Biodiversity Science ›› 2019, Vol. 27 ›› Issue (3): 306-313.doi: 10.17520/biods.2018269

• Original Papers • Previous Article     Next Article

Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators

Tu Yanli1, Wang Liping2, 3, Wang Xilong1, Wang Linlin2, 3, *(), Duan Yuanwen2   

  1. 1 Tibet Plateau Institute of Biology, Lhasa 850001
    2 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201
    3 University of Chinese Academy of Sciences, Beijing 100049
  • Received:2018-10-11 Accepted:2019-03-02 Online:2019-03-20
  • Wang Linlin

Invasive plants that use local pollinators would better ensure their expansion in the new environment, but the role and status of the invasive plants on local pollination network is still unclear. In this paper, we analyzed the pollen grains of Tagetes minuta carried by pollinators and constructed a plant-pollinator network, to explore the roles and impacts of T. minuta in local pollination network. The results showed that pollination system of T. minuta was generalized, and there were 13 insect species visiting its flowers, 12 of which carried pollen grains of T. minuta, and the pollen grains of T. minuta accounted for 89.89%. Among the 12 pollinator species of T. minuta, one species of bees, two species of scorpion flies and one species of flies are the main pollinators. This study reveals that T. minuta has successfully used a variety of local pollinators for pollination in a relatively short period of time, indicating that T. minuta has strong adaptability and diffusion ability, and it is necessary to pay more attentions to the prevention and control of T. minuta in the future.

Key words: Qinghai-Tibet Plateau, Tagetes minuta, invasive plants, pollination network, pollen

Fig. 1

Population of Tagetes minuta in Tibet and its pollinators. (A) T. minuta population; (B) Colletidae sp.; (C) Anthomyiidae sp.; (D) Calliphoridae sp.; (E) Lycaena phlaeas; (F) Tenebrionidae sp."

Table 1

Community level parameters of pollination network of Tagetes minuta population"

特征 Traits 网络参数 Parameters
植物种类数 No. of plant species 12
访花昆虫种类数 No. of visiting species 13
植物与昆虫的连接数量 No. of interactions 63
连接度 Connectance 0.404
嵌套度 Nestedness temperature 14.57
加权嵌套度 Weighted nestedness 0.683
特化水平 Specialization level (H°2) 0.147

Table 2

Several parameters of plants at the species levels in the pollination network of Tagetes minuta population"

Plant species
Normalised degree
Species strength
Specialization level ()
A 印加孔雀草 Tagetes minuta 12 0.923 10.312 0.034
B 狭叶荆芥 Nepeta souliei 8 0.615 0.85 0.095
C 无心菜 Arenaria serphyllifolia 5 0.385 0.086 0.11
D 马先蒿属一种 Pedicularis sp. 6 0.462 0.054 0.085
E 龙胆属一种 Gentiana sp. 4 0.308 0.779 0.467
F 紫草科一种 Boraginaceae sp. 6 0.462 0.107 0.046
G 蓝钟花属一种 Cyananthus sp. 5 0.385 0.328 0.289
H 唇形科一种 Lamiaceae sp. 4 0.308 0.197 0.099
I 唇形科一种 Lamiaceae sp. 1 0.077 0.002 0.045
J 唇形科一种 Lamiaceae sp. 3 0.231 0.037 0.332
K 百合科一种 Liliaceae sp. 3 0.231 0.352 0.563
L 甘青老鹳草 Geranium pylzowianum 6 0.462 0.063 0.117

Fig. 2

A scan of pollens carried by pollinators of Tagetes minuta. (A) Tagetes minuta; (B) Nepeta souliei; (C) Arenaria serphyllifolia; (D) Pedicularis sp.; (E) Gentiana sp.; (F) Boraginaceae sp.; (G) Cyananthus sp.; (H-J) Lamiaceae spp.; (K) Liliaceae sp.; (L) Geranium pylzowianum."

Fig. 3

Pollen network carried by pollinators of Tagetes minuta. Upper bars represent insect species and lower bars represent plant species. Bar width is proportional to the frequency of interactions. Lines are relative to the interaction between plants and insects. The codes of species are shown in Table 2 and Table 3."

Table 3

Several parameters of pollinators at the species level in the pollination network of the Tagetes minuta population"

Normalised degree
Species strength
Bee sp. 分舌花蜂科Colletidae 32 11 0.917 1.611 0.006
Syr sp.1 长尾管蚜蝇Eristalis tenax 5 10 0.833 2.194 0.102
Syr sp.2 黑带蚜蝇属Episyrpus 3 7 0.583 0.64 0.024
Syr sp.3 黑带蚜蝇属Episyrpus 3 7 0.583 1.319 0.012
Syr sp.4 食蚜蝇科Syrphidae 1 2 0.167 0.013 0
Fly sp.1 丽蝇科Calliphoridae 2 8 0.667 4.072 0.016
Fly sp.2 丽蝇科Calliphoridae 1 2 0.167 0.299 0.139
Fly sp.3 蝇科Muscidae 1 1 0.083 0.014 0.017
Fly sp.4 花蝇科Anthomyiidae 1 4 0.333 0.303 0.034
Sar sp. 麻蝇科Sarcophadidae 2 4 0.333 0.823 0.056
Pier sp.1 东方菜粉蝶Pieris canidia 1 2 0.167 0.501 0.803
Pier sp.2 红灰蝶Lycaena phlaeas 2 1 0.083 0.003 0.005
Col sp. 拟步甲科Tenebrionidae 1 4 0.333 0.229 0.119
1 Arceo-Gómez G, Ashman TL ( 2016) Invasion status and phylogenetic relatedness predict cost of heterospecific pollen receipt: Implications for native biodiversity decline. Journal of Ecology, 104, 1003-1008.
doi: 10.1111/1365-2745.12586
2 Bascompte J, Jordano P, Melián CJ, Olesen JM ( 2003) The nested assembly of plant-animal mutualistic networks. Proceedings of the National Academy of Sciences, USA, 100, 9383-9387.
doi: 10.1073/pnas.1633576100 pmid: 12881488
3 Bascompte J, Jordano P, Olesen JM ( 2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science, 312, 431-433.
doi: 10.1126/science.1123412 pmid: 16627742
4 Bluthgen N, Menzel F, Bluthgen N ( 2006) Measuring specialization in species interaction networks. BMC Ecology, 6, 9.
doi: 10.1186/1472-6785-6-9 pmid: 16907983
5 Brennan AC, Harris SA, Hiscock SJ ( 2005) Modes and rates of selfing and associated inbreeding depression in the self-incompatible plant Senecio squalidus (Asteraceae): A successful colonizing species in the British Isles. New Phytologist, 168, 475-486.
doi: 10.1111/j.1469-8137.2005.01517.x pmid: 16219086
6 Campbell LG, Husband BC ( 2007) Small populations are mate-poor but pollinator-rich in a rare, self-incompatible plant, Hymenoxys herbacea (Asteraceae). New Phytologist, 174, 915-925.
doi: 10.1111/j.1469-8137.2007.02045.x pmid: 17504472
7 Dong ZG, Liu QX, Hu J, Deng MB, Xiong YN ( 2013) New records of naturalized plants from the Chinese Mainland. Guihaia, 33, 432-434. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-3142.2013.03.026
[ 董振国, 刘启新, 胡君, 邓懋彬, 熊豫宁 ( 2013) 中国大陆归化植物新记录. 广西植物, 33, 432-434.]
doi: 10.3969/j.issn.1000-3142.2013.03.026
8 Eviner VT, Garbach K, Baty JH, Hoskinson SA ( 2012) Measuring the effects of invasive plants on ecosystem services: Challenges and prospects. Invasive Plant Science and Management, 5, 125-136.
doi: 10.1614/IPSM-D-11-00095.1
9 Fang Q, Huang SQ ( 2012) Progress in pollination networks: Network structure and dynamics. Biodiversity Science, 20, 300-307. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2012.08026
[ 方强, 黄双全 ( 2012) 传粉网络的研究进展: 网络的结构和动态. 生物多样性, 20, 300-307.]
doi: 10.3724/SP.J.1003.2012.08026
10 Flanagan RJ, Mitchell RJ, Karron JD ( 2010) Increased relative abundance of an invasive competitor for pollination, Lythrum salicaria, reduces seed number in Mimulus ringens. Oecologia, 164, 445-454.
doi: 10.1007/s00442-010-1693-2 pmid: 20585807
11 Goodell K, Parker IM ( 2017) Invasion of a dominant floral resource: Effects on the floral community and pollination of native plants. Ecology, 98, 57-69.
doi: 10.1002/ecy.1639 pmid: 28052387
12 Hao J, Sheng Q, Thomas C, Mark VK, Liu Q ( 2011) A test of baker’s law: Breeding systems of invasive species of Asteraceae in China. Biological Invasions, 13, 571-580.
doi: 10.1007/s10530-010-9850-4
13 Jeschke JM, Bacher S, Blackburn TM, Dick JTA, Essl F, Evans T, Gaertner M, Hulme PE, Kühn I, Mrugała A ( 2015) Defining the impact of non-native species. Conservation Biology, 28, 1188-1194.
doi: 10.1111/cobi.12299 pmid: 4282110
14 Ju RT, Li H, Shi CJ, Li B ( 2012) Progress of biological invasions research in China over the last decade. Biodiversity Science, 20, 581-611. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2012.31148
[ 鞠瑞亭, 李慧, 石正人, 李博 ( 2012) 近十年中国生物入侵研究进展. 生物多样性, 20, 581-611.]
doi: 10.3724/SP.J.1003.2012.31148
15 Kaiser-Bunbury CN, Mougal J, Whittington AE, Valentin T, Gabriel R, Olesen JM, Bluthgen N ( 2017) Ecosystem restoration strengthens pollination network resilience and function. Nature, 542, 223-227.
doi: 10.1038/nature21071 pmid: 28135718
16 Kearns CA, Inouye DW, Waser NM ( 1998) Endangered mutualisms: The conservation of plant-pollinator interactions. Annual Review of Ecology & Systematics, 29, 83-112.
doi: 10.1146/annurev.ecolsys.29.1.83
17 Lang DD, Tang M, Zhou X ( 2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective. Biodiversity Science, 26, 445-456. (in Chinese with English abstract)
doi: 10.17520/biods.2018058
[ 郎丹丹, 唐敏, 周欣 ( 2018) 传粉网络构建的定性定量分子研究: 应用与展望. 生物多样性, 26, 445-456.]
doi: 10.17520/biods.2018058
18 Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J ( 2007) The impact of an alien plant on a native plant-pollinator network: An experimental approach. Ecology Letters, 10, 539-550.
doi: 10.1111/j.1461-0248.2007.01055.x pmid: 17542933
19 McKinney AM, Goodell K ( 2011) Plant-pollinator interactions between an invasive and native plant vary between sites with different flowering phenology. Plant Ecology, 212, 1025-1035.
doi: 10.1007/s11258-010-9882-y
20 Millennium Ecosystem Assessment ( 2005) Ecosystems and Human Well- Being: Synthesis. Island Press, Washington, DC.
21 Olesen JM, Bascompte J, Dupont YL, Jordano P ( 2007) The modularity of pollination networks. Proceedings of the National Academy of Sciences, USA, 104, 19891-19896.
doi: 10.1073/pnas.0706375104 pmid: 18056808
22 Padrón B, Traveset A, Biedenweg T, Díaz D, Nogales M, Olesen JM ( 2009) Impact of alien plant invaders on pollination networks in two archipelagos. PLoS ONE, 4, e6275.
doi: 10.1371/journal.pone.0006275 pmid: 2707600
23 Potts SG, Imperatrizfonseca V, Ngo HT, Aizen MA, Biesmeijer JC, Breeze TD, Dicks LV, Garibaldi LA, Hill R, Settele J ( 2016) Safeguarding pollinators and their values to human well-being. Nature, 540, 220-229.
doi: 10.1038/nature20588 pmid: 27894123
24 Powell KI, Krakos KN, Knight TM ( 2011) Comparing the reproductive success and pollination biology of an invasive plant to its rare and common native congeners: A case study in the genus Cirsium (Asteraceae). Biological Invasions, 13, 905-917.
doi: 10.1007/s10530-010-9878-5
25 Richardson RT, Lin CH, Sponsler DB, Quijia JO, Goodell K, Johnson RM ( 2015) Application of ITS2 metabarcoding to determine the provenance of pollen collected by honey bees in an agroecosystem. Applications in Plant Sciences, 3, 235-250.
doi: 10.3732/apps.1400066 pmid: 25606352
26 Schemske DW ( 1983) Limits to Specialization and Coevolution in Plant-Animal Mutualisms. Chicago University Press, Chicago.
27 Sun SG, Lu B, Lu XM, Huang SQ ( 2018) On reproductive strategies of invasive plants and their impacts on native plants. Biodiversity Science, 26, 457-467. (in Chinese with English abstract)
doi: 10.17520/biods.2017294
[ 孙士国, 卢斌, 卢新民, 黄双全 ( 2018) 入侵植物的繁殖策略以及对本土植物繁殖的影响. 生物多样性, 26, 457-467.]
doi: 10.17520/biods.2017294
28 Wan FH, Guo JY, Wang DH ( 2002) Alien invasive species in China: Their damages and management strategies. Biodiversity Science, 10, 119-125. (in Chinese with English abstract)
doi: 10.3321/j.issn:1005-0094.2002.01.015
[ 万方浩, 郭建英, 王德辉 ( 2002) 中国外来入侵生物的危害与管理对策. 生物多样性, 10, 119-125.]
doi: 10.3321/j.issn:1005-0094.2002.01.015
29 Wang H, Cao GX, Wang LL, Yang YP, Zhang ZQ, Duan YW ( 2017) Evaluation of pollinator effectiveness based on pollen deposition and seed production in a gynodieocious alpine plant, Cyananthus delavayi. Ecology and Evolution, 7, 8156-8160.
doi: 10.1002/ece3.3391
30 Weber E, Li B ( 2008) Plant invasions in China: What is to be expected in the wake of economic development? BioScience, 58, 437-444.
doi: 10.1016/j.str.2009.09.008
31 Weber E, Sun SG, Li B ( 2008) Invasive alien plants in China: Diversity and ecological insights. Biological Invasions, 10, 1411-1429.
doi: 10.1007/s10530-008-9216-3
32 Xie Y, Li ZY, Gregg WP, Dianmo L ( 2001) Invasive species in China—An overview. Biodiversity and Conservation, 10, 1317-1341.
doi: 10.1023/A:1016695609745
33 Xu M, Tashi T ( 2015) A newly naturalized plant in Qinghai-Tibet Plateau. Guihaia, 35, 554-555. (in Chinese with English abstract)
doi: 10.11931/guihaia.gxzw201310020
[ 许敏, 扎西次仁 ( 2015) 青藏高原一新归化种. 广西植物, 35, 554-555.]
doi: 10.11931/guihaia.gxzw201310020
34 Zhang JL, Lü YF, Bian Y, Liu RS, Jiang L ( 2014) A new kind of invasive plant from mainland China—Tagetes minuta L. Plant Quarantine, 28(2), 65-67. (in Chinese with English abstract)
[ 张劲林, 吕玉峰, 边勇, 刘若思, 江璐 ( 2014) 中国境内(内地)一种新的入侵植物——印加孔雀草. 植物检疫, 28(2), 65-67.]
35 Zhu SX, Qin HN, Chen YL ( 2005) Alien species of Compositae in China. Guihaia, 25, 69-76. (in Chinese with English abstract)
doi: 10.3969/j.issn.1000-3142.2005.01.014
[ 朱世新, 覃海宁, 陈艺林 ( 2005) 中国菊科植物外来种概述. 广西植物, 25, 69-76.]
doi: 10.3969/j.issn.1000-3142.2005.01.014
[1] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. (2020) Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow . Biodiv Sci, 28(2): 107-116.
[2] Tang Min, Zou Yi, Su Qinzhi, Zhou Xin. (2019) A new perspective on landscape impact in bee populations: Considering the bee gut microbiome . Biodiv Sci, 27(5): 516-525.
[3] Wang Xiaoyue,Zhu Xinxin,Yang Juan,Liu Yunjing,Tang Xiaoxin. (2019) Variation in style length and the effect on reproductive success in Chinese plums (Armeniaca mume) . Biodiv Sci, 27(2): 159-167.
[4] Yang Hao, Liu Chen, Wang Zhifei, Hu Xiuli, Wang Tai. (2019) Advances in the Regulatory Mechanisms of Pollen Response to Heat Stress in Crops . Chin Bull Bot, 54(2): 157-167.
[5] Liu Wei, Tong Yong’ao, Bai Jie. (2018) Bioinformatics Analysis of tRNA-derived Fragments in Rice Male Gametophyte Development . Chin Bull Bot, 53(5): 625-633.
[6] Dandan Lang,Min Tang,Xin Zhou. (2018) Qualitative and quantitative molecular construction of plant-pollinator network: Application and prospective . Biodiv Sci, 26(5): 445-456.
[7] Jannathan Mamut,Xiaojun Cheng,Dunyan Tan. (2018) Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb . Biodiv Sci, 26(5): 498-509.
[8] Yiming Hu,Weiqi Li,Zhigang Jiang,Wulin Liu,Jianchao Liang,Yizhou Lin,Zhiwen Huang,Haihua Qin,Kun Jin,Huijian Hu. (2018) A wild yak survey in Chang Tang of Tibet Autonomous Region and Hoh Xil of Qinghai Province . Biodiv Sci, 26(2): 185-190.
[9] Yaru Zhu, Yanbing Gong. (2017) Methods of wind pollination . Biodiv Sci, 25(8): 864-873.
[10] Li WANG, Yun ZHANG, Zhao-Chen KONG, Zhen-Jing YANG, Shun YAN, Yue-Cong LI. (2017) Preliminary study on pollen distribution in the surface soil of the Turpan region in the southern slope of Tianshan Mountains, Xinjiang, China . Chin J Plan Ecolo, 41(7): 779-786.
[11] Xiaolong Zhang, Lihua Yang, Ming Kang. (2017) Post-pollination reproductive isolation of sympatric populations of Primulina eburnea and P. mabaensis (Gesneriaceae) . Biodiv Sci, 25(6): 615-620.
[12] Ying Sun, Lei Wang, Xue Yang, Axiang Wang, Miao He. (2017) Research on the Double Fertilization of Adonis amurensis . Chin Bull Bot, 52(4): 480-486.
[13] Jia-Jian Wang,Zhi-Bang Peng,Hang Sun,Ze-Long Nie,Ying Meng. (2017) Cytogeographic patterns of angiosperms flora of the Qinghai-Tibet Plateau and Hengduan Mountains . Biodiv Sci, 25(2): 218-225.
[14] Zhekun Zhou,Jian Huang,Wenna Ding. (2017) The impact of major geological events on Chinese flora . Biodiv Sci, 25(2): 123-135.
[15] Jie Liu,Yahuang Luo,Dezhu Li,Lianming Gao. (2017) Evolution and maintenance mechanisms of plant diversity in the Qinghai-Tibet Plateau and adjacent regions: retrospect and prospect . Biodiv Sci, 25(2): 163-174.
Full text