JZ, Bastida F, Moreno JL, Bamigboye AR, Blanco-Pastor JL, Cano-Díaz C, Illán JG, Makhalanyane TP, Siebe C, Trivedi P, Zaady E, Verma JP, Wang L, Wang JY, Grebenc T, Peñaloza-Bojacá GF, Nahberger TU, Teixido AL, Zhou XQ, Berdugo M, Duran J, Rodríguez A, Zhou XB, Alfaro F, Abades S, Plaza C, Rey A, Singh BK, Tedersoo L, Fierer N (2021) Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 7, eabg5809.
DOI URL |
[6] |
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200.
DOI URL |
[7] |
Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science, 320, 1034-1039.
DOI PMID |
[8] |
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
PMID |
[9] |
Grönroos M, Parajuli A, Laitinen OH, Roslund MI, Vari HK, Hyöty H, Puhakka R, Sinkkonen A (2019) Short-term direct contact with soil and plant materials leads to an immediate increase in diversity of skin microbiota. MicrobiologyOpen, 8, e00645.
DOI URL |
[10] | Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences, USA, 109, 8334-8339. |
[11] | Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Mäkelä MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proceedings of the National Academy of Sciences, USA, 109, 8334-8339. |
[12] |
He Q, Wang S, Hou WG, Feng K, Li FR, Hai WM, Zhang YD, Sun YX, Deng Y (2021) Temperature and microbial interactions drive the deterministic assembly processes in sediments of hot springs. Science of the Total Environment, 772, 145465.
DOI URL |
[13] |
He RJ, Zeng J, Zhao DY, Wang SR, Wu QL (2022) Decreased spatial variation and deterministic processes of bacterial community assembly in the rhizosphere of Phragmites australis across the Middle-Lower Yangtze plain. Molecular Ecology, 31, 1180-1195.
DOI URL |
[14] |
Hubbell SP (1979) Tree dispersion, abundance, and diversity in a tropical dry forest. Science, 203, 1299-1309.
PMID |
[15] | Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography, Princeton University Press, Princeton. |
[16] |
Hui N, Jumpponen A, Francini G, Kotze DJ, Liu XX, Romantschuk M, Strömmer R, Setälä H (2017) Soil microbial communities are shaped by vegetation type and park age in cities under cold climate. Environmental Microbiology, 19, 1281-1295.
DOI URL |
[17] |
Jenkins JR, Viger M, Arnold EC, Harris ZM, Ventura M, Miglietta F, Girardin C, Edwards RJ, Rumpel C, Fornasier F, Zavalloni C, Tonon G, Alberti G, Taylor G (2017) Biochar alters the soil microbiome and soil function: Results of next-generation amplicon sequencing across Europe. GCB Bioenergy, 9, 591-612.
DOI URL |
[18] |
Jiao S, Zhang BG, Zhang GZ, Chen WM, Wei GH (2021) Stochastic community assembly decreases soil fungal richness in arid ecosystems. Molecular Ecology, 30, 4338-4348.
DOI URL |
[19] |
Lai JS, Zou Y, Zhang JL, Peres-Neto PR (2022) Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca.hp R package. Methods in Ecology and Evolution, 13, 782-788.
DOI URL |
[20] |
le Chatelier E, Nielsen T, Qin JJ, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, Leonard P, Li JH, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T, Bork P, Wang J, Ehrlich SD, Pedersen O (2013) Richness of human gut microbiome correlates with metabolic markers. Nature, 500, 541-546.
DOI URL |
[21] |
Li JX, Hong M, Yin XQ, Liu JL (2010) Effects of the accumulation of the rare earth elements on soil macrofauna community. Journal of Rare Earths, 28, 957-964.
DOI URL |
[22] |
Lin YB, Ye YM, Liu SC, Wen JH, Chen DL (2022) Effect mechanism of land consolidation on soil bacterial community: A case study in Eastern China. International Journal of Environmental Research and Public Health, 19, 845.
DOI URL |
[23] |
Liu NN, Hu HF, Ma WH, Deng Y, Wang QG, Luo A, Meng JH, Feng XJ, Wang ZH (2021) Relative importance of deterministic and stochastic processes on soil microbial community assembly in temperate grasslands. Microorganisms, 9, 1929.
DOI URL |
[24] |
Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews, 66, 506- 577.
DOI PMID |
[25] | Ning DL, Deng Y, Tiedje JM, Zhou JZ (2019) A general framework for quantitatively assessing ecological stochasticity. Proceedings of the National Academy of Sciences, USA, 116, 16892-16898. |
[26] |
Ning DL, Yuan MT, Wu LW, Zhang Y, Guo X, Zhou XS, Yang YF, Arkin AP, Firestone MK, Zhou JZ (2020) A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nature Communications, 11, 1-12.
DOI URL |
[27] |
O’Brien SL, Gibbons SM, Owens SM, Hampton-Marcell J, Johnston ER, Jastrow JD, Gilbert JA, Meyer F, Antonopoulos DA (2016) Spatial scale drives patterns in soil bacterial diversity. Environmental Microbiology, 18, 2039-2051.
DOI URL |
[28] |
Ortiz G, Yagüe G, Segovia M, Catalán V (2009) A study of air microbe levels in different areas of a hospital. Current Microbiology, 59, 53-58.
DOI URL |
[29] |
Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011) Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology, 13, 1800-1814.
DOI PMID |
[30] | Ren Y, Han C, Yang H, Wei YB, Cao SY, Qian YJ, Tang Y (2021) Study on soil microbial diversity under five urban landscape plants. Soils, 53, 746-754. (in Chinese with English abstract) |
[ 任一, 韩畅, 杨慧, 魏岩冰, 曹舒阳, 钱宇杰, 唐赟 (2021) 城市五种景观植物土壤微生物多样性研究. 土壤, 53, 746-754.] | |
[31] |
Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: A versatile open source tool for metagenomics. PeerJ, 4, e2584.
DOI URL |
[32] |
Selway CA, Mills JG, Weinstein P, Skelly C, Yadav S, Lowe A, Breed MF, Weyrich LS (2020) Transfer of environmental microbes to the skin and respiratory tract of humans after urban green space exposure. Environment international, 145, 106084.
DOI URL |
[33] |
Shade A, Gregory Caporaso J, Handelsman J, Knight R, Fierer N (2013) A meta-analysis of changes in bacterial and archaeal communities with time. The ISME Journal, 7, 1493-1506.
DOI URL |
[34] |
Si WT, Liu JM, Cai L, Jiang HM, Zheng CL, He XY, Wang JY, Zhang XF (2015) Health risks of metals in contaminated farmland soils and spring wheat irrigated with Yellow River water in Baotou, China. Bulletin of Environmental Contamination and Toxicology, 94, 214-219.
DOI URL |
[35] |
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology, 8, 732-740.
DOI URL |
[36] |
Stevenson A, Hallsworth JE (2014) Water and temperature relations of soil Actinobacteria. Environmental Microbiology Reports, 6, 744-755.
DOI PMID |
[37] |
Sun YZ, Zhang MJ, Duan CX, Cao N, Jia WQ, Zhao ZL, Ding CF, Huang Y, Wang J (2021) Contribution of stochastic processes to the microbial community assembly on field- collected microplastics. Environmental Microbiology, 23, 6707-6720.
DOI URL |
[38] | Tan XL, Kan L, Zhang L, Zheng JY (2019) Seasonal dynamics of soil microbial community structure in urban forest. Chinese Journal of Ecology, 38, 3306-3312. (in Chinese with English abstract) |
[ 谭雪莲, 阚蕾, 张璐, 郑嘉仪 (2019) 城市森林土壤微生物群落结构的季节变化. 生态学杂志, 38, 3306-3312.] | |
[39] | Tilman D (2004) Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences, USA, 101, 10854-10861. |
[40] | Wagg C, Bender SF, Widmer F, van der Heijden MGA (2014) Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, USA, 111, 5266-5270. |
[41] |
Wang XJ, Zhang ZC, Yu ZQ, Shen GF, Cheng HF, Tao S (2020) Composition and diversity of soil microbial communities in the alpine wetland and alpine forest ecosystems on the Tibetan Plateau. Science of the Total Environment, 747, 141358.
DOI URL |
[42] |
Wei F, Passey T, Xu XM (2016) Amplicon-based metabarcoding reveals temporal response of soil microbial community to fumigation-derived products. Applied Soil Ecology, 103, 83-92.
DOI URL |
[43] | Xian WD, Zhang XT, Li WJ (2020) Research status and prospect on bacterial phylum Chloroflexi. Acta Microbiologica Sinica, 60, 1801-1820. (in Chinese) |
[ 鲜文东, 张潇橦, 李文均 (2020) 绿弯菌的研究现状及展望. 微生物学报, 60, 1801-1820.] | |
[44] |
Xu QC, Vandenkoornhuyse P, Li L, Guo JJ, Zhu C, Guo SW, Ling N, Shen QR,(2021) Microbial generalists and specialists differently contribute to the community diversity in farmland soils. Journal of Advanced Research, doi: 10.1016/j.jare.2021.12.003.
DOI |
[45] |
Yan X, Luo XG, Zhao M (2016) Metagenomic analysis of microbial community in uranium-contaminated soil. Applied Microbiology and Biotechnology, 100, 299-310.
DOI URL |
[46] | Yang JH, Wang CL, Dai HL (2008) Soil Agrochemical Analysis and Environmental Monitoring, China Earth Press, Beijing in Chinese. |
[ 杨剑虹, 王成林, 代亨林 (2008) 土壤农化分析与环境监测. 中国大地出版社, 北京.] | |
[47] |
Zeng QC, An SS, Liu Y, Wang HL, Wang Y (2019) Biogeography and the driving factors affecting forest soil bacteria in an arid area. Science of the Total Environment, 680, 124- 131.
DOI URL |
[48] | Zhang JD (2019) Study of Soil Physicochemical Properties and Bacterial Community Structure of Urban Green Spaces in Beijing. PhD dissertation, Beijing Forestry University, Beijing. (in Chinese with English abstract) |
[ 张骏达 (2019) 北京市城区绿地土壤理化性质及细菌群落结构研究. 博士学位论文, 北京林业大学, 北京,.] | |
[49] |
Zhang JD, Li SY, Sun XY, Tong J, Fu Z, Li J (2019) Sustainability of urban soil management: Analysis of soil physicochemical properties and bacterial community structure under different green space types. Sustainability, 11, 1395.
DOI URL |
[50] | Zhang JD, Li SY, Sun XY, Zhang H, Hu N, Fu Z, Guo ZT (2019) Analysis of soil bacterial diversity in urban parks with different ages by high throughput sequencing. Microbiology China, 46, 65-74. (in Chinese with English abstract) |
[ 张骏达, 李素艳, 孙向阳, 张骅, 呼诺, 傅振, 郭子腾 (2019) 基于高通量测序技术的不同年代公园绿地土壤细菌多样性. 微生物学通报, 46, 65-74.] | |
[51] |
Zheng JF, Chen JH, Pan GX, Wang GM, Liu XY, Zhang XH, Li LQ, Bian RJ, Cheng K, Zheng JW (2017) A long-term hybrid poplar plantation on cropland reduces soil organic carbon mineralization and shifts microbial community abundance and composition. Applied Soil Ecology, 111, 94-104.
DOI URL |
[1] | 段晓敏, 李佳佳, 李靖宇, 李艳楠, 袁存霞, 王英娜, 刘建利. 腾格里沙漠东南缘藓结皮植物-土壤连续体不同粒径土壤微生物群落多样性[J]. 生物多样性, 2023, 31(9): 23131-. |
[2] | 张雅丽, 张丙昌, 赵康, 李凯凯, 刘燕晋. 毛乌素沙地不同类型生物结皮细菌群落差异及其驱动因子[J]. 生物多样性, 2023, 31(8): 23027-. |
[3] | 毛莹儿, 周秀梅, 王楠, 李秀秀, 尤育克, 白尚斌. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 22659-. |
[4] | 康佳鹏, 韩路, 冯春晖, 王海珍. 塔里木荒漠河岸林不同生境群落物种多度分布格局[J]. 生物多样性, 2021, 29(7): 875-886. |
[5] | 任丽娟, 何聃, 邢鹏, 王毓菁, 吴庆龙. 湖泊水体细菌多样性及其生态功能研究进展[J]. 生物多样性, 2013, 21(4): 421-432. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn