Biodiversity Science ›› 2018, Vol. 26 ›› Issue (5): 498-509.doi: 10.17520/biods.2018046

• Original Papers • Previous Article     Next Article

Heteromorphism of florets and reproductive characteristics in Heteracia szovitsii (Asteraceae), a desert ephemeral annual herb

Jannathan Mamut1, Xiaojun Cheng1, Dunyan Tan1, 2, *()   

  1. 1 Xinjiang Key Laboratory of Grassland Resources and Ecology & Ministry of Education Key Laboratory for Western Arid Region Grassland Resources and Ecology, College of Grassland and Environment Sciences, Xinjiang Agricultural University, Ürümqi 830052;
    2 College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000
  • Received:2018-02-09 Accepted:2018-05-15 Online:2018-09-11
  • Tan Dunyan
  • About author:

    # Co-first authors

Heteracia szovitsii (Asteraceae) is a common ephemeral annual species occurring only in desert regions of northern Xinjiang in China, with short-lived florets and achenes within a single infructescence (capitulum) having three different morphs. To explore the relationship between morphological differences in florets and the polymorphic fruits and reproductive characteristics, we compared floral traits, flowering pattern, and flower visitors to the three floral morphs in H. szovitsii, and reproductive efforts by hand pollination treatments. The results showed that: Peripheral and intermediate florets did not have pappus, while central florets did. Number of florets and length and width of ligules were significantly different among the three floral morphs in a single capitulum. Further, the length of stigma lobes of peripheral florets was significantly greater than that of central florets, the length of ovary beaks of central florets was significantly greater than that of peripheral and intermediate florets. Differences in morphology with or without pappus, width of ovaries, length of ovary beaks among three morphs of florets were consistent with those of three morphs of achenes. These results indicated that the numbers of three morphs of achenes and their morphology had differentiated during the development period of three kinds of florets. The concentrated flowering pattern of blooming in the morning of three kinds of florets within capitulum, made the capitulum act as functional units, i.e. like a flower, thereby increasing flower display and attracting pollinators. Pollinator visits may facilitate outcrossing during the short flower longevity. Pollen grains of the three floral morphs could germinate and produce pollen tubes on their stigma lobes, indicating that this species is self-compatible. The three kinds of florets bagged without emasculation all can produce achenes, but fruit-set was all significantly lower than that of natural pollination, suggesting that this species could be autogamous and cross-pollination could increase fruit set. Due to the protandrous and the pump/bush mechanism of secondary pollen presentation, pollen of three floral morphs was present at the apex of the stigma and on the brush of hairs of both the upper part of style and outside lateral of the closed stigma lobes. This character prolonged the duration of pollen presentation (male stage), and reduced the interference between male and female functions within flower, promoted cross pollination, thereby improving male/female fitness. Meanwhile, it could allow the pollen deposition on the lobes when the stigma lobes expanded to complete self-pollination autonomously. Halictus sexnotatulus was the most frequent floral visitor, and the duration time among insects visiting, inflorescence opening, highest pollen viability and the highest stigma receptivity had a high degree of synchronicity. This strategy facilitated the output of pollen at the male stage and receipt of pollen on the stigma at the female stage, thus ensuring that pollination was completed quickly and effectively in a short time after flowering and that outcrossing was successful. In the desert spring environment of the northern Xinjiang, H. szovitsii with short-lived florets can not only provide reproductive assurance via autonomous self-pollination quickly under the condition of the lack of pollinators and/or limited activity due to low temperatures and windy conditions, but also can provide the opportunities for outcrossing, through concentrated flowering, protandry and secondary pollen presentation when environmental conditions became favorable for pollinator activities.

Key words: Heteracia szovitsii, heteromorphic florets, short-lived florets, autonomous self-pollination, secondary pollen presentation, pollination

Fig. 1

The morphology of the capitulum and florets, its pollen presentation and flower visitors of Heteracia szovitsii. (A) Longitudinal section of the capitulum; (B) Florets and their pollen presentation (a, Peripheral floret; b, Intermediate floret; c, Central floret; d, Ovary beaks; e, Pappi; f, Pollen presentation); (C) Halictus sexnotatulus; (D) Sphaerophoria cylindrica; (E) Scaeva montana."

Table 1

Flowering dynamics of the three floral morphs in the capitula of Heteracia szovitsii (mean ± SE)"

Diurnal flowering dynamics
Peripheral floret
Intermediate floret
Central floret
Duration time from corolla ligules expanding to stigma
exposure from sygensious stamen tube (min)
19.13 ± 0.60a 12.20 ± 0.59b 10.53 ± 0.45c 67.718 < 0.001
柱头伸出到柱头裂片完全开展持续时间 Duration time from stigma exposure until its lobes are completely expanded (min) 51.40 ± 0.98a 45.10 ± 1.28b 33.23 ± 0.80c 78.218 < 0.001
Duration time from stigma lobes completely expanded until
corolla ligules wilt and close (min)
110.20 ± 1.71a 57.40 ± 1.35b 18.83 ± 0.71c 119.43 < 0.001
单花开放持续时间 Anthesis duration time per floret (min) 173.81 ± 2.33a 109.77 ± 1.37b 74.47 ± 1.23c 855.503 < 0.001

Table 2

The quantitative characteristics of florets in capitulum of Heteracia szovitsii (mean ± SE)"

Type of floret
Peripheral floret
Intermediate floret
Central floret
每花序花数目 No. of florets per capitulum 8.02 ± 0.13a 10.10 ± 0.35b 15.60 ± 0.63c 100.09 < 0.05
冠毛 Pappi 数目 Number - - 44.85 ± 1.21 - -
长 Length (mm) - - 3.01 ± 0.04 - -
花冠 Corolla 舌片 Ligule 长 Length (mm) 4.89 ± 0.10a 4.28 ± 0.08b 3.92 ± 0.05c 37.82 < 0.05
宽 Width (mm) 1.84 ± 0.06a 1.56 ± 0.03b 1.37 ± 0.02c 46.02 < 0.05
花冠筒长 Length of corolla tubes (mm) 1.49 ± 0.05a 1.37 ± 0.07a 1.35 ± 0.06a 1.71 0.19
雄蕊 Stamen 花丝长 Length of filaments (mm) 1.07 ± 0.05a 1.02 ± 0.07a 1.04 ± 0.06a 0.17 0.85
花药长 Length of anthers (mm) 1.10 ± 0.04a 1.15 ± 0.03a 1.17 ± 0.04a 1.23 0.30
雌蕊 Pistil
子房 Ovary 长 Length (mm) 1.18 ± 0.06a 1.03 ± 0.05b 0.91 ± 0.03b 8.62 < 0.05
宽 Width (mm) 0.93 ± 0.04a 0.57 ± 0.03b 0.39 ± 0.02c 70.91 < 0.05
子房喙长 Length of ovary beaks (mm) 0.30 ± 0.02a 0.32 ± 0.02a 0.36 ± 0.01b 4.34 < 0.05
花柱长 Length of style (mm) 4.06 ± 0.15a 4.21 ± 0.14a 3.84 ± 0.15a 1.64 0.20
柱头裂片长 Length of stigma lobes (mm) 0.81 ± 0.03a 0.77 ± 0.03ab 0.72 ± 0.01b 3.13 < 0.05

Fig. 2

Pollen deposition, pollen germination and pollen tube growth on stigma of Heteracia szovitsii under the fluorescence microscope. (A) Pollen deposition; (B) Pollen germination (a, Pollen; b, Pollen tube)"

Fig. 3

Dynamic curve of pollen viability in the three floral morphs of Heteracia szovitsii"

Table 3

Fruit-set in the three floral morphs of Heteracia szovitsii under different treatments (mean ± SE)"

花类型 Type of florets 自然传粉 Natural pollination 不去雄套纸袋 Bagged florets without emasculation F1 P
外围小花 Peripheral floret 90.16 ± 1.79Aa 79.05 ± 2.42Ab 6.08 < 0.001
过渡小花 Intermediate floret 88.14 ± 1.81Aa 74.60 ± 3.01Ab 7.90 < 0.001
中央小花 Central floret 87.87 ± 1.56Aa 77.58 ± 1.71Aa 8.16 < 0.001
F2 0.53 0.86
P 0.592 0.426

Fig. 4

The dynamics of visiting frequency of main pollinator Halictus sexnotatulus to flowers of Heteracia szovitsii"

1 Aguado M, Martínez-Sánchez JJ, Reig-Armiñana J, García- Breijo FJ, Franco JA, Vicente MJ (2011) Morphology, anatomy and germination response of heteromorphic achenes of Anthemis chrysantha J. Gay (Asteraceae), a critically endangered species. Seed Science Research, 21, 283-294.
2 Aguado M, Vicente MJ, Miralles J, Franco JA, Martínez-Sánchez JJ (2012) Aerial seed bank and dispersal traits in Anthemis chrysantha (Asteraceae), a critically endangered species. Flora, 207, 275-282.
3 An ZX, Shen GM, Zhai DT, Wei Y, Dilixiat (1999) Compositae. In: Flora Xinjiangensis, Tomus 5 (ed. An ZX), pp. 371-373. Xinjiang Science and Technology and Hygiene Publishing House, Ürümqi. (in Chinese)
[安争夕, 沈观冕, 翟大彤, 魏岩, 地立夏提 (1999) 新疆植物志, 第五卷. 371-373页. 新疆科技卫生出版社, 乌鲁木齐.]
4 Andersson S (2001) The genetic basis of floral variation in Senecio jacobaea (Asteraceae). Journal of Heredity, 92, 409-414.
5 Ashman TL, Schoen DJ (1994) How long should flowers live? Nature, 371, 788-791.
6 Barrett SCH (2002) The evolution of plant sexual diversity. Nature Reviews Genetics, 3, 274-284.
7 Bello MA, Álvarez I, Torices R, Fuertes-Aguilar J (2013) Floral development and evolution of capitulum structure in Anacyclus (Anthemideae, Asteraceae). Annals of Botany, 112, 1597-1612.
8 Bertin RI, Gwisc GM (2002) Floral sex ratios and gynomonoecy in Solidago (Asteraceae). Biological Journal of the Linnean Society, 77, 413-422.
9 Bertin RI, Newman CM (1993) Dichogamy in angiosperms. The Botanical Review, 59, 112-152.
10 Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants. Nature, 391, 238-239.
11 Brändel M (2004) Dormancy and germination of heteromorphic achenes of Bidens frondosa. Flora, 199, 228-233.
12 Brändel M (2007) Ecology of achene dimorphism in Leontodon saxatilis. Annals of Botany, 100, 1189-1197.
13 Burtt BL (1977) Aspects of diversification in the capitulum. In: Biololgy and Chemistry of the Compositae (eds Heywood VH, Harborne JB, Turner BL), pp. 41-59. Academic Press, London.
14 Carleial S, van Kleunen M, Stift M (2017) Relatively weak inbreeding depression in selfing but also in outcrossing populations of North American Arabidopsis lyrata. Journal of Evolutionary Biology, 30, 1994-2004.
15 Castro S, Silveira P, Navarro L (2008) How does secondary pollen presentation affect the fitness of Polygala vayredae (Polygalaceae)? American Journal of Botany, 95, 706-712.
16 Cheng XJ, Tan DY (2009) Bet hedging in heteromorphic achenes of Heteracia szovitsii (Asteraceae), a desert ephemeral. Chinese Journal of Plant Ecology, 33, 901-910. (in Chinese with English abstract)
[成小军, 谭敦炎 (2009) 短命植物异喙菊异形果实的两头下注策略. 植物生态学报, 33, 901-910.]
17 Cheptou PO, Lepart J, Escarre J (2001) Differential outcrossing rates in dispersing and non-dispersing achenes in the heterocarpic plant Crepis sancta (Asteraceae). Evolutionary Ecology, 15, 1-13.
18 Cid P, Aguirre C, Sánchez MA, Zamorano D, Mihoc M, Salazar E, Chacón G, Navarrete H, Rosas M, Prieto H (2017) An Internet-based platform for the estimation of outcrossing potential between cultivated and Chilean vascular plants. Ecology and Evolution, 7, 2480-2488.
19 Dafni A, Kevan PG, Husband BC (2005) Practical Pollination Biology. Enviroquest Ltd., Cambridge & Ontario.
20 Darwin C (1862) On the Various Contrivances by Which British and Foreign Orchids Are Fertilized by Insects. J Murray, London.
21 Erbar C, Leins P (1989) On the early floral development and mechanisms of secondary pollen presentation in Campanula, Jasione and Lobelia. Botanische Jahrbücher für Systematik, 111, 29-55.
22 Erbar C, Leins P (1995) Portioned pollen release and the syndromes of secondary pollen presentation in the Campanulales-Asterales-complex. Flora, 190, 323-338.
23 Erbar C, Leins P (2015) Diversity of styles and mechanisms of secondary pollen presentation in basal Asteraceae—New insights in phylogeny and function. Flora, 217, 109-130.
24 Guerrina M, Casazza G, Conti E, Macri C, Minuto L (2016) Reproductive biology of an Alpic paleo-endemic in a changing climate. Journal of Plant Research, 129, 477-485.
25 Howell GJ, Stater AT, Knox RB (1993) Secondary pollen presentation in angiosperms and its biological significance. Australian Journal of Botany, 41, 417-418.
26 Imbert E (1999) The effects of achene dimorphism on the dispersal in time and space in Crepis sancta (Asteraceae). Canadian Journal of Botany, 77, 508-513.
27 Imbert E (2001) Capitulum characters in a seed heteromorphic plant, Crepis sancta (Asteraceae): Variance partitioning and inference for the evolution of dispersal rate. Heredity, 86, 78-86.
28 Imbert E (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives in Plant Ecology, Evolution and Systematics, 5, 13-36.
29 Jorgensen R, Arathi HS (2013) Floral longevity and autonomous selfing are altered by pollination and water availability in Collinsia heterophylla. Annals of Botany, 112, 821-828.
30 Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature, 430, 884-887.
31 Koller D, Roth N (1964) Studies on the ecological and physiological significance of amphicarpy in Gyminarrhena micrantha (Compositae). American Journal of Botany, 51, 26-35.
32 Leins P, Erbar C (2006) Secondary pollen presentation syndromes of the Asterales—a phylogenetic perspective. Botanische Jahrbücher für Systematik, 127, 83-103.
33 Leverett LD, Jolls CL (2014) Cryptic seed heteromorphism in Packera tomentosa (Asteraceae): Differences in mass and germination. Plant Species Biology, 29, 169-180.
34 Li L, Dang CL (2007) Floral syndrome and breeding system of Erigeron breviscapus. Acta Ecologica Sinica, 27, 571-578. (in Chinese with English abstract)
[李鹂, 党承林 (2007) 短葶飞蓬(Erigeron breviscapus)的花部综合特征与繁育系统. 生态学报, 27, 571-578.]
35 Lloyd DG (1972) Breeding systems in Cotula L. (Compositae, Anthemideae). I. The array of monoclinous and diclinous systems. New Phytologist, 71, 1181-1194.
36 Lu Y, Huang SQ (2006) Adaptive advantages of gynomonoecious species. Acta Phytotaxonomica Sinica, 44, 231-239. (in Chinese with English abstract)
[卢洋, 黄双全 (2006) 论雌花两性花同株植物的适应意义. 植物分类学报, 44, 231-239.]
37 Mamut J, Tan DY, Cheng XJ (2011) Ecological significance of fruit heteromorphism in the annual ephemeral Senecio subdentatus. Chinese Journal of Plant Ecology, 35, 663-671. (in Chinese with English abstract)
[吉乃提汗·马木提, 谭敦炎, 成小军 (2011) 一年生短命植物疏齿千里光果实异形性的生态学意义. 植物生态学报, 35, 663-671.]
38 Mamut J, Tan DY (2014) Gynomonoecy in angiosperms: phylogeny, sex expression and evolutionary significance. Chinese Journal of Plant Ecology, 38, 76-90. (in Chinese with English abstract)
[吉乃提汗·马木提, 谭敦炎 (2014) 被子植物雌全同株性系统: 系统演化、性表达与进化意义. 植物生态学报, 38, 76-90.]
39 Mani MS, Saravanan JM (1999) Pollination Ecology and Evolution in Compositae (Asteraceae). Science Publishers, New Hampshire.
40 Mao ZM, Zhang DM (1994) The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 11(3), 1-26. (in Chinese)
[毛祖美, 张佃民 (1994) 新疆北部早春短命植物区系纲要. 干旱区研究, 11(3), 1-26.]
41 Maxwell CD, Zobel A, Woodfine D (1994) Somatic polymorphism in the achenes of Tragopogon dubious. Canadian Journal of Botany, 72, 1282-1288.
42 McEvoy PB (1984) Dormancy and dispersal in dimorphic achenes of tansy ragwort, Senecio jacobaea L. (Compositae). Oecologia, 61, 160-168.
43 McGinley MA (1989) Within and among plant variation in seed mass and pappus size in Tragopogon dubious. Canadian Journal of Botany, 67, 1298-1304.
44 Niu Y, Zhang ZQ, Liu CQ, Li ZM, Sun H (2015) A sexually dimorphic corolla appendage affects pollen removal and floral longevity in gynodioecious Cyananthus delavayi (Campanulaceae). PLoS ONE, 10, e0117149.
45 Paudel BR, Shrestha M, Dyer AG, Li QJ (2017) Ginger and the beetle: Evidence of primitive pollination system in a Himalayan endemic alpine ginger (Roscoea alpina, Zingiberaceae). PLoS ONE, 12, e0180460.
46 Peng DL, Zhang ZQ, Niu Y, Yang Y, Song B, Sun H, Li ZM (2012) Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 20, 286-299. (in Chinese with English abstract)
[彭德力, 张志强, 牛洋, 杨扬, 宋波, 孙航, 李志敏 (2012) 高山植物繁殖策略的研究进展. 生物多样性, 20, 286-299.]
47 Primack RB (1985) Longevity of individual of flowers. Annual Review of Ecology and Systematics, 16, 15-37.
48 Rosas-Guerrero?V, Hernández?D, Cuevas E (2017) Influence of pollen limitation and inbreeding depression in the maintenance of incomplete dichogamy in Salvia elegans. Ecology and Evolution, 7, 4129-4134.
49 Ruiz de Clavijo E (2005) The reproductive strategies of the heterocarpic annual Calendula arvensis (Asteraceae). Acta Oecologica, 28, 119-126.
50 Ruiz de Clavijo E, Jiménez MJ (1998) The influence of achene type and plant density on growth and biomass allocation in the heterocarpic annual Catananche lutea (Asteraceae). International Journal of Plant Sciences, 159, 637-647.
51 Schoen DJ, Ashman TL (1995) The evolution of floral longevity: Resource allocation to maintenance versus construction of repeated parts in modular organisms. Evolution, 49, 131-139.
52 Shabir PA, Nawchoo IA, Wani AA (2013) Floral phenology, secondary pollen presentation and pollination mechanism in Inula racemosa (Angiosperms: Asteraceae). Journal of Threatened Taxa, 5, 4498-4503.
53 Shi T (1997) Flora of China, Tomus 80 (1). Science Press, Beijing. (in Chinese)
[石铸 (1997) 中国植物志, 80卷第1册. 科学出版社, 北京.]
54 Soliman MI (2003) Genetic diversity of achene heteromorphism in Egyptian Calendula micrantha Tineo et Guss. Asian Journal of Plant Sciences, 2, 782-789.
55 Straka JR, Starzomski BM (2015) Fruitful factors: What limits seed production of flowering plants in the alpine? Oecologia, 178, 249-260.
56 Sun HZ, Lu JJ, Tan DY, Baskin JM, Baskin CC (2009) Dormancy and germination characteristics of the trimorphic achenes of Garhadiolus papposus (Asteraceae), an annual ephemeral from the Junggar Desert, China. South African Journal of Botany, 75, 537-545.
57 Sun HZ, Tan DY, Qu RM (2008) Characteristics of heteromorphic achenes of Garhadiolus papposus, an ephemeral Asteraceae species, with reference to their adaptations to desert environment. Biodiversity Science, 16, 353-361. (in Chinese with English abstract)
[孙华之, 谭敦炎, 曲荣明 (2008) 短命植物小疮菊异形瘦果特性及其对荒漠环境的适应. 生物多样性, 16, 353-361.]
58 Tan DY, Zhang Y, Wang AB (2010) A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance. Chinese Journal of Plant Ecology, 34, 72-88. (in Chinese with English abstract)
[谭敦炎, 张洋, 王爱波 (2010) 被子植物地下结实和地上/下两型结实的生态适应意义. 植物生态学报, 34, 72-88.]
59 Teixido AL, Méndez M, Valladares F (2011) Flower size and longevity influence florivory in the large-flowered shrub Cistus ladanifer. Acta Oecologica, 37, 418-421.
60 Torres-Díaz C, Gómez-González S, Stotz GC, Torres-Morales P, Paredes B, Pérez-Millaqueo M, Gianoli E (2011) Extremely long-lived stigmas allow extended cross-pollination opportunities in a high Andean plant. PLoS ONE, 6, e19497.
61 Venable DL, Levin DA (1985) Ecology of achene dimorphism in Heterotheca latifolia. I. Achene structure, germination and dispersal. Journal of Ecology, 73, 133-145.
62 Wang L, Dong M, Huang ZY (2010) Review of research on seed heteromorphism and its ecological significance. Chinese Journal of Plant Ecology, 34, 578-590. (in Chinese with English abstract)
[王雷, 董鸣, 黄振英 (2010) 种子异型性及其生态意义的研究进展. 植物生态学报, 34, 578-590.]
63 Wang YQ, Zhang DX, Renner SS, Chen ZY (2004) A new self-pollination mechanism. Nature, 431, 39-40.
64 Wetzstein HY, Porter JA, Janick J, Ferreira JFS (2014) Flower morphology and floral sequence in Artemisia annua (Asteraceae). American Journal of Botany, 101, 875-885.
65 Wu ZY, Lu AM, Tang YC, Chen ZD, Li DZ (2003) The Families and Genera of Angiosperms in China: A Comprehensive Analysis, pp. 889-946. Science Press, Beijing. (in Chinese)
[吴征镒, 路安民, 汤彦承, 陈之端, 李德铢 (2003) 中国被子植物科属综论, 889-946页. 科学出版社, 北京.]
66 Wu Y, Liu YR, Peng H, Yang Y, Liu GL, Cao GX, Zhang Q (2015) Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes. Chinese Journal of Plant Ecology, 39, 1-13. (in Chinese with English abstract)
[吴云, 刘玉蓉, 彭瀚, 杨勇, 刘光立, 操国兴, 张强 (2015) 高山植物全缘叶绿绒蒿在不同海拔地区的传粉生态学研究. 植物生态学报, 39, 1-13.]
67 Xie TP, Du GZ, Bu HY (2015) Floral sex allocation and gynomonoecy of Liguluria (Asteraceae) in the eastern Qinghai-Tibet Plateau. Acta Prataculturae Sinica, 24, 167-174. (in Chinese with English abstract)
[谢田朋, 杜国祯, 卜海燕 (2015) 青藏高原东部橐吾属植物的花性分配和雌全同株系统. 草业学报, 24, 167-174.]
68 Zhang AQ, Xiong YZ, Huang SQ (2014) Maintenance of self-incompatibility in peripheral populations of a circumboreal woodland subshrub. AoB Plants, 6, plu063.
69 Zhang DY (2004) Plant Life-History Evolution and Reproductive Ecology. Science Press, Beijing. (in Chinese)
[张大勇 (2004) 植物生活史进化与繁殖生态学. 科学出版社, 北京.]
70 Zhang Y, Zhong CL, Han Q, Jiang QB, Chen Y, Chen Z, Pinyopusarerk K, Bush D (2016) Reproductive biology and breeding system in Casuarina equisetifolia (Casuarinaceae)— implication for genetic improvement. Australian Journal of Botany, 64, 120-128.
71 Zhang ZQ, Li QJ (2009) Review of evolutionary ecology of floral longevity. Chinese Journal of Plant Ecology, 33, 598-606. (in Chinese with English abstract)
[张志强, 李庆军 (2009) 花寿命的进化生态学意义. 植物生态学报, 33, 598-606.]
[1] Xiang Wenqian, Ren Mingxun. (2019) Adaptive significance of yellow flowered Bombax ceiba (Malvaceae) . Biodiv Sci, 27(4): 373-379.
[2] Tu Yanli,Wang Liping,Wang Xilong,Wang Linlin,Duan Yuanwen. (2019) Status of invasive plants on local pollination networks: A case study of Tagetes minuta in Tibet based on pollen grains from pollinators . Biodiv Sci, 27(3): 306-313.
[3] Zhuang Ping. (2019) Progress on the fertility of Rhododendron . Biodiv Sci, 27(3): 327-338.
[4] Hao Tian,Wanjin Liao. (2018) Consequences of clonal growth on pollinator visitation in flowering plants . Biodiv Sci, 26(5): 468-475.
[5] Pei Yang,Yanqiong Peng,Ronghua Zhao,Darong Yang. (2018) Biological characteristics, threat factors and conservation strategies for the giant honey bee Apis dorsata . Biodiv Sci, 26(5): 476-485.
[6] Jiaxing Huang,Jiandong An. (2018) Species diversity, pollination application and strategy for conservation of the bumblebees of China . Biodiv Sci, 26(5): 486-497.
[7] Yuxian Wang,Zuojun Liu,Zhigang Zhao,Meng Hou,Xiaorui Zhang,Wanling Lü. (2018) Responses of floral longevity to pollination environments in 11 species from two alpine meadows . Biodiv Sci, 26(5): 510-518.
[8] Bao Yu, Qiao Yanan, Yan Xingfu, Wang Lingyan, Qu Wenjing, Tang Zhanhui. (2018) Prelimary Study of the Pollination Biology of Lychnis cognata and L. wilfordii . Chin Bull Bot, 53(5): 634-642.
[9] Jiudong Zhang, Lin Wang, Jie Sui, Xianhua Tian, Yi Ren. (2018) Self-pollination Mechanism of Actaea asiatica (Ranunculaceae) . Chin Bull Bot, 53(2): 212-218.
[10] Yaru Zhu, Yanbing Gong. (2017) Methods of wind pollination . Biodiv Sci, 25(8): 864-873.
[11] Daike Tian, Chun Li, Yan Xiao, Naifeng Fu, Yi Tong, Ruijuan Wu. (2017) Occurrence and characteristics of natural hybridization in Begonia in China . Biodiv Sci, 25(6): 654-674.
[12] Yu Tian,Cunzi Lan,Jing Xu,Xiushan Li,Junsheng Li. (2016) Assessment of pollination and China’s implementation strategies within the IPBES framework . Biodiv Sci, 24(9): 1084-1090.
[13] Rongqian Zheng, Zhenzhen Hou, Aiqin Zhang. (2016) The Schedule of Pollen Presentation and Pollination Adaption in an Early Spring Ephemeral Plant Gagea nigra . Chin Bull Bot, 51(5): 594-600.
[14] Zhenna Qian,Qianwan Meng,Mingxun Ren. (2016) Pollination ecotypes and herkogamy variation of Hiptage benghalensis (Malpighiaceae) with mirror-image flowers . Biodiv Sci, 24(12): 1364-1372.
[15] HUANG Yan-Bo,WEI Yu-Kun,WANG Qi,XIAO Yue-E,YE Xi-Yang. (2015) Floral morphology and pollination mechanism of Salvia liguliloba, a narrow endemic species with degraded lever-like stamens . Chin J Plan Ecolo, 39(7): 753-761.
Full text