Biodiversity Science ›› 2019, Vol. 27 ›› Issue (4): 355-365.doi: 10.17520/biods.2019016

• Original Papers • Previous Article     Next Article

Genetic diversity and population structure of Populus yunnanensis

Zhang Yahong1, Jia Huixia1, Wang Zhibin2, Sun Pei1, Cao Demei1, Hu Jianjun1, *()   

  1. 1 State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091
    2 Zhangjiakou Jinshatan Forest Farm, Huaian, Hebei 076150
  • Received:2019-01-21 Accepted:2019-04-18 Online:2019-06-05
  • Hu Jianjun E-mail:hujj@caf.ac.cn

Populus yunnanensis is an endemic tree species to Southwestern China. It is a typical southern Populus species that is fast-growing species with easy to clone propagules and is highly adaptable. It is important to research the genetic diversity and population structure of P. yunnanensis for the collection, preservation and utilization of the germplasm resources. In this study, 64 individuals were collected from six populations, spaning the main distribution areas of P. yunnanensis, including Zhaotong (ZT), Huize (HZ), Songming (SM), Eryuan (EY), Lashihai (LS) and Sichuan Meigu (MG). A total of 34 pairs of SSR primers and three pairs of cpDNA primers were used to determine out the genetic diversity and genetic structure. A total of 154 alleles were detected by SSR primers in P. yunnanensis. The average number of alleles was 4.529. The observed heterozygosity (Ho) and expected heterozygosity (He) were 0.552 and 0.472, respectively. And the average genetic differentiation coefficient (Fst) was 0.238. The average polymorphism information content (PIC) was 0.421 and the gene flow (Nm) was 0.806. The results of the DAPC, PCoA and UPGMA analyses showed that the six populations can be divided into three sub-categories: Group І included ZT, HZ and four individuals of SM. Group II included EY, LS and the six remaining individuals of SM; and group III included MG; SM population include mixed genetic components from І and ІІ. A total of 35 variable sites were detected in the three cpDNA combinations, forming 13 haplotypes. Among them, haplotype H5 was the most widely distributed in the population, while the remaining ones were of private haplotypes. Analysis of molecular variance (AMOVA) showed that genetic variation within the population was greater than between populations. The study clarifies that P. yunnanensis has geographical distribution characteristics and is suited to in situ conservation. As ZT population has the highest geneticdiversity and contains seven chloroplast haplotypes, it should be given protection priority.

Key words: Populus yunnanensis, genetic diversity, genetic structure, molecular marker, SSR, cpDNA

Table 1

Geographic information and sample size of Populus yunnanensis"

种群 Population 代号 Code 样本量 Sample size 纬度 Latitude 经度 Longitude 海拔 Altitude (m)
昭通 Zhaotong ZT 12 27°33°52″-27°38°29″ N 103°45°05″-103°46°43″ E 1,802-1,914
会泽 Huize HZ 12 26°12°07″-26°23°42″ N 103°15°19″-103°24°09″ E 2,118-2,303
嵩明 Songming SM 10 25°12°07″-25°17°42″ N 103°02°42″-103°03°43″ E 1,900-1,930
洱源 Eryuan EY 12 26°05°56″-26°08°17″ N 99°58°13″-100°00°08″ E 2,056-2,060
拉市海 Lashihai LS 12 26°51°03″-27°00°28″ N 100°08°58″-100°15°24″ E 2,418-2,657
美姑 Meigu MG 6 28°19°40″-28°20°09″ N 103°08°22″-103°08°44″ E 1,944-2,027

Table 2

SSR primer sequence and amplification results of Populus yunnanensis"

Table 3

Three chloroplast DNA primers sequence information of Populus yunnanensis"

名称 Name 区域 Primer area 正向序列 Forward primer sequence (5’-3’) 反向序列 Reverse primer sequence (5’-3’)
CO2 trnK AGATGGAAAAAAGAGAGGATAGAGG CAAATAATATCCAAATACCAAACCC
CO5 rpoC1 CGAATGGAAGACATAGACAAGT AAGTGACCTTCGGGAGCTTCTC
CO9 atpF TTGAAGTCCAGACAGAGCAGGTTAC GGTCAAACAACTATTCAAAGTCCCT

Table 4

Genetic diversity of Populus yunnanensis based on SSR and cpDNA. Population codes see Table 1."

种群
Popula-tion
等位基因Number of alleles (Na) 有效等位
基因
Number of effective alleles (Ne)
观测杂合度Observed heterozygosity (Ho) 期望杂合度Expected heterozygosity (He) Shannon’s
信息指数Shannon’s information content (I)
近交系数Inbreeding coefficient (F) 单倍型多态性
Haplotype diversity (h)
核苷酸
多样性Nucleotide diversity (π)
单倍型组成(个体数)
Haplotype composition
(No. of individuals)
ZT 2.000 1.695 0.537 0.345 0.514 -0.439 0.864 0.00055 H1(3); H2(1); H3(1); H4(1);
H5(4); H6(1); H7(1)
HZ 2.000 1.759 0.522 0.345 0.528 -0.432 - - H5(12)
SM 2.265 1.806 0.532 0.368 0.585 -0.313 - - H5(10)
EY 2.559 1.904 0.520 0.385 0.639 -0.190 0.455 0.00013 H5(9); H10(1); H11(1); H12(1)
LS 2.441 1.862 0.559 0.390 0.627 -0.260 0.378 0.00025 H5(10); H8(1); H9(1)
MG 1.794 1.623 0.495 0.324 0.473 -0.454 0.333 0.00017 H5(5); H13(1)
平均Mean 2.177 1.775 0.528 0.360 0.561 -0.341 0.402 0.00020

Fig. 1

Cluster membership probabilities of each genet based on the discriminant functions of DAPC (K = 2, 3, 4, 5, 6). Population codes see Table 1."

Fig. 2

Principal coordinates analysis and clustering dendrogram of Populus yunnanensis. (A) Principal coordinates analysis; (B) UPGMA dendrogram based on genetic distance with SSR data. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. Population codes see Table 1."

Table 5

Analysis of molecular variation (AMOVA) within and among populations based on the SSR and cpDNA"

变异来源
Source of
variation
自由度
df
变异值
Estimated variance of components
变异来源占比
Percentage of variation (%)
遗传分化系数
Genetic differentiation coefficient (Fst)
基因流
Gene flow (Nm)
SSR cpDNA SSR cpDNA SSR cpDNA
种群间
Among population
5 1.966 9.663 18 15
种群内
Within populations
59 9.016 39.047 82 85
总计 Total 64 10.982 48.710 100 100 0.237 0.148 0.806

Table 6

Genetic differention (Fst, above diagonal) and gene flow (Nm, below diagonal) among populations. Population codes see Table 1."

ZT HZ SM EY LS MG
ZT - 0.081 0.182 0.227 0.266 0.434
HZ 2.837 - 0.171 0.217 0.228 0.424
SM 1.124 1.214 - 0.174 0.124 0.409
EY 0.849 0.904 1.186 - 0.101 0.340
LS 0.689 0.844 1.763 2.216 - 0.372
MG 0.327 0.339 0.362 0.486 0.422 -

Table 7

Mutation sites of 13 haplotypes in chloroplast DNA fragments of Populus yunnanensis"

单倍型 Hap-
lotype
变异位点 Mutation sites
CO2 CO5 CO9
1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3
6 7 8 8 8 8 8 8 8 9 9 9 9 9 9 9 0 0 1 3 4 5 5 6 6 6 6 6 6 1 3 3 3 4 7
6 9 4 6 6 7 8 8 9 0 0 0 0 1 4 9 0 2 9 3 3 7 8 6 6 6 7 8 8 2 0 3 8 2 7
3 3 2 4 6 1 3 7 7 1 2 3 8 0 3 5 2 7 8 4 2 0 5 0 1 3 4 4 9 3 1 5 1 3 2
H1 - - - G A - - - A A - C - G - G C - C A C T - C T A C C C - - T G G -
H2 . . . . . . . . . . . G . . . . . . . . . C . . . . . . . . . . . . .
H3 . . . . . . . . . C . G . . . . . . . . . C . . . . . . . . . . . . .
H4 . . . A G A T A . . . G . A T . . . . . - . . . . . . . . . . . . . .
H5 . . . . . . . . . . . G . . . . . . . . . C G . . . . . . . . . . . .
H6 . . T . . . . . T . . G T . . . . . . . . . . . . . . . . . . . A . .
H7 . T . . . . . . . . . G . . . . T . T . T . G . . . . . . A . . . . .
H8 . . . . . . T C T . . G . . . . . C . . T C . . . . . . . . . . . . .
H9 . . . . . . . . . . . G . . . A . . . . . C . . . . . . . . T G . . .
H10 . . . . . . . . . . . G . . . . . . . . . C . . . . . A - . . . . . .
H11 . . . . . . . . . . A G . . . . . . . . . C . . . . . . . . . . . A .
H12 G . . - G A . . . . . G . . . . . . . . . C . . . . . . . . . . . . .
H13 . . . . . . . . . . . G . . . . . . . . . C . - - T - A - . . . . . A

Fig. 3

Haplotype network of Populus yunnanensis based on cpDNA. (A) Haplotype geographical distribution map. The circle size represents the number of individuals in the population. Size of pie charts is proportional to the numbers of individuals sequenced in each population. (B) Median-joining network; (C) The maximum parsimony consensus tree (MP). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1,000 replicates) are shown next to the branches. Branches corresponding to partitions reproduced in less than 50% bootstrap replicates are collapsed. Population codes see Table 1."

[1] Allen G, Flores-Vergara M, Krasynanski S, Kumar S, Thompson WF ( 2006) A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols, 1, 2320-2325.
[2] Bai WN, Zhang DY ( 2014) Current status and future directions in plant phylogeography. Chinese Bulletin of Life Sciences, 26, 125-137. (in Chinese with English abstract)
[ 白伟宁, 张大勇 ( 2014) 植物亲缘地理学的研究现状与发展趋势. 生命科学, 26, 125-137.]
[3] Bandelt HJ, Forster P, Röhl A ( 1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
doi: 10.1093/oxfordjournals.molbev.a026036
[4] Burland TG ( 2000) DNASTAR’s Lasergene sequence analysis software. Methods in Molecular Biology, 132, 71-91.
doi: 10.1385/1-59259-192-2:71 pmid: 10547832
[5] Chen K ( 2007) Genetic Relationships among Poplar Species in Section Tacamahaca Spach from Western Sichuan of China. PhD dissertation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu. (in Chinese with English abstract)
[ 陈珂 ( 2007) 川西青杨组(Section Tacamahaca Spach)不同种的亲缘关系分析. 博士学位论文, 中国科学院成都生物研究所, 成都.]
[6] Chen XM, He ZH, Shi JR, Xia LQ, Rick W, Zhou Y, Jiang GL ( 2003) Genetic diversity of high quality winter wheat varieties (lines) based on SSR markers. Acta Agronomica Sinica, 29, 13-19. (in Chinese with English abstract)
[ 陈新民, 何中虎, 史建荣, 夏兰芹, Ward Rick, 周阳, 蒋国梁 ( 2003) 利用SSR标记进行优质冬小麦品种(系)的遗传多样性研究. 作物学报, 29, 13-19.]
[7] Chen XY ( 2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecologica Sinica, 20, 884-892. (in Chinese with English abstract)
[ 陈小勇 ( 2000) 生境片断化对植物种群遗传结构的影响及植物遗传多样性保护. 生态学报, 20, 884-892.]
[8] Crandall KA, Templeton AR ( 1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134, 959-969.
[9] DiFazio S, Slavov G, Rodgers-Melnick E, Martin J, Schackwitz W, Priya R, Tuskan G ( 2011) Inferring the evolutionary history of Populus trichocarpa from whole genome resequencing data. BMC Proceedings, 5, O1.
[10] Du QZ, Wang B, Wei ZZ, Zhang DQ, Li BL ( 2012) Genetic diversity and population structure of Chinese white poplar (Populus tomentosa) revealed by SSR markers. Journal of Heredity, 103, 853-862.
doi: 10.1093/jhered/ess061
[11] Ferradini N, Lancioni H, Torricelli R, Russi L, Ragione ID, Cardinali I, Marconi G, Gramaccia M, Concezzi L, Achilli A, Veronesi F, Albertini E ( 2017) Characterization and phylogenetic analysis of ancient Italian landraces of pear. Frontiers in Plant Science, 8, 751.
doi: 10.3389/fpls.2017.00751
[12] Golding GB ( 1987) The detection of deleterious selection using ancestors inferred from a phylogenetic history. Genetics Research, 49, 71-82.
doi: 10.1017/S0016672300026768
[13] Gong GT ( 2004) The geographic distribution and origin of Populus L. Journal of Sichuan Forestry Science and Technology, 25(2), 25-30. (in Chinese with English abstract)
[ 龚固堂 ( 2004) 杨属地理分布与起源初探. 四川林业科技, 25(2), 25-30.]
[14] Hamrick JL, Godt MJW, Sherman-Broyles SL ( 1992) Factors influencing levels of genetic diversity in woody plant species. New Forests, 6, 95-124.
doi: 10.1007/BF00120641
[15] He CZ, Che PY, Peng CY, Zhou XT, Duan AA, Wang DX, Xin PY ( 2010) A survey of research progress on gene resources of Populus yunnanensis. Journal of Southwest Forestry University, 30(1), 83-88. (in Chinese with English abstract)
[ 何承忠, 车鹏燕, 周修涛, 段安安, 王德新, 辛培尧 ( 2010) 滇杨基因资源及其研究概况. 西南林业大学学报, 30(1), 83-88.]
[16] He CZ, Zhang ZY, Duan AA, Feng XL ( 2009) Genetic Diversity Analysis of Populus yunnanensis by AFLP Markers. China Forestry Publishing House, Beijing. (in Chinese)
[ 何承忠, 张志毅, 段安安, 冯夏莲 ( 2009) 滇杨基因资源遗传多样性的AFLP分析. 中国林业出版社, 北京.]
[17] Jia HX, Ji HJ, Hu JJ, Lu MZ ( 2015) Fingerprints of SSR markers and ploidy detection for new Populus varieties. Scientia Silvae Sinicae, 51(2), 69-79. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20150209
[ 贾会霞, 姬慧娟, 胡建军, 卢孟柱 ( 2015) 杨树新品种的SSR指纹图谱构建和倍性检测. 林业科学, 51(2), 69-79.]
doi: 10.11707/j.1001-7488.20150209
[18] Jiang DC, Wu GL, Mao KS, Feng JJ ( 2015) Structure of genetic diversity in marginal populations of black poplar (Populus nigra L.). Biochemical Systematics and Ecology, 61, 297-302.
doi: 10.1016/j.bse.2015.06.014
[19] Jombart T, Devillard S, Balloux F ( 2010) Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genetics, 11, 94.
[20] Kumar S, Stecher G, Tamura K ( 2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870-1874.
doi: 10.1093/molbev/msw054
[21] Peakall R, Smouse PE ( 2006) GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
doi: 10.1111/men.2006.6.issue-1
[22] Peng YH ( 2006) Population Genetic Survey of Populus cathayana Rehd. Originating from eastern edge of Qinghai-Tibetan Plateau of China. PhD dissertation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu. (in Chinese with English abstract)
[ 彭幼红 ( 2006) 青藏高原东缘青杨(Populus cathayana Rehd.)遗传多样性研究. 博士学位论文, 中国科学院研究生院成都生物研究所, 成都.]
[23] Polzin T, Daneshmand SV ( 2003) On Steiner trees and minimum spanning trees in hypergraphs. Operations Research Letters, 31, 12-20.
doi: 10.1016/S0167-6377(02)00185-2
[24] Posada D, Crandall KA ( 2001) Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16 , 37-45.
[25] Qiu YX, Fu CX, Comes HP ( 2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
doi: 10.1016/j.ympev.2011.01.012
[26] Retief JD ( 1999) Phylogenetic analysis using PHYLIP. Methods in Molecular Biology, 132, 243-258.
[27] Roy JK, Lakshmikumaran MS, Balyan HS, Gupta PK ( 2004) AFLP-based genetic diversity and its comparison with diversity based on SSR, SAMPL, and phenotypic traits in bread wheat. Biochemical Genetics, 42, 43-59.
doi: 10.1023/B:BIGI.0000012143.48298.71
[28] Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R ( 2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19, 2496-2497.
doi: 10.1093/bioinformatics/btg359
[29] Schuelke M ( 2000) An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology, 18, 233-234.
[30] Semerikova SA, Semerikov VL ( 2014) Molecular phylogenetic analysis of the genus Abies (Pinaceae) based on the nucleotide sequence of chloroplast DNA. Genetika, 50, 12-25.
[31] Shang ZH, Yao AX ( 2002) Biological genetic diversity research methods and their protective measures. Journal of Ningxia Agricultural College, 23(1), 66-69. (in Chinese)
[ 尚占环, 姚爱兴 ( 2002) 生物遗传多样性研究方法及其保护措施. 宁夏农学院学报, 23(1), 66-69.]
[32] Shen XF, Wu ML, Liao BS, Liu ZX, Bai R, Xiao SM, Li XW, Zhang BL, Xu J, Chen SL ( 2017) Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules, 22, 1330.
doi: 10.3390/molecules22081330
[33] Tippmann HF ( 2004) Analysis for free: Comparing programs for sequence analysis. Briefings in Bioinformatics, 5, 82-87.
doi: 10.1093/bib/5.1.82
[34] Wan XQ, Zhang F, Zhong Y, Wang CL, Ding YH, Hu TX, Zhai MP, Qian ZL ( 2009) Conservation and application of the genetic resource of native poplars in Southwest China. Scientia Silvae Sinicae, 45(4), 139-144. (in Chinese with English abstract)
doi: 10.11707/j.1001-7488.20090423
[ 万雪琴, 张帆, 钟宇, 王长亮, 丁云海, 胡庭兴, 翟明普, 钱宗亮 ( 2009) 中国西南地区乡土杨树基因资源的保护与利用. 林业科学, 45(4), 139-144.]
doi: 10.11707/j.1001-7488.20090423
[35] Wang J, Li ZJ, Guo QH, Ren GP, Wu YX ( 2011) Genetic variation within and between populations of a desert poplar (Populus euphratica) revealed by SSR markers. Annals of Forest Science, 68, 1143-1149.
doi: 10.1007/s13595-011-0119-6
[36] Wang JL, Gao QB, Fu PC, Gulzar K, Chen SL, Zhang FQ ( 2014) Phylogeography of Spiraea mongolica (Rosaceae) on the Qinghai-Tibetan Plateau and adjacent highlands. Acta Botanica Boreali-Occidentalia Sinica, 10, 1981-1991. (in Chinese with English abstract)
[ 王久利, 高庆波, 付鹏程, Gulzar K, 陈世龙, 张发起 ( 2014) 青藏高原及其毗邻山区蒙古绣线菊谱系地理学研究. 西北植物学报, 34, 1981-1991.]
[37] Xu WY ( 1988) Poplar. Heilongjiang People’s Publishing House. Harbin. (in Chinese)
[ 徐纬英 ( 1988) 杨树. 黑龙江人民出版社, 哈尔滨.]
[38] Yan LQ, Li JM, Yuan T, Zhou AP, Zong D, Li D, Xin PY, He CZ ( 2016) Genetic diversity analysis of Populus yunnanensis by SRAP markers. Biotechnology Bulletin, 32, 159-167. (in Chinese with English abstract)
[ 颜璐茜, 李佳蔓, 员涛, 周安佩, 纵丹, 李旦, 辛培尧, 何承忠 ( 2016) 滇杨遗传多样性的SRAP分析. 生物技术通报, 32, 159-167.]
[39] Yu SQ, Liu J, Fu DR, Liu DJ, Liu YQ ( 2003) Characteristics of Tacamahaca genes in the Western Sichuan Plateau. Journal of Zhejiang Forestry College, 20, 27-31. (in Chinese with English abstract)
[ 余树全, 刘军, 付达荣, 刘大健, 刘友全 ( 2003) 川西高原青杨派基因资源特点. 浙江林学院学报, 20(1), 27-31.]
[40] Závada T, Malik RJ, Kesseli RV ( 2017) Population structure in chicory (Cichorium intybus): A successful U. S. weed since the American revolutionary war. Ecology and Evolution, 7, 4209-4219.
doi: 10.1002/ece3.2017.7.issue-12
[41] Zeng YF, Zhang JG, Abuduhamiti B, Wang WT, Jia ZQ ( 2018) Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations. BMC Evolutionary Biology, 18, 75.
doi: 10.1186/s12862-018-1194-1
[42] Zhao N, Liu J ( 1994) Taxonomic studies on Populus L. in Southwestern China (II). Journal of Wuhan Botanical Research, 9, 225-232. (in Chinese with English abstract)
[ 赵能, 刘军 ( 1994) 中国西南地区杨属的分类学研究(II). 武汉植物科学学报, 9, 225-232.]
[43] Zheng HL, Fan LQ, Milne RI, Zhang L, Wang YL, Mao KS ( 2017) Species delimitation and lineage separation history of a species complex of aspens in China. Frontiers in Plant Science, 8, 375.
[44] Zong D, Yuan T, Zhou AP, Liu DY, Zheng Y, Duan AA, He CZ ( 2014) Analysis of genetic background of 52 Populus yunnanensis superior trees by AFLP markers. Journal of Northwest Forestry University, 29, 103-108. (in Chinese with English abstract)
[ 纵丹, 员涛, 周安佩, 刘东玉, 郑元, 段安安, 何承忠 ( 2014) 滇杨优树遗传多样性的AFLP分析. 西北林学院学报, 29, 103-108.]
[1] Jie-Li HE. Development of EST-SSR and Evaluation of Genetic Diversity of Common Millet (Panicum miliaceum) [J]. Chin Bull Bot, 2019, 54(5): 0-0.
[2] CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
[3] Xie Lifeng, Li Ning, Li Ye, Yao Minghua. Genetic Diversity and Population Structure of Eggplant (Solanum melongena) Germplasm Resources Based on SRAP Method [J]. Chin Bull Bot, 2019, 54(1): 58-63.
[4] Tao Naiqi, Zhang Bin, Liu Xinkai, Zhou Heda, Zhong Naisheng, Yan Danfeng, Zhang Min, Gao Jiyin, Zhang Wenju. Identification of 21 New Camellia Hybrid Varieties by Fluorescence-labelled Simple Sequence Repeat Markers [J]. Chin Bull Bot, 2019, 54(1): 37-45.
[5] Dexin Sun, Xiang Liu, Shurong Zhou. Dynamical changes of diversity and community assembly during recovery from a plant functional group removal experiment in the alpine meadow [J]. Biodiv Sci, 2018, 26(7): 655-666.
[6] Shaoshuai Yu, Caili Lin, Shengjie Wang, Wenxin Zhang, Guozhong Tian. Structures of the tuf gene and its upstream part genes and characteristic analysis of conserved regions and activity from related gene promoters of a phytoplasma [J]. Biodiv Sci, 2018, 26(7): 738-748.
[7] Wenju Zhang,Jun Rong,Chaoling Wei,Lianming Gao,Jiakuan Chen. Domestication origin and spread of cultivated tea plants [J]. Biodiv Sci, 2018, 26(4): 357-372.
[8] Shengyuan Qin,Jun Rong,Wenju Zhang,Jiakuan Chen. Cultivation history of Camellia oleifera and genetic resources in the Yangtze River Basin [J]. Biodiv Sci, 2018, 26(4): 384-395.
[9] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding [J]. Biodiv Sci, 2018, 26(3): 217-228.
[10] Xunhe Huang,Zheqi Yu,Zhuoxian Weng,Danlin He,Zhenhua Yi,Weina Li,Jiebo Chen,Xiquan Zhang,Bingwang Du,Fusheng Zhong. Mitochondrial genetic diversity and maternal origin of Guangdong indigenous chickens [J]. Biodiv Sci, 2018, 26(3): 238-247.
[11] Zhu Yujia, Jiao Kaili, Luo Xiujun, Feng Shangguo, Wang Huizhong. Genetic Relationship of Physalis Plants Revealed by Simple Sequence Repeat Markers [J]. Chin Bull Bot, 2018, 53(3): 305-312.
[12] Ren Mengyun, Du Leshan, Chen Yanjun, Zhang Dun, Shen Qi, Guan Xiao, Zhang Yindong. Analysis on Genetic Diversity of Cynomorium songaricum by ITS Sequence [J]. Chin Bull Bot, 2018, 53(3): 313-321.
[13] Xingtong Wu,Lu Chen,Minqiu Wang,Yuan Zhang,Xueying Lin,Xinyu Li,Hong Zhou,Yafeng Wen. Population structure and genetic divergence in Firmiana danxiaensis [J]. Biodiv Sci, 2018, 26(11): 1168-1179.
[14] Qingqing Liu,Zhijun Dong. Population genetic structure of Gonionemus vertens based on the mitochondrial COI sequence [J]. Biodiv Sci, 2018, 26(11): 1204-1211.
[15] ZHANG Li-Wen, HAN Guang-Xuan. A review on the relationships between plant genetic diversity and ecosystem functioning [J]. Chin J Plan Ecolo, 2018, 42(10): 977-989.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ching Ren-Chang. Three New Fern Genera[J]. J Syst Evol, 1966, 11(1): 17 -30 .
[2] . [J]. Chin Bull Bot, 1999, 16(增刊): 45 -46 .
[3] Wang Zhong-min. An Introduction to 《The Science of Allelopathy》[J]. Chin J Plan Ecolo, 1989, 13(2): 194 -196 .
[4] ZHANG Zhi-Dong, ZANG Run-Guo. PREDICTING POTENTIAL DISTRIBUTIONS OF DOMINANT WOODY PLANT KEYSTONE SPECIES IN A NATURAL TROPICAL FOREST LANDSCAPE OF BAWANGLING, HAINAN ISLAND, SOUTH CHINA[J]. Chin J Plan Ecolo, 2007, 31(6): 1079 -1091 .
[5] Zehai Zhao;Jianguo Cao;Yujie Fu;Zhonghua Tang;Yuangang Zu. Distribution Characteristics of Glycyrrhizic Acid in Wild and Cultivated Liquorices and Their Applications[J]. Chin Bull Bot, 2006, 23(2): 164 -168 .
[6] ZHANG CHUNLI, LIN MULAN, YANG JIHONG, SHI XIAOYAN. Detection of the Paulownia Witches' Broom Mycoplasmalike Organism by Polymerase Chain Reaction[J]. Biodiv Sci, 1994, 02(Suppl.): 55 -60 .
[7] Alberto L. Teixido. Indirect costs counteract the effects of pollinator-mediated phenotypic selection on corolla size in the Mediterranean shrub Halimium atriplicifolium[J]. J Plant Ecol, 2014, 7(4): 364 -372 .
[8] HE Tong-Xin,LI Yan-Peng,ZHANG Fang-Yue,WANG Qing-Kui. Effects of understory removal on soil respiration and microbial community composition structure in a Chinese fir plantation[J]. Chin J Plan Ecolo, 2015, 39(8): 797 -806 .
[9] Wang-Zhen GUO, Dong FANG, Wen-Duo YU and Tian-Zhen ZHANG. Sequence Divergence of Microsatellites and Phylogeny Analysis in Tetraploid Cotton Species and Their Putative Diploid Ancestors[J]. J Integr Plant Biol, 2005, 47(12): 1418 -1430 .
[10] LU Jin-Yao;LUO Ai-Ling and LIANG Zheng. Some Improvement of TD-PAGE Technology[J]. Chin Bull Bot, 1998, 15(03): 69 -72 .