Biodiversity Science ›› 2017, Vol. 25 ›› Issue (8): 864-873.doi: 10.17520/biods.2017069

• Reviews • Previous Article     Next Article

Methods of wind pollination

Yaru Zhu, Yanbing Gong*()   

  1. State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072
  • Received:2017-03-06 Accepted:2017-05-04 Online:2017-08-31
  • Gong Yanbing

The transfer of pollen in most seed plants relies on diverse pollination vectors. In comparison with animal pollination (zoophily), wind pollination (anemophily) has long been regarded as an inefficient mode and thus has received relatively little attention. However, the majority of gymnosperm species and over 10% of angiosperm species are wind pollinated, and the evolution of wind pollination from insect-pollinated ancestors has occurred at least 65 times in angiosperms. Furthermore, ambophily, a combination of wind and insect pollination, is also reported frequently. More refined methods are thus seriously needed to explore the existence and mechanisms of wind pollination in diverse ecosystems. In this paper, we explore the scope of anemophily research by describing the species and habitat diversities of wind-pollinated plants. In field experiments, we recommend using pollen traps (sticky slides or airborne particle samplers) to quantify airborne pollen, and conducting pollinator exclusion, bagging, and emasculation treatments to explore the reproductive contribution of anemophily and the possibilities of zoophily, autogamy, and apomixis. In constrained field conditions, researchers can bring relevant plant tissues back to the laboratory for experiments examining aerodynamics, i.e., measuring the settling velocity of pollen using stroboscopic photography or drop towers, calculating the pollination efficiency using wind tunnels, and evaluating the aerodynamics based on computer models in different simulated conditions. Furthermore, the abiotic and biotic factors (wind pollination syndromes) associated with anemophily should also be studied to explore the causes as well as the ecological and evolutionary consequences of wind pollination. The above methods cannot substitute for one another, as researchers should use them as a comprehensive unit when possible to reveal the details and mechanisms of wind pollination.

Key words: wind pollination, seed plants, pollen, field methods, aerodynamics

Table 1

Key factors associated with wind vs. animal pollination"

风媒传粉 Wind pollination 动物传粉 Animal pollination
非生物因素 Abiotic factors
分布 Distribution 温带 Temperate 热带或温带 Tropical or temperate
最佳风速 Optimum wind speed 低至中等 Low to moderate 零至低 Zero to low
降雨 Precipitation 不频繁 Infrequent 不频繁至频繁 Infrequent to common
湿度 Humidity 低 Low 中至高 Medium to high
生物因素 Biotic factors
周围植被 Surrounding vegetation 开阔 Open 开阔至郁闭 Open to closed
同种密度 Conspecific density 中至高 Moderate to high 低至高 Low to high
开花一致性 Flowering consistency 同步 Synchronous 不同步 Less synchronous
开花数量 Flower number 多 Many 少 A few
花位置 Flower position 离叶较远 Held away from vegetation 无规律 Variable
花类型 Flower type 单性 Unisexual 两性 Hermaphrodite
花被 Perianth 缺失或减小 Absent or reduced 显眼 Showy
花颜色 Floral colour 绿或白 Greenish or whitish 艳丽 Constrasting
花气味 Floral scent 无或退化 Absent or reduced 常有 Often present
蜜腺 Nectaries 缺失或减小 Absent or reduced 具备 Present
柱头 Stigmas 羽状 Feathery 简单 Simple
单花胚珠数 Ovules per flower 一或少 One or few 多 Many
花粉量 Pollen grains number 多 Many 少 Few
花粉大小 Pollen size 变化较小, 一般10-50 μm
Less variable, often 10-50 μm
变化较大, 一般 >60 μm
Highly variable, often >60 μm
花粉黏性 Pollen viscosity 干 Dry 黏 Viscid
花粉表面纹饰 Pollen ornamentation 光滑, 花粉鞘缺失或退化
Smooth with reduced/absent pollenkitt
Often elaborate with pollenkitt

Fig. 1

Technical routes to test wind pollination by pollinator exclusion and pollination treatments. + indicates seed set > 0, - indicates seed set = 0."

[1] Ackerman JD (2000) Abiotic pollen and pollination: ecological, functional, and evolutionary perspectives. Plant Systematics and Evolution, 222, 167-185.
[2] Ackerman JD, Kevan PG (2005) Abiotic pollination. In: Practical Pollination Biology (eds Dafni A, Kevan PG, Husband BC), pp. 435-480. Enviroquest Ltd., Cambridge.
[3] Baker JD, Cruden RW (1991) Thrips-mediated self-pollination of two facultatively xenogamous wetland species. American Journal of Botany, 78, 959-963.
[4] Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annual Review of Ecology and Systematics, 21, 399-422.
[5] Bickel AM, Freeman DC (1993) Effects of pollen vector and plant geometry on floral sex ratio in monoecious plants. American Midland Naturalist, 130, 239-247.
[6] Bolinder K, Niklas KJ, Rydin C (2015) Aerodynamics and pollen ultrastructure in Ephedra. American Journal of Botany, 102, 457-470.
[7] Borrell JS (2012) Rapid assessment protocol for pollen settling velocity: implications for habitat fragmentation. Bioscience Horizons, 5, 1-9.
[8] Chen XY (2004) Mating systems. In: Plant Life-History Evolution and Reproductive Ecology (ed. Zhang DY), pp. 258-279. Science Press, Beijing. (in Chinese)
[陈小勇 (2004) 交配系统. 见: 植物生活史进化与繁殖生态学 (张大勇主编), 258-279页. 科学出版社, 北京.]
[9] Cox PA (1991) Abiotic pollination: an evolutionary escape for animal-pollinated angiosperms. Philosophical Transactions of the Royal Society B: Biological Sciences, 333, 217-224.
[10] Cresswell JE, Henning K, Pennel C, Lahoubi M, Patrick MA, Young PG, Tabor GR (2007) Conifer ovulate cones accumulate pollen principally by simple impaction. Proceedings of the National Academy of Sciences, USA, 104, 18141-18144.
[11] Cresswell JE, Krick J, Patrick MA, Lahoubi M (2010) The aerodynamics and efficiency of wind pollination in grasses. Functional Ecology, 24, 706-713.
[12] Cui DL, Man XL, Ma YX, Zhang YS (2008) Study on pollination ecology of Paris verticillata M.-Bieb. Acta Botanica Boreali-Occidentalia Sinica, 28, 298-302. (in Chinese with English abstract)
[崔大练, 满秀玲, 马玉心, 张玉生 (2008) 北重楼传粉生态学研究. 西北植物学报, 28, 298-302.]
[13] Culley TM, Weller SG, Sakai AK (2002) The evolution of wind pollination in angiosperms. Trends in Ecology & Evolution, 17, 361-369.
[14] Dafni A, Dukas R (1986) Insect and wind pollination in Urginea maritima (Liliaceae). Plant Systematics and Evolution, 154, 1-10.
[15] Darwin C (1876) The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. John Murray, London.
[16] Di-Giovanni F, Kevan PG, Nasr ME (1995) The variability in settling velocities of some pollen and spores. Grana, 34, 39-44.
[17] Dodd ME, Silvertown J, Chase MW (1999) Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution, 53, 732-744.
[18] Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G (2007) Time after time: flowering phenology and biotic interactions. Trends in Ecology & Evolution, 22, 432-439.
[19] Faegri K, van der Pilj L(1979) The Principles of Pollination Ecology, 3rd edn. Pergamon Press, Oxford.
[20] Fang Q, Chen YZ, Huang SQ (2012) Generalist passerine pollination of a winter-flowering fruit tree in central China. Annals of Botany, 109, 379-384.
[21] Forster M, Flenley JR (1993) Pollen purification and fractionation by equilibrium density gradient centrifugation. Palynology, 17, 137-155.
[22] Frenz DA (1999) Comparing pollen and spore counts collected with the Rotorod Sampler and Burkard spore trap. Annals of Allergy, Asthma & Immunology, 83, 341-349.
[23] Friedman J (2011) Gone with the wind: understanding evolutionary transitions between wind and animal pollination in the angiosperms. New Phytologist, 191, 911-913.
[24] Friedman J, Barrett SCH (2009) Wind of change: new insights on the ecology and evolution of pollination and mating in wind-pollinated plants. Annals of Botany, 103, 1515-1527.
[25] Friedman J, Harder LD (2004) Inflorescence architecture and wind pollination in six grass species. Functional Ecology, 18, 851-860.
[26] Gong YB, Huang SQ (2007) On methodology of foraging behavior of pollinating insects. Biodiversity Science, 15, 576-583. (in Chinese with English abstract)
[龚燕兵, 黄双全 (2007) 传粉昆虫行为的研究方法探讨. 生物多样性, 15, 576-583.]
[27] Gong YB, Yang M, Vamosi JC, Yang HM, Mu WX, Li JK, Wan T (2016) Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales). Plant Species Biology, 31, 272-279.
[28] Guo YH (1994) Pollination biology and the evolution of plants. In: Plant Evolutionary Biology (eds Chen JK, Yang J), pp. 232-280. Wuhan University Press, Wuhan. (in Chinese)
[郭友好 (1994) 传粉生物学与植物的进化. 见: 植物进化生物学 (陈家宽, 杨继主编), 232-280页. 武汉大学出版社, 武汉.]
[29] Hegland SJ, Nielsen A, Lázaro A, Bjerknes AL, Totland Ø (2009) How does climate warming affect plant-pollinator interactions? Ecology Letters, 12, 184-195.
[30] Hirose Y, Osada K (2016) Terminal settling velocity and physical properties of pollen grains in still air. Aerobiologia, 32, 385-394.
[31] Huang SQ (2012) Pollination biology in China in the 21st century: getting a good start. Biodiversity Science, 20, 239-240. (in Chinese)
[黄双全 (2012) 二十一世纪中国传粉生物学的研究: 良好的开端. 生物多样性, 20, 239-240.]
[32] Huang SQ, Guo YH (2000) Advances in pollination biology. Chinese Science Bulletin, 45, 225-237. (in Chinese)
[黄双全, 郭友好 (2000) 传粉生物学的研究进展. 科学通报, 45, 225-237.]
[33] Huang SQ, Xiong YZ, Barrett SCH (2013) Experimental evidence of insect pollination in Juncaceae, a primarily wind-pollinated family. International Journal of Plant Sciences, 174, 1219-1228.
[34] Ickert-Bond SM, Renner SS (2016) The Gnetales: recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times. Journal of Systematics and Evolution, 54, 1-16.
[35] Jin B, Zhang L, Lu Y, Wang D, Jiang XX, Zhang M, Wang L (2012) The mechanism of pollination drop withdrawal in Ginkgo biloba L. BMC Plant Biology, 12, 59.
[36] Kato M, Inoue T (1994) Origin of insect pollination. Nature, 368, 195.
[37] Kearns CA, Inouye DW (1993) Techniques for Pollination Biologists. University Press of Colorado, Niwot.
[38] Kono M, Tobe H (2007) Is Cycas revoluta (Cycadaceae) wind- or insect-pollinated? American Journal of Botany, 94, 847-855.
[39] Linder HP (1998) Morphology and the evolution of wind pollination. In: Reproductive Biology in Systematics, Conservation and Economic Botany (eds Owens SJ, Rudall PJ), pp. 123-135. Royal Botanic Gardens, Kew.
[40] Lu XW, Ma RJ, Sun K (2008) Determination of the wind pollination distances and flowering characteristics of Hippophae rhamnoides L. ssp. sinensis Rousi (Elaeagnaceae). Acta Ecologica Sinica, 28, 2518-2525. (in Chinese with English abstract)
[鲁先文, 马瑞君, 孙坤 (2008) 中国沙棘(Hippophae rhamnoides L. ssp. sinensis Rousi)的开花特性及风媒传粉距离的检测. 生态学报, 28, 2518-2525.]
[41] McDonald JE (1962) Collection and washout of airborne pollens and spores by raindrops. Science, 135, 435-437.
[42] Molina RT, Palacios IS, RodrÍguez AFM, Muñoz JT, Corchero AM (2001) Environmental factors affecting airborne pollen concentration in anemophilous species of Plantago. Annals of Botany, 87, 1-8.
[43] Niklas KJ (1984) The motion of windborne pollen grains around conifer ovulate cones: implications on wind pollination. American Journal of Botany, 71, 356-374.
[44] Niklas KJ (1985) The aerodynamics of wind pollination. The Botanical Review, 51, 328-386.
[45] Niklas KJ (1987) Pollen capture and wind-induced movement of compact and diffuse grass panicles: implications for pollination efficiency. American Journal of Botany, 74, 74-89.
[46] Niklas KJ (2015) A biophysical perspective on the pollination biology of Ephedra nevadensis and E. trifurca. The Botanical Review, 81, 28-41.
[47] Niklas KJ, Buchmann SL (1987) Aerodynamics of pollen capture in two sympatric Ephedra species. Evolution, 41, 104-123.
[48] Niklas KJ, Kerchner V (1986) Aerodynamics of Ephedra trifurca. II. Computer modelling of pollination efficiencies. Journal of Mathematical Biology, 24, 1-24.
[49] Niklas KJ, Spatz HC (2012) Plant Physics. University of Chicago Press, Chicago.
[50] Ollerton J, Erenler H, Edwards M, Crockett R (2014) Extinctions of aculeate pollinators in Britain and the role of large-scale agricultural changes. Science, 346, 1360-1362.
[51] Owens JN, Takaso T, Runions CJ (1998) Pollination in conifers. Trends in Plant Science, 3, 479-485.
[52] Peng DL, Zhang ZQ, Niu Y, Yang Y, Song B, Sun H, Li ZM (2012) Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 20, 286-299. (in Chinese with English abstract)
[彭德力, 张志强, 牛洋, 杨扬, 宋波, 孙航, 李志敏 (2012) 高山植物繁殖策略的研究进展. 生物多样性, 20, 286-299.]
[53] Regal PJ (1982) Pollination by wind and animals: ecology of geographic patterns. Annual Review of Ecology and Systematics, 13, 497-524.
[54] Sacchi CF, Price PW (1988) Pollination of the arroyo willow, Salix lasiolepis: role of insects and wind. American Journal of Botany, 75, 1387-1393.
[55] Tekleva M (2016) Pollen morphology and ultrastructure of several Gnetum species: an electron microscopic study. Plant Systematics and Evolution, 302, 291-303.
[56] Vamosi JC, Knight TM, Steets JA, Mazer SJ, Burd M, Ashman TL (2006) Pollination decays in biodiversity hotspots. Proceedings of the National Academy of Sciences, USA, 103, 956-961.
[57] Wang LL, Zhang C, Yang ML, Zhang GP, Zhang ZQ, Yang YP, Duan YW (2016) Intensified wind pollination mediated by pollen dimorphism after range expansion in an ambophilous biennial Aconitum gymnandrum. Ecology and Evolution, 7, 541-549.
[58] Wang Q, Li CL, Yang SY, Huang R, Chen FL (1997) Pollination biology of Cycas panzhihuaensis L. Zhou et S. Y. Yang. Acta Botanica Sinica, 39, 156-163. (in Chinese with English abstract)
[王乾, 李朝銮, 杨思源, 黄荣, 陈发林 (1997) 攀枝花苏铁传粉生物学研究. 植物学报, 39, 156-163.]
[59] Wang XQ, Ran JH (2014) Evolution and biogeography of gymnosperms. Molecular Phylogenetics and Evolution, 75, 24-40.
[60] Wetschnig W, Depisch B (1999) Pollination biology of Welwitschia mirabilis HOOK. f. (Welwitschiaceae, Gnetopsida). Phyton, 39, 167-183.
[61] Whitehead DR (1969) Wind pollination in the angiosperms: evolutionary and environmental considerations. Evolution, 23, 28-35.
[62] Wodehouse RP (1935) Pollen Grains: Their Structure, Identification and Significance in Science and Medicine. McGraw- Hill, New York.
[63] Zhang DY (2004) Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese)
[张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.]
[64] Zhu JY, Zhang LF, Shen P, Ren BQ, Liang Y, Chen ZD (2014) Wind pollination characteristics of styles in Betulaceae. Chinese Bulletin of Botany, 49, 524-538. (in Chinese with English abstract)
[朱俊义, 张力凡, 沈鹏, 任保青, 梁宇, 陈之端 (2014) 桦木科植物花柱适应风媒传粉的特征. 植物学报, 49, 524-538.]
[1] Tang Min, Zou Yi, Su Qinzhi, Zhou Xin. (2019) A new perspective on landscape impact in bee populations: Considering the bee gut microbiome . Biodiv Sci, 27(5): 516-525.
[2] Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. (2019) Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators . Biodiv Sci, 27(3): 306-313.
[3] Wang Xiaoyue,Zhu Xinxin,Yang Juan,Liu Yunjing,Tang Xiaoxin. (2019) Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume) . Biodiv Sci, 27(2): 159-167.
[4] Yang Hao, Liu Chen, Wang Zhifei, Hu Xiuli, Wang Tai. (2019) Advances in the Regulatory Mechanisms of Pollen Response to Heat Stress in Crops . Chin Bull Bot, 54(2): 157-167.
[5] Liu Wei, Tong Yong’ao, Bai Jie. (2018) Bioinformatics Analysis of tRNA-derived Fragments in Rice Male Gametophyte Development . Chin Bull Bot, 53(5): 625-633.
[6] Dandan Lang,Min Tang,Xin Zhou. (2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective . Biodiv Sci, 26(5): 445-456.
[7] Jannathan Mamut,Xiaojun Cheng,Dunyan Tan. (2018) Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb . Biodiv Sci, 26(5): 498-509.
[8] Hua Zhu. (2017) Families and genera of seed plants in relation to biogeographical origin on Hainan Island . Biodiv Sci, 25(8): 816-822.
[9] Li WANG, Yun ZHANG, Zhao-Chen KONG, Zhen-Jing YANG, Shun YAN, Yue-Cong LI. (2017) Preliminary study on pollen distribution in the surface soil of the Turpan region in the southern slope of Tianshan Mountains, Xinjiang, China . Chin J Plan Ecolo, 41(7): 779-786.
[10] Xiaolong Zhang, Lihua Yang, Ming Kang. (2017) Post-pollination reproductive isolation of sympatric populations of Primulina eburnea and P. mabaensis (Gesneriaceae) . Biodiv Sci, 25(6): 615-620.
[11] Ying Sun, Lei Wang, Xue Yang, Axiang Wang, Miao He. (2017) Research on the Double Fertilization of Adonis amurensis . Chin Bull Bot, 52(4): 480-486.
[12] Jia Ledong, Li Shimeng, Xu Daixiang, Qu Cunmin, Li Jiana, Wang Rui. (2016) Bioinformatics Analysis of BnMYB80 Genes in Brassica napus . Chin Bull Bot, 51(5): 620-630.
[13] Rongqian Zheng, Zhenzhen Hou, Aiqin Zhang. (2016) The Schedule of Pollen Presentation and Pollination Adaption in an Early Spring Ephemeral Plant Gagea nigra . Chin Bull Bot, 51(5): 594-600.
[14] Xinwen Zhao. (2016) Introduction of Exogenous DNA of Populus alba into Sect. Aigeiros via Pollen-tube Pathway . Chin Bull Bot, 51(4): 533-541.
[15] Xiongbo Peng, Meng-Xiang Sun. (2016) Chinese Scientists Made Breakthrough Progresses in Studies on Signaling Between Male and Female Gametophytes During Fertilization in Plants . Chin Bull Bot, 51(2): 145-147.
Full text