Biodiversity Science ›› 2020, Vol. 28 ›› Issue (3): 296-302.doi: 10.17520/biods.2019099

• Original Papers • Previous Article     Next Article

Adaptive strategies of functional traits of Metasequoia glyptostroboides parent trees to changing habitats

Jun Chen, Lan Yao(), Xunru Ai, Jiang Zhu, Manling Wu, Xiao Huang, Siyi Chen, Jin Wang, Qiang Zhu   

  1. School of Forestry and Horticulture, Hubei Minzu University, Enshi, Hubei 445000
  • Received:2019-03-24 Accepted:2019-05-16 Online:2019-09-27
  • Lan Yao E-mail:hbmyyl@163.com

Functional trait variability and phenotypic plasticity are the main mechanisms plants use to respond to heterogeneous habitats. These can determine how well a plant grows and where it is distributed. In the Xingdoushan National Nature Reserve, we assessed the response of the functional traits of a population of Metasequoia glyptostroboides parent trees to tree morphology, terrain factors and human disturbance. We found that the leaf area (LA), leaf dry weight (LDW) and specific leaf area (SLA) had large variation and great plasticity, while leaf dry matter content (LDMC) and twig dry matter content (TDMC) were more stable. Human disturbance and the four terrain factors together explained 5%-20% of variance for each functional trait, and crown size explained 38% and 76% of the variation in TDMC and LDMC, respectively. The five functional traits were mainly affected by altitude, slope aspect and human disturbance. The SLA responded slightly to environmental factors and disturbance pattern, while LA and LDW generally increased with strong disturbance. LDMC and TDMC were most sensitive to change in slope aspect. Taken together, the population of M. glyptostroboides parent trees demonstrated significant plasticity in response to the environment through its variability in functional traits. Because human disturbance had a great influence on the growth of these trees, artificial regeneration is recommended, and the impact of agriculture and human construction needs to be reduced.

Key words: Metasequoia glyptostroboides, functional trait, intraspecific variability, phenotypic plasticity, adaptive strategy

Table 1

Functional trait and its variance of Metasequoia glyptostroboides parent trees"

性状
Trait
平均值 ± 标准差
Mean ± SD
最小值
Minimum
最大值
Maximum
中值
Median
偏度
Sewness
峰度
Kurtosis
变异系数
Coefficient of variation (%)
叶干重 Leaf dry weight (g) 0.229 ± 0.085 0.096 0.889 0.210 17,406.545 11.361 37.172
叶面积 Leaf area (cm2) 28.316 ± 5.813 5.419 61.215 28.903 6,389.909 2.264 20.389
比叶面积 Specific leaf area (cm2/g) 11.6 ± 3.735 1.915 32.454 11.322 4,838.621 0.983 32.121
叶干物质含量 Leaf dry matter content (g/g) 0.242 ± 0.045 0.129 0.430 0.237 4,740.165 0.902 18.358
枝干物质含量 Twig dry matter content (g/g) 0.415 ± 0.038 0.283 0.618 0.415 5,497.453 1.527 9.059

Fig. 1

Multiple factor analysis of functional traits, tree forms, and topographical factors. LA, Leaf area; SLA, Specific leaf area; LDW, Leaf dry weight; LDMC, Leaf dry matter content; TDMC, Twig dry matter content; DBH, Diameter at breast height; H, Height."

Fig. 2

Variance partitioning for function traits by different factors. LA, Leaf area; SLA, Specific leaf area; LDW, Leaf dry weight; LDMC, Leaf dry matter content; TDMC, Twig dry matter content."

Table 2

Grey relational grade analysis between functional traits and topographic factors"

性状
Trait
海拔 Altitude 坡向 Aspect 坡度 Slope 坡位
Slope position
叶干重 Leaf dry weight 0.788 0.724 0.653 0.542
叶面积 Leaf area 0.719 0.620 0.632 0.499
比叶面积 Specific leaf area 0.875 0.774 0.762 0.601
叶干物质含量
Leaf dry matter content
0.786 0.616 0.606 0.506
枝干物质含量
Twig dry matter content
0.770 0.567 0.626 0.480

Fig. 3

Changes of functional trait values on the gradient of slope aspects. LA, Leaf area; SLA, Specific leaf area; LDW, Leaf dry weight; LDMC, Leaf dry matter content; TDMC, Twig dry matter content."

Fig. 4

Distribution of function trait values under human disturbances. LA, Leaf area; SLA, Specific leaf area; LDW, Leaf dry weight; LDMC, Leaf dry matter content."

1 Ackerly DD, Cornwell WK ( 2007) A trait-based approach to community assembly: Partitioning of species trait values into within- and among-community components. Ecology Letters, 10, 135-145.
doi: 10.1111/j.1461-0248.2006.01006.x pmid: 17257101
2 Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S ( 2010) Intraspecific functional variability: Extent, structure and sources of variation. Journal of Ecology, 98, 604-613.
doi: 10.1111/jec.2010.98.issue-3
3 Auger S, Shipley B ( 2013) Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest. Journal of Vegetation Science, 24, 419-428.
doi: 10.1111/jvs.2013.24.issue-3
4 Borcard D, Gillet F, Legendre P ( 2011) Numerical Ecology with R. Springer Science & Business Media, New York.
5 Chen L, Mi XC, Ma KP ( 2014) Niche differentiation and its consequence on biodiversity maintenance in forest communities. Chinese Bulletin of Life Sciences, 26, 112-117. (in Chinese with English abstract)
[ 陈磊, 米湘成, 马克平 ( 2014) 生态位分化与森林群落物种多样性维持研究展望. 生命科学, 26, 112-117.]
6 Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
doi: 10.1071/BT02124
7 Duan N, Xu J, Chen HL, Gao JL, Liu YT, Jia YK ( 2018) Effects of drought stress on phenotypic plasticity of Cerasus humilis. Guihaia, 39, 1159-1165. (in Chinese with English abstract)
[ 段娜, 徐军, 陈海玲, 高君亮, 刘禹廷, 贾玉奎 ( 2018) 干旱胁迫对欧李幼苗表型可塑性的影响. 广西植物, 39, 1159-1165.]
8 Gao L, Li B, Liu WY, Shen YX, Liu WJ ( 2013) Inhibition effects of daughter ramets on parent of clonal plant Eichhornia crassipes. Aquatic Botany, 107, 47-53.
doi: 10.1016/j.aquabot.2013.01.010
9 Jung V, Muller S ( 2010) Intraspecific variability and trait-based community assembly. Journal of Ecology, 98, 1134-1140.
doi: 10.1111/jec.2010.98.issue-5
10 Kraft NJB, Adler PB, Godoy O, James EC, Fuller S, Levine JM ( 2015) Community assembly, coexistence and the environmental filtering metaphor. Functional Ecology, 29, 592-599.
doi: 10.1098/rsbl.2018.0460 pmid: 30135118
11 Laforest-Lapointe I, Martínez-Vilalta J, Retana J ( 2014) Intraspecific variability in functional traits matters: Case study of Scots pine. Oecologia, 175, 1337-1348.
doi: 10.1007/s00442-014-2967-x
12 Liu XJ, Ma KP ( 2015) Plant functional traits—Concepts, applications and future directions. Scienta Sinica Vitae, 45, 325-339. (in Chinese with English abstract)
[ 刘晓娟, 马克平 ( 2015) 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
13 Li XL, Hou XY, Wu XH, Sarula, Ji L, Chen HJ, Liu ZY, Ding Y ( 2014) Plastic responses of stem and leaf functional traits in Leymus chinensis to long-term grazing in a meadow steppe. Chinese Journal of Plant Ecology, 38, 440-451. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2014.00040
[ 李西良, 侯向阳, 吴新宏, 萨茹拉, 纪磊, 陈海军, 刘志英, 丁勇 ( 2014) 草甸草原羊草茎叶功能性状对长期过度放牧的可塑性响应. 植物生态学报, 38, 440-451.]
doi: 10.3724/SP.J.1258.2014.00040
14 Li XL, Wen HR, Wang XS, Yang J, Huang CM ( 2018) Phenotypic plasticity of Distylium chinense leaves in relation to soil environmental factors in heterogeneous habitats in the Three Gorges Reservoir Region. Acta Ecologica Sinica, 38, 3581-3591. (in Chinese with English abstract)
[ 李晓玲, 温浩然, 王雪松, 杨进, 黄成名 ( 2018) 三峡库区不同生境下中华蚊母树叶片表型可塑性及其与土壤环境因子的关系. 生态学报, 38, 3581-3591.]
15 Lin Y, Ai XR, Yao L, Guo QJ, Zhang MX, Chen J ( 2017) Population structure and dynamics of Metasequoia glyptostroboides parent trees. Chinese Journal of Ecology, 36, 1531-1538. (in Chinese with English abstract)
[ 林勇, 艾训儒, 姚兰, 郭秋菊, 张敏霞, 陈俊 ( 2017) 水杉原生母树种群结构与动态. 生态学杂志, 36, 1531-1538.]
16 Luo Q, Liu H, Wu GL, He PC, Hua L, Zhu LW, Zhang H, Liu N, Jian SG, Ye Q ( 2018) Using functional traits to evaluate the adaptability of five plant species on tropical coral islands. Acta Ecologica Sinica, 38, 1256-1263. (in Chinese with English abstract)
[ 罗琦, 刘慧, 吴桂林, 贺鹏程, 华雷, 朱丽薇, 张辉, 刘楠, 简曙光, 叶清 ( 2018) 基于功能性状评价5种植物对热带珊瑚岛环境的适应性. 生态学报, 38, 1256-1263.]
17 Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, Heijden MGAVD, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC ( 2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
doi: 10.1071/BT12225
18 Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, de L Dantas V, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Bagousse-Pinguet YL, Li Y, Mason N, Messier J, Nakashizuka T, Overton JM, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA ( 2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
doi: 10.1111/ele.12508 pmid: 26415616
19 Shi JM, Ye XH, Chen FS, Yang QP, Li ZY, Fang K, Yang GY ( 2014) Adaptation of bamboo to heterogeneous habitat: Phenotypic plasticity. Acta Ecologica Sinica, 34, 5687-5695. (in Chinese with English abstract)
[ 施建敏, 叶学华, 陈伏生, 杨清培, 黎祖尧, 方楷, 杨光耀 ( 2014) 竹类植物对异质生境的适应——表型可塑性. 生态学报, 34, 5687-5695.]
20 Tang QQ, Huang YT, Ding Y, Zang RG ( 2016) Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270. (in Chinese with English abstract)
doi: 10.17520/biods.2015200
[ 唐青青, 黄永涛, 丁易, 臧润国 ( 2016) 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
doi: 10.17520/biods.2015200
21 Wang S, Zhou DW ( 2017) Research on phenotypic plasticity in plants: An overview of history, current status, and development trends. Acta Ecologica Sinica, 37, 8161-8169. (in Chinese with English abstract)
[ 王姝, 周道玮 ( 2017) 植物表型可塑性研究进展. 生态学报, 37, 8161-8169.]
22 Xiong B, Yao L, Yi YM, Wang BQ, Fan SH ( 2009) Research on growth of the Metasequoia glyptostroboides mother trees. Journal of Hubei University for Nationalities (Natural Science Edition), 27, 439-442. (in Chinese with English abstract)
[ 熊彪, 姚兰, 易咏梅, 王柏泉, 范深厚 ( 2009) 水杉原生母树生长势调查研究. 湖北民族学院学报(自然科学版), 27, 439-442.]
23 Zhai SH, Wang P, Sheng LX ( 2017) Phenotypic plasticity of plant functional traits in competition environments. Journal of Beihua University (Natural Science), 18, 538-546. (in Chinese with English abstract)
[ 翟偲涵, 王平, 盛连喜 ( 2017) 竞争条件下植物功能性状的表型可塑性研究进展. 北华大学学报(自然科学版), 18, 538-546.]
[1] Liangrui Yu Zhengcai Zhu Xiaoyun Pan. (2020) Phenotypic plasticity of Alternanthera philoxeroides in response to root neighbors of kin: introduced vs. native genotypes . Biodiv Sci, 28(6): 0-0.
[2] Huiyu Wei,Kai Chen,Beixin Wang. (2020) The spatial scale dependency of elevational patterns of taxonomic and functional diversity in aquatic insects in the Lancang River, Yunnan, China . Biodiv Sci, 28(4): 504-514.
[3] Xiao Huang,Jiang Zhu,Lan Yao,Xunru Ai,Jin Wang,Manling Wu,Qiang Zhu,Shaolin Chen. (2020) Structure and spatial distribution pattern of a native Metasequoia glyptostroboides population in Hubei . Biodiv Sci, 28(4): 463-473.
[4] Shitong Wang, Yaozhan Xu, Teng Yang, Xinzeng Wei, Mingxi Jiang. (2020) Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis . Biodiv Sci, 28(3): 277-288.
[5] Manling Wu,Lan Yao,Xunru Ai,Jiang Zhu,Qiang Zhu,Jin Wang,Xiao Huang,Jianfeng Hong. (2020) The reproductive characteristics of core germplasm in a native Metasequoia glyptostroboides population . Biodiv Sci, 28(3): 303-313.
[6] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[7] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. (2020) Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe . Chin J Plant Ecol, 44(1): 33-43.
[8] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. (2019) Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands . Chin J Plant Ecol, 43(7): 566-575.
[9] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. (2019) Variation in basic morphological and functional traits of Chinese bamboo . Biodiv Sci, 27(6): 585-594.
[10] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. (2019) Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis . Chin J Plant Ecol, 43(6): 501-511.
[11] HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. (2019) Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China . Chin J Plant Ecol, 43(3): 208-216.
[12] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. (2019) Leaf functional traits of Acer mono in Wudalianchi Volcano, China . Biodiv Sci, 27(3): 286-296.
[13] HE Yun-Yu, GUO Shui-Liang, WANG Zhe. (2019) Research progress of trade-off relationships of plant functional traits . Chin J Plant Ecol, 43(12): 1021-1035.
[14] Ruyun Zhang,Yanpeng Li,Yunlong Ni,Xujun Gui,Juyu Lian,Wanhui Ye. (2019) Intraspecific variation of leaf functional traits along the vertical layer in a subtropical evergreen broad-leaved forest of Dinghushan . Biodiv Sci, 27(12): 1279-1290.
[15] Zhang Tiantian, Wang Xuan, Ren Haibao, Yu Jianping, Jin Yi, Qian Haiyuan, Song Xiaoyou, Ma Keping, Yu Mingjian. (2019) A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province . Biodiv Sci, 27(10): 1069-1080.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed