Biodiversity Science ›› 2016, Vol. 24 ›› Issue (8): 932-939.doi: 10.17520/biods.2016096

• Orginal Article • Previous Article     Next Article

Application of metabarcoding technology in studies of fungal diversity

Yun Cao1, 2, Wenjing Shen2, Lian Chen3, Feilong Hu2, Lei Zhou4, Haigen Xu2, *()   

  1. 1 School of Life Sciences, Nanjing University, Nanjing 210093
    2 State Environmental Protection Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Nanjing 210042
    3 College of Life Sciences, Chemistry and Chemical Engineering, Jiangsu Second Normal University, Nanjing 210013
    4 College of Forestry, Nanjing Forestry University, Nanjing 210037
  • Received:2016-04-01 Accepted:2016-05-27 Online:2016-09-02
  • Xu Haigen

Fungal diversity is threatened by climate change, land-use change, and environmental pollution, and requires urgent conservation action. Construction of the fungal species database is an important prerequisite for the study and conservation of fungal diversity. Recently developed DNA barcoding and metabarcoding technologies can provide accurate, rapid, and highly efficient identification on a large scale, and to a large extent compensate for the defects of traditional identification methods. In this paper, we review the application of metabarcoding in fungal species diversity assessment, the study of mechanisms underlying fungal diversity, and the reconstruction of fungal palaeoecology. We emphasize that the application of metabarcoding technology in fungal diversity studies is still in the primary phase, and greater efforts are needed in the construction of reliable reference databases, the optimization of experimental procedures, and updates of bioinformatics tools. Hence, we suggest enhancing cooperation among fungal taxonomists, ecologists, and computer technicians. They should work together to address problems in fungal diversity studies via metabarcoding, which would provide more sound scientific evidence for fungal diversity conservation on a large scale.

Key words: metabarcoding, DNA barcoding, fungal diversity conservation, species identification, high- throughput sequencing

[1] Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M (2010) PlutoF—a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evolutionary Bioinformatics, 6, 189-196.
[2] Aptroot A, van Geel B (2006) Fungi of the colon of the Yukagir Mammoth and from stratigraphically related permafrost samples. Review of Palaeobotany and Palynology, 141, 225-230.
[3] Arnolds E (2001) The future of fungi in Europe: threats, conservation and management. In: Fungal Conservation: Issues and Solutions (eds Moore D, Nauta MM, Evans SE, Rotheroe M), pp. 64-80. Cambridge University Press, Cambridge.
[4] Bálint M, Schmidt PA, Sharma R, Thines M, Schmitt I (2014) An Illumina metabarcoding pipeline for fungi. Ecology and Evolution, 4, 2642-2653.
[5] Bazzicalupo AL, Bálint M, Schmitt I (2013) Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecology, 6, 102-109.
[6] Begerow D, Nilsson H, Unterseher M, Maier W (2010) Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99-108.
[7] Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H (2010) ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiology, 10, 189.
[8] Bellemain E, Davey ML, Kauserud H, Epp LS, Boessenkool S, Coissac E, Geml J, Edwards M, Willerslev E, Gussarova G (2013) Fungal palaeodiversity revealed using high-throu- ghput metabarcoding of ancient DNA from arctic permafrost. Environmental Microbiology, 15, 1176-1189.
[9] Berbee ML, Taylor JW (2010) Dating the molecular clock in fungi—how close are we? Fungal Biology Reviews, 24, 1-16.
[10] Blaalid R, Kumar S, Nilsson RH, Abarenkov K, Kirk P, Kauserud H (2013) ITS1 versus ITS2 as DNA metabarcodes for fungi. Molecular Ecology Resources, 13, 218-224.
[11] Boessenkool S, Mcglynn G, Epp LS, Taylor D, Pimentel M, Gizaw A, Nemomissa S, Brochmann C, Popp M (2014) Use of ancient sedimentary DNA as a novel conservation tool for high-altitude tropical biodiversity. Conservation Biology, 28, 446-455.
[12] Brasier CM (1996) Low genetic diversity of the Ophiostoma novo-ulmi population in North America. Mycologia, 88, 951-964.
[13] Burgess KS, Fazekas AJ, Kesanakurti PR, Graham SW, Husband BC, Newmaster SG, Percy DM, Hajibabaei M, Barrett SC (2011) Discriminating plant species in a local temperate flora using the rbcL + matK DNA barcode. Methods in Ecology and Evolution, 2, 333-340.
[14] Cannon P (1997) Strategies for rapid assessment of fungal diversity. Biodiversity and Conservation, 6, 669-680.
[15] CBOL Plant Working Group (2009) A DNA barcode for land plants. Proceedings of the National Academy of Sciences, USA, 106, 12794-12797.
[16] Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science, 325, 682-683.
[17] Cordier T, Robin C, Capdevielle X, Fabreguettes O, Desprez-Loustau ML, Vacher C (2012) The composition of phyllosphere fungal assemblages of European beech (Fagus sylvatica) varies significantly along an elevation gradient. New Phytologist, 196, 510-519.
[18] Crous P, Braun U, Schubert K, Groenewald J (2007) Delimiting Cladosporium from morphologically similar genera. Studies in Mycology, 58, 33-56.
[19] Cui X, Hu J, Wang J, Yang J, Lin X (2016) Reclamation negatively influences arbuscular mycorrhizal fungal community structure and diversity in coastal saline-alkaline land in Eastern China as revealed by Illumina sequencing. Applied Soil Ecology, 98, 140-149.
[20] Dannemiller KC, Reeves D, Bibby K, Yamamoto N, Peccia J (2014) Fungal high-throughput taxonomic identification tool for use with next-generation sequencing (FHiTINGS). Journal of Basic Microbiology, 54, 315-321.
[21] Davis OK, Shafer DS (2006) Sporormiella fungal spores, a palynological means of detecting herbivore density. Palaeogeography, Palaeoclimatology, Palaeoecology, 237, 40-50.
[22] Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science, 332, 53-58.
[23] Ferro M, Antonio EA, Souza W, Bacci M (2014) ITScan: a web-based analysis tool for internal transcribed spacer (ITS) sequences. BMC Research Notes, 7, 857.
[24] Foufopoulos J, Kilpatrick AM, Ives AR (2011) Climate change and elevated extinction rates of reptiles from Mediterranean Islands. The American Naturalist, 177, 119.
[25] Geiser DM, Pitt JI, Taylor JW (1998) Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proceedings of the National Academy of Sciences, USA, 95, 388-393.
[26] Geml J, Gravendeel B, van der Gaag KJ, Neilen M, Lammers Y, Raes N, Semenova TA, de Knijff P, Noordeloos ME (2014) The contribution of DNA metabarcoding to fungal conservation: diversity assessment, habitat partitioning and mapping red-listed fungi in protected coastal Salix repens communities in the Netherlands. PLoS ONE, 9, e99852.
[27] Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI, Schonrogge K (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods in Ecology and Evolution, 6, 973-980.
[28] Halme P, Heilmann-Clausen J, Rämä T, Kosonen T, Kunttu P (2012) Monitoring fungal biodiversity—towards an integrated approach. Fungal Ecology, 5, 750-758.
[29] Hawksworth DL (1991) The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycological Research, 95, 641-655.
[30] Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycological Research, 105, 1422-1432.
[31] Hawksworth DL (2012) Global species numbers of fungi: are tropical studies and molecular approaches contributing to a more robust estimate? Biodiversity and Conservation, 21, 2425-2433.
[32] Hebert PD, Cywinska A, Ball SL (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences, 270, 313-321.
[33] Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5, e157.
[34] Ji Y, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters, 16, 1245-1257.
[35] Krishnamurthy PK, Francis RA (2012) A critical review on the utility of DNA barcoding in biodiversity conservation. Biodiversity and Conservation, 21, 1901-1919.
[36] Kumar S, Carlsen T, Mevik BH, Enger P, Blaalid R, Shalchian-Tabrizi K, Kauserud H (2011) CLOTU: an online pipeline for processing and clustering of 454 amplicon reads into OTUs followed by taxonomic annotation. BMC Bioinformatics, 12, 182.
[37] Kunin V, Engelbrektson A, Ochman H, Hugenholtz P (2010) Wrinkles in the rare biosphere: pyrosequencing errors can lead to artificial inflation of diversity estimates. Environmental Microbiology, 12, 118-123.
[38] Li HY, Shen M, Zhou ZP, Li T, Wei YL, Lin LB (2012) Diversity and cold adaptation of endophytic fungi from five dominant plant species collected from the Baima Snow Mountain, Southwest China. Fungal Diversity, 54, 79-86.
[39] Liu LY, Cui HF, Tian G (2013) Application of high throughput sequencing in metagenomics. Chinese Medicinal Biotechnology, 8(3), 196-200 (in Chinese)
[刘莉扬, 崔鸿飞, 田埂 (2013) 高通量测序技术在宏基因组学中的应用. 中国医药生物技术, 8(3), 196-200.]
[40] Lydolph MC, Jacobsen J, Arctander P, Gilbert MTP, Gilichinsky DA, Hansen AJ, Willerslev E, Lange L (2005) Beringian paleoecology inferred from permafrost-preserved fungal DNA. Applied and Environmental Microbiology, 71, 1012-1017.
[41] Lynch MD, Bartram AK, Neufeld JD (2012) Targeted recovery of novel phylogenetic diversity from next-generation sequence data. The ISME Journal, 6, 2067-2077.
[42] Mueller RC, Paula FS, Mirza BS, Rodrigues J, Nüsslein K, Bohannan B (2014) Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest. The ISME Journal, 8, 1548-1550.
[43] Newsham KK, Hopkins DW, Carvalhais LC, Fretwell PT, Rushton SP, O’Donnell AG, Dennis PG (2015) Relationship between soil fungal diversity and temperature in the maritime Antarctic. Nature Climate Change, 6, 182-186.
[44] Nilsson RH, Ryberg M, Abarenkov K, Sjökvist E, Kristiansson E (2009) The ITS region as a target for characterization of fungal communities using emerging sequencing technologies. FEMS Microbiology Letters, 296, 97-101.
[45] Nilsson RH, Ryberg M, Kristiansson E, Abarenkov K, Larsson KH, Kõljalg U (2006) Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE, 1, e59.
[46] Ovaskainen O, Schigel D, Ali-Kovero H, Auvinen P, Paulin L, Nordén B, Nordén J (2013) Combining high-throughput sequencing with fruit body surveys reveals contrasting life-history strategies in fungi. The ISME Journal, 7, 1696-1709.
[47] Ozerskaya S, Kochkina G, Ivanushkina N, Gilichinsky DA (2009) Fungi in permafrost. In: Permafrost Soils (eds Margesin R), pp. 85-95. Springer Verlag, Berlin, Heidelberg.
[48] Rosa LH, Vieira MdLA, Santiago IF, Rosa CA (2010) Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica. FEMS Microbiology Ecology, 73, 178-189.
[49] Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Bolchacova E, Voigt K, Crous PW (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, USA, 109, 6241-6246.
[50] Seifert KA (2009) Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9, 83-89.
[51] Slepecky RA, Starmer WT (2009) Phenotypic plasticity in fungi: a review with observations on Aureobasidium pullulans. Mycologia, 101, 823-832.
[52] Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, Renfurm R, Verkley GJM, Groenewald M, Chaduli D, Lomascolo A, Welti S, Lesage-Meessen L, Favel A, Al-Hatmi AMS, Damm U, Yilmaz N, Houbraken J, Lombard L, Quaedvlieg W, Binder M, Vaas LAI, Vu D, Yurkov A, Begerow D, Roehl O, Guerreiro M, Fonseca A, Samerpitak K, van Diepeningen AD, Dolatabadi S, Moreno LF, Casaregola S, Mallet S, Jacques N, Roscini L, Egidi E, Bizet C, Garcia-Hermoso D, Martín MP, Deng S, Groenewald JZ, Boekhout T, de Beer ZW, Barnes I, Duong TA, Wingfield MJ, de Hoog GS, Crous PW, Lewis CT, Hambleton S, Moussa TAA, Al-Zahrani HS, Almaghrabi OA, Louis-Seize G, Assabgui R, McCormick W, Omer G, Dukik K, Cardinali G, Eberhardt U, de Vries M, Robert V (2015) One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia, 35, 242-263.
[53] Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS ONE, 9, e107783.
[54] Sun X, Guo LD (2012) Endophytic fungal diversity: review of traditional and molecular techniques. Mycology, 3, 65-76.
[55] Taylor TN, Osborn JM (1996) The importance of fungi in shaping the paleoecosystem. Review of Palaeobotany and Palynology, 90, 249-262.
[56] Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, Ruiz LV, Vasco-Palacios AM, Thu PQ, Suija A (2014) Global diversity and geography of soil fungi. Science, 346, 1256688.
[57] Tedersoo L, Nilsson RH, Abarenkov K, Jairus T, Sadam A, Saar I, Bahram M, Bechem E, Chuyong G, Kõljalg U (2010) 454 Pyrosequencing and Sanger sequencing of tropical mycorrhizal fungi provide similar results but reveal substantial methodological biases. New Phytologist, 188, 291-301.
[58] Thuiller W, Broennimann O, Hughes G, Alkemade JRM, Midgley GF, Corsi F (2006) Vulnerability of African mammals to anthropogenic climate change under conservative land transformation assumptions. Global Change Biology, 12, 424-440.
[59] Thuiller W, Lavorel S, Araújo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proceedings of the National Academy of Sciences, USA, 102, 8245-8250.
[60] Turrini A, Giovannetti M (2012) Arbuscular mycorrhizal fungi in national parks, nature reserves and protected areas worldwide: a strategic perspective for their in situ conservation. Mycorrhiza, 22, 81-97.
[61] van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature, 396, 69-72.
[62] van Geel B, Guthrie RD, Altmann JG, Broekens P, Bull ID, Gill FL, Jansen B, Nieman AM, Gravendeel B (2011) Mycological evidence of coprophagy from the feces of an Alaskan Late Glacial mammoth. Quaternary Science Reviews, 30, 2289-2303.
[63] Větrovský T, Kolařík M, Žifčáková L, Zelenka T, Baldrian P (2016) The rpb2 gene represents a viable alternative molecular marker for the analysis of environmental fungal communities. Molecular Ecology Resources, 16, 388-401.
[64] Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267.
[65] White JR, Maddox C, White O, Angiuoli SV, Fricke WF (2013) CloVR-ITS: automated internal transcribed spacer amplicon sequence analysis pipeline for the characterization of fungal microbiota. Microbiome, 1, 6.
[66] Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity conservation. Science, 314, 1261-1265.
[67] Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods in Ecology and Evolution, 3, 613-623.
[68] Zhang T, Yao YF (2015) Endophytic fungal communities associated with vascular plants in the high Arctic zone are highly diverse and host-plant specific. PLoS ONE, 10, e0130051.
[1] Kong Jiaxin, Zhang Zhaochen, Zhang Jian. (2019) Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect . Biodiv Sci, 27(7): 796-812.
[2] Li Meng, Wei Tingting, Shi Boyang, Hao Xiyang, Xu Haigen, Sun Hongying. (2019) Biodiversity monitoring of freshwater benthic macroinvertebrates using environmental DNA . Biodiv Sci, 27(5): 480-490.
[3] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. (2019) Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding . Biodiv Sci, 27(5): 543-556.
[4] Li Hanxi, Huang Xuena, Li Shiguo, Zhan Aibin. (2019) Environmental DNA (eDNA)-metabarcoding-based early monitoring and warning for invasive species in aquatic ecosystems . Biodiv Sci, 27(5): 491-504.
[5] Liu Shanlin. (2019) DNA barcoding and emerging reference construction and data analysis technologies . Biodiv Sci, 27(5): 526-533.
[6] Hu Jianlin,Liu Zhifang,Ci Xiuqin,Li Jie. (2019) Use of DNA Barcoding in Identifying Tropical Trees from Dipterocarpaceae . Chin Bull Bot, 54(3): 350-359.
[7] Dandan Lang,Min Tang,Xin Zhou. (2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective . Biodiv Sci, 26(5): 445-456.
[8] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. (2018) Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding . Biodiv Sci, 26(3): 217-228.
[9] Jinfeng Hao, Xiaohong Zhang, Yusong Wang, Jinlin Liu, Yongchao Zhi, Xinjiang Li. (2017) Diversity investigation and application of DNA barcoding of Acridoidea from Baiyangdian Wetland . Biodiv Sci, 25(4): 409-417.
[10] Xiuqin Ci,Jie Li. (2017) Phylogenetic diversity and its application in floristics and biodiversity conservation . Biodiv Sci, 25(2): 175-181.
[11] Ya’nan Wei, Xiaomei Wang, Pengcheng Yao, Xiaoyong Chen, Hongqing Li. (2017) Comparison of species resolution rates of DNA barcoding for Chinese coastal halo-tolerant plants . Biodiv Sci, 25(10): 1095-1104.
[12] Jing Zhang,Yuan Li,Na Song,Longshan Lin,Tianxiang Gao. (2016) Species identification and phylogenetic relationship of Thryssa species in the coastal waters of China . Biodiv Sci, 24(8): 888-895.
[13] Qian Jin,Fen Chen,Guijie Luo,Weijia Cai,Xu Liu,Hao Wang,Caiqing Yang,Mengdi Hao,Aibing Zhang. (2016) Estimation of species richness of moths (Insecta: Lepidoptera) based on DNA barcoding in Suqian, China . Biodiv Sci, 24(11): 1296-1305.
[14] Haitao Li,Baoxue Zhang,Yang Gao,Xiaojun Shi,Peng Zhou. (2015) DNA barcoding in species identification of seashells: a case study in the ecological monitoring zone of Daya Bay, Guangdong . Biodiv Sci, 23(3): 299-305.
[15] Tai Wang,Yanping Zhang,Lihong Guan,Yanyan Du,Zhongyu Lou,Wenlong Jiao. (2015) Current freshwater fish resources and the application of DNA barcoding in species identification in Gansu Province . Biodiv Sci, 23(3): 306-313.
Full text