Biodiversity Science ›› 2013, Vol. 21 ›› Issue (1): 80-89.doi: 10.3724/SP.J.1003.2013.10132

• Orginal Article • Previous Article     Next Article

Analysis of plant abundance-based association between community species composition and environmental properties

Yiming Xie1, 2, Yue Xu1, 2, Meng Kang1, 2, Enrong Yan1, 2, *()   

  1. 1 Department of Environmental Sciences, East China Normal University, Shanghai 200062
    2 Tiantong National Station of Forest Ecosystem, Chinese National Ecosystem Observation and Research Network, Ningbo, Zhejiang 315114
  • Received:2012-06-20 Accepted:2012-12-05 Online:2013-02-04
  • Yan Enrong E-mail:eryan@des.ecnu.edu.cn

Revealing associations between species composition and environmental characteristics is crucial for understanding species coexistence. In past studies, traditional ecological species groups have been classified subjectively, and the associations between species groups and environment characteristics were not determined quantitatively. In this study, we evaluated environmental relationships of plant species composition among 31 plant communities within different habitats in Tiantong region, Zhejiang Province. Maximum, actual, and relative environmental dependence indices were defined respectively on the basis of plant abundance. We tested the actual association between species composition and environment using a random null hypothesis. The community type-environmental association was confirmed by Pearson correlation between relative environmental dependence index and Mahalanobis distance. The results showed that: (1) the maximum environmental dependence index is an idex of premium community type’s combination from randomization under current conditions and actual environmental dependence, which may be used to indicate preference of species composition to actual habitat conditions. The association between species composition and environmental characteristics may be denoted effectively by the relative environmental dependence index; (2) the relative environmental dependence index did not correlate with most single environmental variables, but significantly correlated with Mahalanobis distance; and (3) if habitat properties were more heterogeneous, species composition-environment association was more unique. These findings provide new evidence for relationships between plant species composition and environment characteristics in the evergreen broad-leaved forests in Tiantong region and an ameliorative reference for how to quantitatively determine species-environmental associations.

Key words: species composition, environmental dependence, stochastic process, ecological species group, community type, Mahalanobis distance

Table 1

Characteristics of selected 31 plots in Tiantong and the surrounding areas, Zhejiang Province"

编号
Code
群落类型
Community types
生境类型
Habitat types
年龄a
Yr
海拔
Altitude (m)
坡度
Slope
坡向
Exposure
群落高度 Height (m) 丰富度b
Species richness
马氏距离c
Mahalanobis distance
1 马尾松草灌 Pinus massoniana and herbosa mixed shrub 坡底 Bottom slope 10 82 25º SE40º 7 9 4.06
2 常绿灌丛 Evergreen shrub 坡中 Central slope 15 161 15º SE10º 6 16 0.79
3 栲树+木荷群落 Castanopsis fargesii+Schima superba Comm. 坡中 Central slope 120 272 30º SE20º 23 12 7.58
4 木荷群落 Schima superba Comm. 坡中 Central slope 60 245 20º SE25º 21 13 2.95
5 马尾松+木荷群落 Pinus massoniana+Schima superba Comm. 坡中 Central slope 25 129 23º SE20º 12 12 3.16
6 木荷+米槠群落 Schima superba+Castanopsis carlesii Comm. 坡底 Bottom slope 30 98 20º SE80º 15 8 3.61
7 栲树群落 Castanopsis fargesii Comm. 坡中 Central slope 150 110 26º SE45º 25 26 6.48
8 栲树群落 Castanopsis fargesii Comm. 坡中 Central slope 150 110 22º SE45º 25 24 6.70
9 栲树群落 Castanopsis fargesii Comm. 坡中 Central slope 150 110 21º SE45º 24 16 3.88
10 马尾松群落 Pinus massoniana Comm. 山脊 Hill ridge 20 157 20º SE15º 13 12 0.84
11 马尾松群落 Pinus massoniana Comm. 山脊 Hill ridge 20 159 18º SE18º 12 14 1.48
12 马尾松群落 Pinus massoniana Comm. 山脊 Hill ridge 20 160 18º SE17º 11 11 1.09
13 落叶灌丛 Deciduous shrub 坡中 Central slope 10 59 10º SE60º 6 7 3.61
14 木荷群落 Schima superba Comm. 坡中 Central slope 60 111 20º SE70º 22 20 5.86
15 木荷群落 Schima superba Comm. 坡中 Central slope 55 111 20º SE70º 21 15 3.38
16 木荷群落 Schima superba Comm. 坡中 Central slope 60 111 20º SE70º 22 18 2.26
17 赤皮青冈群落 Cyclobalanopsis gilva Comm. 沟谷 Ravine 65 153 26º SE5º 25 13 10.40
18 枫香群落 Liquidambar formosana Comm. 沟谷 Ravine 55 242 20º SE18º 25 6 9.02
19 栲树+木荷群落 Castanopsis fargesii+Schima superba Comm. 山脊 Hill ridge 80 235 40º SE80º 24 15 1.94
20 木荷群落 Schima superba Comm. 坡中 Central slope 65 199 25º SE70º 23 14 2.50
21 常绿灌丛 Evergreen shrub 山脊 Hill ridge 10 230 20º SE15º 5 17 1.70
22 落叶灌丛 Deciduous shrub 坡底 Bottom slope 8 125 30º SE35º 5 7 10.69
23 南酸枣群落 Choerospondias axillaris Comm. 沟谷 Ravine 120 233 30º SE40º 26 15 15.09
24 褐叶青冈群落 Cyclobalanopsis stewardiana Comm. 山顶 Peak 130 386 20º SE60º 25 13 11.16
25 褐叶青冈群落 Cyclobalanopsis stewardiana Comm. 山顶 Peak 130 388 25º SE60º 24 11 5.85
26 褐叶青冈群落 Cyclobalanopsis stewardiana Comm. 山顶 Peak 130 373 20º SE63º 23 13 6.23
27 云山青冈群落 Cyclobalanopsis sessilifolia Comm. 山顶 Peak 120 446 25º SE55º 22 14 21.51
28 常绿灌丛 Evergreen shrub 坡中 Central slope 15 116 26º SE20º 6 16 6.03
29 常绿灌丛 Evergreen shrub 坡中 Central slope 15 116 25º SE20º 7 20 3.85
30 常绿灌丛 Evergreen shrub 坡中 Central slope 15 117 25º SE20º 6 16 8.21
31 马尾松草灌 Pinus massoniana and herbosa mixed shrub 坡中 Central slope 10 47 30º SE30º 5 7 8.10

Fig. 1

Nonlinear regression between index of maximum environmental dependence and species richness"

Table 2

Four nonlinear regression models used to fitting species richness against indices of maximum environmental dependence"

非线性回归模型
Nonlinear regression model
模型公式
Model
指数模型 Exponential y=y0 + Ae-x/t{Invalid MML}
幂函数模型 Power y=axb
对数模型 Logarithm y=a - bln(x + c)
多项式模型 Polynomial y=a0 + a1x + a2x2 + a3x3

Fig. 2

Comparisons of actual, maximum and relative indices in environmental dependence among 31 plant communities in the Tiantong and surrounding areas. Community codes listed in Table 1."

Table 3

Indices of environmental dependence for 31 plant communities in the Tiantong region and surrounding area"

群落号
Community code
实际值
Actual
最大Maximum 相对值
Relative
拟合最
大值a
Fitted
maximum
拟合相
对值a
Fitted
relative
1 0.258 0.734 0.351 0.805 0.320
2 0.100 0.583 0.172 0.588 0.170
3 0.029 0.596 0.049 0.678 0.043
4 0.164 0.730 0.224 0.649 0.252
5 0.196 0.606 0.324 0.678 0.289
6 0.169 1.000 0.169 0.865 0.195
7 0.252 0.520 0.484 0.517 0.487
8 0.330 0.525 0.628 0.523 0.630
9 0.178 0.664 0.268 0.588 0.302
10 0.266 0.783 0.339 0.678 0.391
11 0.279 0.664 0.421 0.625 0.447
12 0.293 0.619 0.473 0.713 0.410
13 0.243 0.906 0.269 0.937 0.260
14 0.121 0.532 0.227 0.544 0.222
15 0.172 0.618 0.278 0.605 0.284
16 0.179 0.562 0.318 0.562 0.318
17 0.175 0.630 0.278 0.649 0.270
18 0.465 1.000 0.465 1.023 0.454
19 0.097 0.583 0.166 0.605 0.160
20 0.052 0.647 0.081 0.625 0.084
21 0.225 0.559 0.402 0.574 0.392
22 0.714 0.982 0.727 0.937 0.762
23 0.685 0.599 1.144 0.605 1.132
24 0.366 0.617 0.594 0.649 0.564
25 0.165 0.773 0.213 0.713 0.231
26 0.229 0.631 0.363 0.649 0.352
27 0.262 0.591 0.443 0.625 0.419
28 0.161 0.652 0.247 0.588 0.274
29 0.253 0.525 0.481 0.544 0.465
30 0.142 0.536 0.266 0.588 0.242
31 0.270 0.906 0.298 0.937 0.289
均值 Mean 0.242 0.673 0.360 0.673 0.358
标准差 SD. 0.152 0.145 0.212 0.135 0.209
范围 Range 0.685 0.480 1.095 0.506 1.089
最大值 Max. 0.714 1.000 1.144 1.023 1.132
最小值 Min. 0.029 0.520 0.049 0.517 0.043

Table 4

Pearson correlations between index of relative environmental dependence and each of 6 environmental variables"

海拔高度
Altitude
土壤水分
Soil water content
光照强度
Light intensity
土壤pH
Soil pH
土壤温度
Soil temperature
空气温度
Air temperature
R2 0.075 0.149 -0.105 0.167 -0.337 -0.524
P 0.689 0.424 0.575 0.370 0.063 0.002*
95% CI (-0.287, 0.418) (-0.217, 0.478) (-0.442, 0.259) (-0.199, 0.492) (-0.618, 0.019) (-0.741, -0.208)

Fig. 3

Regression relationship between index of relative environmental dependence and Mahalanobis distance"

1 Abella SR, Shelburne VB (2004) Ecological species groups of South Carolina’s Jocassee Gorges, southern Appalachian Mountains.Journal of the Torrey Botanical Society, 131, 220-231.
2 Abella SR, Covington WW (2006) Vegetation-environment relationships and ecological species groups of an Arizona Pinus ponderosa landscape, USA.Plant Ecology, 185, 255-268.
3 Chave J (2004) Neutral theory and community ecology.Ecology Letters, 7, 241-253.
4 Ding SY (丁圣彦) (1999) Comparative Ecology of Successive Serial of Evergreen Broad-leaved Forest (常绿阔叶林演替系列比较生态学). Henan University Press, Kaifeng. (in Chinese)
5 Ellenberg H (1950) Unkrautgemeinschaften als Zeiger für Klima und Boden. Eugen Ulmer, Ludwigsburg.
6 Ellenberg H (1952) Wiesen und Weiden und ihre standortliche Bewertung. Eugen Ulmer, Ludwigsburg.
7 Gotelli JN (2000) Null model analysis of species co-occurrence patterns.Ecology, 81, 2606-2621.
8 Harper JL (1977) Population Biology of Plants. Academic Press, London.
9 Harms KE, Condit R, Hubbell SP, Foster RB(2001) Habitat associations of trees and shrubs in a 50 ha neotropical forest plot.Journal of Ecology, 89, 947-959.
10 Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.
11 Hubbell SP, Foster RB (1986) Biology, Chance and History and the Structure of Tropical Rain Forest Tree Communities. Harper & Row, New York.
12 Hubbell SP, Foster RB, O’Brien ST, Harms KE, Condit R, Wechsler B, Wright SJ, Loo de Lao S (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a neotropical forest.Science, 283, 554-557.
13 Hughes RN (1988) A Functional Biology of Clinal Animals. Croom Helm, Beckenham.
14 Jiao L (焦磊), Zhang F (张峰) (2011) Ecological species groups of wetland vegetation on Lianbotan in Fen River, Shanxi.Scientia Silvae Sinicae(林业科学), 47, 7-12. (in Chinese with English abstract)
15 MacArthur RH (1965) Patterns of species diversity.Biological Reviews, 40, 510-533.
16 Mahalanobis PC (1936) On the generalised distance in statistics.Proceedings of the National Institute of Sciences of India, 2, 49-55.
17 McIntosh RP (1967) The continuum concept of vegetation.Botanical Review, 33, 130-187.
18 Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR (2009) Global patterns in plant height.Journal of Ecology, 97, 923-932.
19 Ordoñez JC, van Bodegom PM, Witte JPM, Wright IJ, Reich PB, Aerts R (2009) A global study of relationships between leaf traits, climate and soil measures of nutrient fertility.Global Ecology and Biogeography, 18, 137-149.
20 Ozkan K (2009) Environmental factors as influencing vegetation communities in Acipayam district of Turkey.Journal of Environmental Biology, 30, 741-746.
21 Quesada CA, Lloyd J, Schwarz M, Baker TR, Phillips OL, Patiño S, Czimczik C, Hodnett MG, Herrera R, Arneth A, Lloyd G, Malhi Y, Dezzeo N, Luizão FJ, Santos AJB, Schmerler J, Arroyo L, Silveira M, Priante Filho N, Jimenez EM, Paiva R, Vieira I, Neill DA, Silva N, Peñuela MC, Monteagudo A, Vásquez R, Prieto A, Rudas A, Almeida S, Higuchi N, Lezama AT, López-González G, Peacock J, Fyllas NM, Alvarez Dávila E, Erwin T, di Fiore A, Chao KJ, Honorio E, Killeen T, Peña Cruz A, Pitman N, Núñez Var-gas P, Salomão R, Terborgh J, Ramírez H (2009) Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties.Biogeosciences Discussions, 6, 3993-4057.
22 R Development Core Team (2012) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL
23 Song YC (宋永昌) (2001) Vegetation Ecology (植被生态学). East China Normal University Press, Shanghai. (in Chinese)
24 Song YC (宋永昌), Wang XR (王祥荣) (1995) Vegetation and Flora of Tiantong National Forest Park, Zhejiang Province (浙江天童国家森林公园的植被和区系). Shanghai Scientific and Technical Document Publishing House, Shanghai. (in Chinese)
25 Wang W (王伟), Luo ZR (骆争荣), Zhou RF (周荣飞), Xu DM (许大明), Ai JG (哀建国), Ding BY (丁炳扬) (2011) Habitat associations of woody plant species in Baishanzu subtropical broad-leaved evergreen forest.Biodiversity Science(生物多样性), 19, 134-142. (in Chinese with English abstract)
26 Wang XR (王祥荣) (1993) Analysis of the ecological characteristics of evergreen broad-leaved forest in Tiantong National Forest Park. Journal of Hubei University Natural Science Edition(湖北大学学报自然科学版), 15, 301-306. (in Chinese)
27 Westoby M, Wright IJ (2006) Land-plant ecology on the basis of functional traits.Trends in Ecology and Evolution, 21, 261-268.
28 Whittaker RH (1965) Dominance and diversity in land plant communities.Science, 147, 250-260.
29 Yan ER, Wang XH, Huang JJ (2006) Shifts in plant nutrient use strategies under secondary forest succession.Plant and Soil, 289, 187-197.
30 Zhang JT (张金屯) (2011) Quantitative Ecology, 2nd edn. (数量生态学第二版). Science Press, Beijing. (in Chinese)
31 Zhang JT (张金屯), Jiao R (焦蓉) (2003) Interspecific association between woody plants in shenweigou of Guandi Mountains, Shanxi province.Bulletin of Botanical Research(植物研究), 23, 458-463. (in Chinese)
[1] Shuai-Feng LI xuedong Lang Huang Xiao-Bo yanhong Wang LIU Wan-De chonghua Xu Jianrong Su. (2020) Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Puer, Yunnan Province . Chin J Plant Ecol, 44(预发表): 0-0.
[2] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. (2020) Comparison of five associations of Taxus cuspidata and their species diversity . Biodiv Sci, 28(3): 340-349.
[3] Jiazhen Zhang,Chunlei Gao,Yan Li,Ping Sun,Zongling Wang. (2020) Species composition of dinoflagellates cysts in ballast tank sediments of foreign ships berthed in Jiangyin Port . Biodiv Sci, 28(2): 144-154.
[4] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[5] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. (2019) Community assembly, diversity patterns and distributions of broad-leaved forests in North China . Chin J Plant Ecol, 43(9): 732-741.
[6] XU Guang-Yao, LI Hong-Yuan, MO Xun-Qiang, MENG Wei-Qing. (2019) Composition and spatial-temporal distribution of Chinese naturalized plants . Chin J Plant Ecol, 43(7): 601-610.
[7] Xie Fenglin, Zhou Quan, Shi Hang, Shu Xiao, Zhang Kerong, Li Tao, Feng Shuiyuan, Zhang Quanfa, Dang Haishan. (2019) Species composition and community characteristics of a 25 ha forest dynamics plot in deciduous broad-leaved forest, Qinling Mountains, north-central China . Biodiv Sci, 27(4): 439-448.
[8] Zhang Tiantian, Wang Xuan, Ren Haibao, Yu Jianping, Jin Yi, Qian Haiyuan, Song Xiaoyou, Ma Keping, Yu Mingjian. (2019) A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province . Biodiv Sci, 27(10): 1069-1080.
[9] Li Xueqing, Sun Heying, He Dekui, Chen Yifeng. (2019) Freshwater fish diversity in the upper and middle reaches of the Lancang-Mekong River . Biodiv Sci, 27(10): 1090-1100.
[10] Li Tong,Li Junning,Wei Yulian. (2019) Species diversity and distribution of wood-decaying fungi in Gutianshan National Nature Reserve . Biodiv Sci, 27(1): 81-87.
[11] Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. (2019) Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China . Biodiv Sci, 27(1): 33-41.
[12] YU Ding-Xiang, DU Fan, SHI Ming, YANG Cong, DAI Jun. (2018) Community characteristics and population structure of Ferrocalamus strictus, a rare species in Mojiang, Yunnan, China . Chin J Plan Ecolo, 42(9): 938-945.
[13] Lina Dou, Wenfu Zhang, Xiaobao Deng, Min Cao, Yong Tang. (2018) Nine-year seed rain dynamics in Parashorea chinensis forest in Xishuangbanna, Southwest China . Biodiv Sci, 26(9): 919-930.
[14] Wang Shitong, Wu Hao, Liu Mengting, Zhang Jiaxin, Liu Jianming, Meng Hongjie, Xu Yaozhan, Qiao Xiujuan, Wei Xinzeng, Lu Zhijun, Jiang Mingxi. (2018) Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China . Biodiv Sci, 26(7): 749-759.
[15] Yu Gao,Guanghui Lin. (2018) Algal diversity and their importance in ecological processes in typical mangrove ecosystems . Biodiv Sci, 26(11): 1223-1235.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed