Biodiv Sci ›› 2017, Vol. 25 ›› Issue (6): 615-620. DOI: 10.17520/biods.2017029
• Original Papers • Previous Articles Next Articles
Xiaolong Zhang1, Lihua Yang1,2, Ming Kang1,*()
Received:
2017-02-01
Accepted:
2017-04-06
Online:
2017-06-20
Published:
2017-07-10
Contact:
Kang Ming
Xiaolong Zhang, Lihua Yang, Ming Kang. Post-pollination reproductive isolation of sympatric populations of Primulina eburnea and P. mabaensis (Gesneriaceae)[J]. Biodiv Sci, 2017, 25(6): 615-620.
Fig. 1 Plant, flower and leaf of Primulina eburnea, P. mabaensis and their hybrid. (A) Plants of P. eburnea and P. mabaensis in field; (B) Leaves of P. eburnea (right), hybrid (middle) and P. mabaensis (left); (C) Flower of P. mabaensis showing anthers; (D) Flower of P. eburnea showing anthers; (E) Flowers of P. eburnea; (F) Flowers of hybrid; (G) Flowers of P. mabaensis.
引物名称 Primer | 正向引物 Forward primer | 反向引物 Reverse primer | 扩增片段长度多态性 Amplified fragment length polymorphism (bp) | |
---|---|---|---|---|
牛耳朵 Primulina eburnea | 马坝报春苣苔 P. mabaensis | |||
325 | AACGGAGAACACCCCATTTA | TCGCCTTATGAAGGTTTTGG | 249 | 246 |
415 | AACCCATCGTTTCACTCCAC | CTCGGAATCAACTCCTAGCG | 289 | 299 |
1143 | CGGAGTCAGCTTTGCACATA | CTCTCTCCTACACACGAGCG | 222 | 219 |
Table 1 SSR primer information and amplified fragment length polymorphism
引物名称 Primer | 正向引物 Forward primer | 反向引物 Reverse primer | 扩增片段长度多态性 Amplified fragment length polymorphism (bp) | |
---|---|---|---|---|
牛耳朵 Primulina eburnea | 马坝报春苣苔 P. mabaensis | |||
325 | AACGGAGAACACCCCATTTA | TCGCCTTATGAAGGTTTTGG | 249 | 246 |
415 | AACCCATCGTTTCACTCCAC | CTCGGAATCAACTCCTAGCG | 289 | 299 |
1143 | CGGAGTCAGCTTTGCACATA | CTCTCTCCTACACACGAGCG | 222 | 219 |
隔离机制 Isolation barriers | 计算方程 Equation for calculating reproductive isolation (RI) |
---|---|
花粉竞争 | 1-2×[异源花粉授粉率/(异源花粉授粉率+同源花粉授粉率)] |
Pollen competition | 1-2×[interspecific pollination ratio/(interspecific pollination rate + intraspecific pollination rate)] |
坐果率 | 1-2×[杂交坐果率/(杂交坐果率+自交坐果率)] |
Fruit set | 1-2×[interspecific fruit set/(interspecific fruit set + selfing fruit set)] |
种子重量 | 1-2×[杂交种子重量/(杂交种子重量+自交种子重量)] |
Seed mass | 1-2×[interspecific seed mass of per fruit /(interspecific seed mass of per fruit + selfing seed mass of per fruit) ] |
种子萌发率 | 1-2×[杂交种子萌发率/(杂交种子萌发率+自交种子萌发率)] |
Seed germination rate | 1-2×[interspecific seed germination/(interspecific seed germination + selfing seed germination)] |
花粉活力 | 1-2×[杂交F1代花粉活力/(杂交F1代花粉活力+亲本花粉活力)] |
Pollen viability | 1-2×[interspecific F1 pollen viability/(interspecific F1 pollen viability + parent pollen viability)] |
Table 2 Equations used to quantify components of reproductive isolation. Details of how the variables were constructed are given in the text.
隔离机制 Isolation barriers | 计算方程 Equation for calculating reproductive isolation (RI) |
---|---|
花粉竞争 | 1-2×[异源花粉授粉率/(异源花粉授粉率+同源花粉授粉率)] |
Pollen competition | 1-2×[interspecific pollination ratio/(interspecific pollination rate + intraspecific pollination rate)] |
坐果率 | 1-2×[杂交坐果率/(杂交坐果率+自交坐果率)] |
Fruit set | 1-2×[interspecific fruit set/(interspecific fruit set + selfing fruit set)] |
种子重量 | 1-2×[杂交种子重量/(杂交种子重量+自交种子重量)] |
Seed mass | 1-2×[interspecific seed mass of per fruit /(interspecific seed mass of per fruit + selfing seed mass of per fruit) ] |
种子萌发率 | 1-2×[杂交种子萌发率/(杂交种子萌发率+自交种子萌发率)] |
Seed germination rate | 1-2×[interspecific seed germination/(interspecific seed germination + selfing seed germination)] |
花粉活力 | 1-2×[杂交F1代花粉活力/(杂交F1代花粉活力+亲本花粉活力)] |
Pollen viability | 1-2×[interspecific F1 pollen viability/(interspecific F1 pollen viability + parent pollen viability)] |
隔离机制 Isolation barriers | 牛耳朵 P. eburnea | 马坝报春苣苔 P. mabaensis |
---|---|---|
花粉竞争 Pollen competition | -0.321 | -0.026 |
坐果率 Fruit set | 0.058 | 0.003 |
种子重量 Seed mass | 0.157 | 0.019 |
种子萌发率 Seed germination rate | -0.068 | -0.199 |
花粉活力 Pollen viability | 0.264 | 0.333 |
授粉后隔离总强度 RI | 0.090 | 0.130 |
Table 3 The strength of post-pollination reproductive isolations between Primulina eburnea and P. mabaensis.
隔离机制 Isolation barriers | 牛耳朵 P. eburnea | 马坝报春苣苔 P. mabaensis |
---|---|---|
花粉竞争 Pollen competition | -0.321 | -0.026 |
坐果率 Fruit set | 0.058 | 0.003 |
种子重量 Seed mass | 0.157 | 0.019 |
种子萌发率 Seed germination rate | -0.068 | -0.199 |
花粉活力 Pollen viability | 0.264 | 0.333 |
授粉后隔离总强度 RI | 0.090 | 0.130 |
[1] | Ai B, Gao Y, Zhong XL, Tao JJ, Kang M, Huang HW (2015) Comparative transcriptome resources of eleven Primulina species, a group of ‘stone plants’ from a biodiversity hot spot. Molecular Ecology Resources, 15, 619-632. |
[2] | Baack E, Melo MC, Rieseberg LH, Ortiz-Barrientos D (2015) The origins of reproductive isolation in plants. New Phytologist, 207, 968-984. |
[3] | Brys R, Vanden Broeck A, Mergeay J, Jacquemyn H (2014) The contribution of mating system variation to reproductive isolation in two closely related Centaurium species (Gentianaceae) with a generalized ?ower morphology. Evolution, 68, 1281-1293. |
[4] | Brys R, Cauwenberghe JV, Jacquemyn H (2016) The importance of autonomous selfing in preventing hybridization in three closely related plant species. Journal of Ecology, 104, 601-610. |
[5] | Chung KF, Huang HY, Peng JI, Xu WB (2013) Primulina mabaensis (Gesneriaceae), a new species from a limestone cave of northern Guangdong, China. Phytotaxa, 92, 40-48. |
[6] | Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, MA. |
[7] | Dafni A (1992) Pollination Biology. Oxford University Press New York. |
[8] | Gao Y, Ai B, Kong HH, Kang M, Huang HW (2015) Geographical pattern of isolation and diversification in karst habitat islands: a case study in the Primulina eburnea complex. Journal of Biogeography, 42, 2131-2144. |
[9] | Huang SQ, Shi XQ (2013) Floral isolation in Pedicularis: how do congeners with shared pollinators minimize reproductive interference? New Phytologist, 199, 858-865. |
[10] | Husband BC, Schemske DW, Burton TL, Goodwillie C (2002) Pollen competition as a unilateral reproductive barrier between sympatric diploid and tetraploid Chamerion angustifolium. Proceedings of the Royal Society B, 269, 2565-2571. |
[11] | Kang M, Tao JJ, Wang J, Ren C, Qi QW, Xiang QY, Huang HW (2014) Adaptive and nonadaptive genome size evolution in karst endemic flora of China. New Phytologist, 202, 1371-1381. |
[12] | Kay KM (2006) Reproductive isolation between two closely related humming bird pollinated neotropical gingers. Evolution, 60, 538-552. |
[13] | Klips RA (1999) Pollen competition as a reproductive isolation mechanism between two sympatric Hibiscus species (Malvaceae). American Journal of Botany, 86, 269-272. |
[14] | Liu RR, Pan B, Zhou TJ, Liao JP (2012) Cytological studies on Primulina taxa (Gesneriaceae) from limestone karsts in Guangxi Province, China. Caryologia, 65, 295-303. |
[15] | Luo ZL, Duan TT, Yuan S, Chen S, Bai XF, Zhang DX (2015) Reproductive isolation between sympatric sister species, Mussaenda kwangtungensis and M. pubescens var. alba. Journal of Integrative Plant Biology, 57, 859-870. |
[16] | Martin NH, Willis JH (2007) Ecological divergence associated with mating system causes nearly complete reproductive isolation between sympatric Mimulus species. Evolution, 61, 68-82. |
[17] | Möller M, Wei YG, Wen F, Clark JL, Weber A (2016) You win some you lose some: updated generic delineations and classification of Gesneriaceae—implications for the family in China.Guihaia, 36, 44-60. |
[18] | Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annual Review of Ecology, Evolution and Systematics, 27, 83-109. |
[19] | Snow AA, Spira TP (1996) Pollen-tube competition and male fitness in Hibiscus moscheutos. Evolution, 50, 1866-1870. |
[20] | Sobel JM, Chen GF (2014) Unification of methods for estimating the strength of reproductive isolation. Evolution, 68, 1511-1522. |
[21] | Soltis PS, Soltis DE (2009) The role of hybridization in plant speciation. Annual Review of Plant Biology, 60, 561-588. |
[22] | Wang WT, Pan KY, Li ZY, Weitzman AL, Skog LE (1998) Gesneriaceae. In: Flora of China (eds Wu ZY, Raven PH), pp. 244-401. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis. |
[23] | Wolf DE, Takebayashi N, Riesebrg LH (2001) Predicting the risk of extinction through hybridization. Conservation Biology, 15, 1039-1053. |
[24] | Xu SQ, Schlüter PM, Scopece G, Breitkopf H, Gross K, Cozzolino S, Schiestl FP (2011) Floral isolation is the main reproductive barrier among closely related sexually deceptive orchids. Evolution, 65, 2606-2620. |
[1] | Jiajia Pu, Pingjun Yang, Yang Dai, Kexin Tao, Lei Gao, Yuzhou Du, Jun Cao, Xiaoping Yu, Qianqian Yang. Species identification and population genetic structure of non-native apple snails (Ampullariidea: Pomacea) in the lower reaches of the Yangtze River [J]. Biodiv Sci, 2023, 31(3): 22346-. |
[2] | Yuanyuan Li, Chaonan Liu, Rong Wang, Shuixing Luo, Shouqian Nong, Jingwen Wang, Xiaoyong Chen. Applications of molecular markers in conserving endangered species [J]. Biodiv Sci, 2020, 28(3): 367-375. |
[3] | Huang Jianfeng,Xu Rui,Peng Yanqiong. Research progress of interspecific hybridization in genus Ficus [J]. Biodiv Sci, 2019, 27(4): 457-467. |
[4] | Zhuang Ping. Progress on the fertility of Rhododendron [J]. Biodiv Sci, 2019, 27(3): 327-338. |
[5] | Morigengaowa , Hui Shang, Baodong Liu, Ming Kang, Yuehong Yan. One or more species? GBS sequencing and morphological traits evidence reveal species diversification of Sphaeropteris brunoniana in China [J]. Biodiv Sci, 2019, 27(11): 1196-1204. |
[6] | Siqi Liang, Xianchun Zhang, Ran Wei. Integrative taxonomy resolved species delimitation in a fern complex: A case study of the Asplenium coenobiale complex [J]. Biodiv Sci, 2019, 27(11): 1205-1220. |
[7] | Chenyang Xue, Yufeng Xu, Bo Qu. Comparison of morphology, photosynthesis, and growth among Xanthium strumarium, X. sibiricum and their hybrid under different nitrogen levels [J]. Biodiv Sci, 2018, 26(6): 554-563. |
[8] | Yanping Xie, Jianli Zhao, Xingfu Zhu, Li Li, Qingjun Li. Asymmetric hybridization of Primula secundiflora and P. poissonii in three sympatric populations [J]. Biodiv Sci, 2017, 25(6): 647-653. |
[9] | Yukun Wei, Yanbo Huang, Guibin Li. Reproductive isolation in sympatric Salvia species sharing a sole pollinator [J]. Biodiv Sci, 2017, 25(6): 608-614. |
[10] | Shuoli Zheng, Xiaoling Tian, Chengling Huang, Lingjun Wang, Yuan Feng, Jingli Zhang. Molecular and morphological evidence for natural hybridization between Rhododendron decorum and R. delavayi (Ericaceae) [J]. Biodiv Sci, 2017, 25(6): 627-637. |
[11] | Daike Tian, Chun Li, Yan Xiao, Naifeng Fu, Yi Tong, Ruijuan Wu. Occurrence and characteristics of natural hybridization in Begonia in China [J]. Biodiv Sci, 2017, 25(6): 654-674. |
[12] | Linfeng Li, Bao Liu. The roles of epigenetic variation in plant hybridization and polyploidization [J]. Biodiv Sci, 2017, 25(6): 600-607. |
[13] | Yuguo Wang. Natural hybridization and speciation [J]. Biodiv Sci, 2017, 25(6): 565-576. |
[14] | Qiujie Zhou, Yacheng Cai, Wei Lun Ng, Wei Wu, Seping Dai, Feng Wang, Renchao Zhou. Molecular evidence for natural hybridization between two Melastoma species endemic to Hainan and their widespread congeners [J]. Biodiv Sci, 2017, 25(6): 638-646. |
[15] | Hui Shang, Yuehong Yan. Natural hybridization and biodiversity conservation [J]. Biodiv Sci, 2017, 25(6): 683-688. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn