Biodiversity Science ›› 2017, Vol. 25 ›› Issue (10): 1054-1064.doi: 10.17520/biods.2017155

• Original Papers: Plant Diversity • Previous Article     Next Article

Scale dependent effects of species diversity and structural diversity on aboveground biomass in a tropical forest on Barro Colorado Island, Panama

Shanshan Tan2, Renren Wang1, 2, Xiaoling Gong1, 2, Jiayao Cai2, Guochun Shen1, 2, *()   

  1. 1 Tiantong National Station for Forest Ecosystem Research, Ningbo, Zhejiang 315114
    2 School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241
  • Received:2017-05-26 Accepted:2017-09-01 Online:2018-05-05
  • Shen Guochun E-mail:gcshen@des.ecnu.edu.cn

With global decreases in species diversity, the effects of species diversity on aboveground biomass of forest communities, especially tropical forests which store nearly half of terrestrial carbon, have received much attention. It is commonly assumed that species diversity can promote the accumulation of aboveground biomass in forest communities. However, increasing evidence suggests that this positive effect of species diversity can be influenced or neutralized by structural diversity and various abiotic environmental variables. It is still far from clear whether scale dependent effects of various drivers of aboveground biomass exist. Using structural equation modeling, we examined direct and indirect drivers of aboveground biomass in a 50 ha tropical forest dynamics plot on Barro Colorado Island (BCI), Panama. Our results showed that the effect of species diversity on aboveground biomass was non-significant at the smallest scale and became significantly negative at larger scales. The strength of this negative effect increased with spatial scales. Conversely, structural diversity had a significant positive effect on aboveground biomass and the strength of this effect decreased with scale. Abiotic variables had some relationships with both types of diversity and can indirectly affect aboveground biomass. These results suggest that positive relationships between species diversity and aboveground biomass in conventional studies may be caused by structural diversity. The relationship between species diversity and aboveground biomass is more likely to be negative, due to under the gap dynamics and strong asymmetric competition in forest communities.

Key words: aboveground biomass, species diversity, structural diversity, spatial scale, abiotic factors, structural equation modeling, large-scale forest dynamics plot

Fig. 1

Relationships between species diversity and total aboveground biomass at different spatial scales in a 50 ha tropical forest dynamics plot (BCI plot). Solid lines and their corresponding grey area are the regression lines and 95% confidence intervals from the best fitted model. R2 and P are the adjusted R2 and significance of the whole regression model, respectively."

Fig. 2

Relationships between structural diversity and total aboveground biomass at different spatial scales in a 50 ha tropical forest dynamics plot (BCI plot). Solid lines and their corresponding grey area are the regression lines and 95% confidence intervals from the best fitted model. R2 and P are the adjusted R2 and significance of the whole regression model, respectively."

Table 1

The standardized effects of stem density, species richness and structural diversity on the aboveground biomass in our best structural equation model"

影响因子
Predictor
对地上生物量的效应
Pathway to aboveground biomass
空间尺度 Spatial scale
10 m × 10 m 20 m × 20 m 50 m × 50 m
立木密度
Stem density
直接效应 Direct effect - - -0.210
间接效应 Indirect effect 0.273 -0.005 -0.137
总效应 Total effect 0.273 -0.005 -0.347
物种丰富度
Species richness
直接效应 Direct effect - -0.113 -0.284
间接效应 Indirect effect 0.046 0.029 -
总效应 Total effect 0.046 -0.084 -0.284
结构多样性
Structural diversity
直接效应 Direct effect 0.650 0.541 0.181
间接效应 Indirect effect - -0.012 -
总效应 Total effect 0.650 0.529 0.181

Fig. 3

The best fitted structural equation models (SEM) relating aboveground biomass to species diversity, structural diversity, soil nutrient and topographic factors at different spatial scales. Solid and dashed arrow lines represent the positive and negative effects, respectively. Width of arrow line indicates the strength of the path. Number and its associated asterisks are standardized path coefficient and significant level (*P < 0.05; ** P < 0.01; *** P < 0.001) for each path. Comparative fit index (CFI), Tucker-Lewis index (TLI), Root mean square error of approximation (RMSEA) and standardized root mean square residual (SRMR) were used to compare different alternative models. The corresponding values of these indices for the best fitted model were given in Appendix 2."

[1] Ali A, Yan ER, Chen HYH, Chang SX, Zhao YT, Yang XD, Xu MS (2016) Stand structural diversity rather than species diversity enhances aboveground carbon storage in secondary subtropical forests in Eastern China. Biogeosciences, 13, 4627-4635.
[2] Bracken MES, Douglass JG, Perini V, Trussell GC (2017) Spatial scale mediates the effects of biodiversity on marine primary producers. Ecology, 98, 1434-1443.
[3] Brokaw N, Busing RT (2000) Niche versus chance and tree diversity in forest gaps. Trends in Ecology & Evolution, 15, 183-188.
[4] Chave J, Muller-Landau HC, Baker TR, Easdale TA, Steege H, Webb CO (2006) Regional and phylogenetic variation of wood density across 2,456 neotropical tree species. Ecological Applications, 16, 2356-2367.
[5] Chave J, Réjou-Méchain M, Búrquez A, Chidumayo E, Colgan MS, Delitti WBC, Duque A, Eid T, Fearnside PM, Goodman RC, Henry M, Martínez-Yrízar A, Mugasha WA, Muller-Landau HC, Mencuccini M, Nelson BW, Ngomanda A, Nogueira EM, Ortiz-Malavassi E, Pélissier R, Ploton P, Ryan CM, Saldarriaga JG, Vieilledent G (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177-3190.
[6] Chen DM, Cheng JH, Chu PF, Mi J, Hu SJ, Xie YC, Tuvshintogtokh I, Bai YF (2016) Effect of diversity on biomass across grasslands on the Mongolian Plateau: contrasting effects between plants and soil nematodes. Journal of Biogeography, 43, 955-966.
[7] Chisholm RA, Muller-Landau HC, Rahman KA, Bebber DP, Bin Y, BohlmanSA, Bourg NA, Brinks J, Bunyavejchewin S, Butt N, Cao HL, Cao M, Cárdenas D, Chang LW, Chiang JM, Chuyong G, Condit R, Darraraja HS, Davies S, Duque A, Fletcher C, Gunatilleke N, Gunarilleke S, Hao ZQ, Harrison RD, Howe R, Hsieh CF, Hubbell SP, Akira I, Kenfack D, Kiratiprayoon S, Larson AJ, Lian JY, Lin DM, Liu HF, Lutz JA, Ma KP, Malhi Y, McMahon S, McShea W, Meegaskumbura M, Razman SM, Morecroft MD, Nytch CJ, Oliveira A, Parker GG, Pulla S, Punchi-Manage R, Romero-Salros H, Sang WG, Schurman J, Su SH, Sukumar R, Sun IF, Suresh HS, Tan S, Thomas D, Thomas S, Thompson J, Valencia R, Woll A, Yap S, Ye WH, Yuan ZQ, Zimmerman JK (2013) Scale-dependent relationships between tree species richness and ecosystem function in forests. Journal of Ecology, 101, 1214-1224.
[8] Cleveland CC, Townsend AR, Taylor P, Alvarez-Clare S, Bustamante MMC, Chuyong G, Dobrowski SZ, Grierson P, Harms KE, Houlton BZ, Marklein A, Parton W, Porder S, Reed SC, Sierra CA, Silver WL, Tanner EVJ (2011) Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis. Ecology Letters, 14, 939-947.
[9] Croat TB (1978)Flora of Barro Colorado Island. Stanford University Press, Stanford.
[10] Fahey RT, Fotis AT, Woods KD (2015) Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests. Ecology Applications, 25, 834-847.
[11] Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini I, Bork E, Brown L, Cabido M, Cahill J, Carlyle CN, Campetella G, Chelli S, Cohen O, Csergo AM, Díaza S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long RJ, Manning P, Mitchell R, Moora M, Miiller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang ZH, Stahlmann R, Stotz GC, Sugiyama S, Szentes S, Rooyen MV, Wellstein C, Wilson JB, Zupo T (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349, 302-305.
[12] Grace JB, Anderson TM, Seabloom EW, Borer ET, AdlerPB, Harpole WS, Hautier Y, Hillebrand H, Lind EM, P?rtel M, Bakker JD, Buckley YM, Crawley MJ, Damschen EI, Davies KF, Fay PA, Firn J, Gruner DS, Hector A, Knops JM, MacDougall AS, Melbourne BA, Morgan JW, Orrock JL, Prober SM, Smith MD (2016) Integrative modelling reveals mechanisms linking productivity and plant species richness. Nature, 529, 390-393.
[13] Grime JP (2001) Plant Strategies, Vegetation Processes and Ecosystem Properties. John Wiley and Sons, Chichester.
[14] Guo Q (2003) Temporal species richness-biomass relationships along successional gradients. Journal of Vegetation Science, 14, 121-128.
[15] Guo YL, Wang B, Xiang WS, Ding T, Lu SH, Huang FZ, Wen SJ, Li DX, He YL, Li XK (2016) Responses of spatial pattern of woody plants’ basal area to topographic factors in a tropical karst seasonal rainforest in Nonggang, Guangxi, southern China. Biodiversity Science, 24, 30-39. (in Chinese with English abstract)
[郭屹立, 王斌, 向悟生, 丁涛, 陆树华, 黄甫昭, 文淑均, 李冬兴, 何运林, 李先锟 (2016) 喀斯特季节性雨林木本植物胸高断面积分布格局及其对地形因子的响应. 生物多样性, 24, 30-39.]
[16] Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtisi PS (2011) The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 1818-1827.
[17] Harms KE, Condit R, Hubbell SP, Foster RB (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959.
[18] He JS, Fang JY, Ma KP, Huang JH (2003) Biodiversity and ecosystem productivity: why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)
[贺金生, 方精云, 马克平, 黄建辉 (2003) 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致?植物生态学报, 27, 835-843.]
[19] Hubbell SP, Condit R, Foster RB (2005) Barro Colorado Forest Census Plot Data.2005) Barro Colorado Forest Census Plot Data. (accessed on 2017-01-08)
[20] John R, Dalling JW, Harms KE, Yavitt JB, Stallard RF, Mirabello M, Hubbell SP, Valencia R, Navarrete H, Vallejo M, Foster RB (2007) Soil nutrients influence spatial distributions of tropical tree species. Proceeding of the National Academy of Sciences, USA, 104, 864-869.
[21] Lasky JR, Uriarte M, Boukili VK, Erickson DL, Kress JW, Chazdon RL (2014) The relationship between tree biodiversity and biomass dynamics changes with topical forest succession. Ecology Letters, 17, 1158-1167.
[22] Leigh EG, Rand AS, Windsor DM (1982) The Ecology of a Tropical Forest:Seasonal Rhythms and Long-Term Changes.Smithsonian Institution Press,Washington.
[23] Lin DM, Lai JS, Muller-Landau HC, Mi XC, Ma KP (2012) Topographic variation in aboveground biomass in a subtropical evergreen broad-leaved forest in China. PLoS ONE, 7(10), e48244.
[24] Liptzin D, Silver WL (2009) Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biology & Biochemistry, 41, 1696-1702.
[25] Lohbeck M, Poorter L, Martínez-Ramos M, Bongers F (2015) Biomass is the main driver of changes in ecosystem process during tropical forest succession. Ecology, 96, 1242-1252.
[26] Loreau M, Naeem S, Inchausti P, Benqtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Ecology-biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804-808.
[27] Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010) Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
[28] Magurran AE (1988) Ecological Diversity and Its Measurement.Princeton University Press, Princeton.
[29] McElhinny C, Gibbons P, Brack C, Bauhus J (2005) Forest and woodland stand structural complexity: its definition and measurement. Forest Ecology and Management, 218, 1-24.
[30] Medjibe VP, Putz FE, Starkey MP, Ndouna AA, Memiaghe HR (2011) Impacts of selective logging on above-ground forest biomass in the Monts de Cristal in Gabon. Forest Ecology and Management, 262, 1799-1806.
[31] Naeem S, Duffy JE, Zavaleta E (2012) The functions of biological diversity in an age of extinction. Science, 336, 1401-1406.
[32] Pach M, Podlaski R (2014) Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: managed versus unmanaged forest stands. Ecological Research, 30, 367-384.
[33] Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D (2011) A large and persistent carbon sink in the world’s forests. Science, 333, 988-993.
[34] Pedro MS, Rammer W, Seidl R (2017) Disentangling the effects of compositional and structural diversity on forest productivity. Journal of Vegetation Science, 28, 649-658.
[35] Poorter L, Sande MT, Thompson J, Arets EJMM, Alarcón A, álvarez-Sánchez J, Ascarrunz N, Balvanera P, Barajas-Guzmán G, Boit A, Bongers F, Carvalho FA, Casanoves F, Cornejo-Tenorio G, Costa FRC, Castilho CV, Duivenvoorden JF, Dutrieux LP, Enquist BJ, Fernández-Méndez F, Finegan B, Gormley LHL, Healey JR, Hoosbeek MR, Ibarra-Manríquez, Junqueira AB, Levis C, Licona JC, Lisboa LS, Magnusson WE, Martínez-Yrizar A, Martorano LG, Maskell LC, Mazzei L, Meave JA, Mora F, Mu?oz R, Nytch C, Pansonato MP, Parr TW, Paz H, Pérez-García EA, Rentería LY, Rodríguez-Velazquez J, Rozendaal DMA, Ruschel AR, Sakschewski BS, Salgado-Negret B, Schietti J, Sim?es M, Sinclair FL, Souza PF, Souza FC, Stropp J, Steege HT, Swenson NG, Thonicke K, Toledo M, Uriarte M, Hout PVD, Walker P, Zamora N, Pe?a-Claros (2015) Diversity enhances carbon storage in tropical forests. Global Ecology and Biogeography, 24, 1314-1328.
[36] Rosseel Y (2012) lavaan: an R package for structural equation modeling. Journal of Statistical Software, 48, 1-36.
[37] Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Siva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010) Factors controlling Eucalyptus productivity: how water availability and stand structure alter production and carbon allocation. Forest Ecology and Management, 259, 1695-1703.
[38] Sande MT, Pe?a-Claros M, Ascarrunz N, Arets EJMM, Licona JC, Toledo M, Poorter L (2017) Abiotic and biotic drivers of biomass change in a Neotropical forest. Journal of Ecology, 105, 1223-1234.
[39] Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso ID, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
[40] Schnitzer SA, Carson WP (2001) Treefall gaps and the maintenance of species diversity in a tropical forest. Ecology, 82, 913-919.
[41] Slik JWF, Paoli G, McGuire K, Amaral I, Barroso J, Bastian M, Blanc L, Bongers F, Boundja P, Clark C, Collins M, Dauby G, Ding Y, Doucet JL, Eler E, Ferreira L, Forshed O, Fredriksson G, Gillet JF, Harris D, Leal M, Laumonier Y, Malhi Y, Mansor A, Martion E, Miyamoto K, Murakami AA, Nagamasu H, Nilus R, Nurtjahya E, Oliveira á, Onrizal O, Parada-Gutierrez A, Permana A, Poorter L, Poulsen J, Ramirez-Angulo H, Reitsma J, Rovero F, Rozak A, Sheil D, Silva-Espejo J, Silveira M, Spironelo W, Suzuki E, Tang JW, Theilade I, van der Heijden G, van Valkenburg J, Do TV, Vilanova E, Vos V, Wich S, W?ll H, Yoneda T, Zang RG, Zhang MG, Zweifel N (2013) Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22, 1261-1271.
[42] Stephenson NL, Das AJ, Condit R, Russo SE, Baker PJ, Beckman NG, Coomes DA, Lines ER, Morris WK, Rüger N, álvarez E, Blundo C, Bunyavejchewin S, Chuyong G, Davies SJ, Duque á, Ewango CN, Flores O, Franklin JF, Grau HR, Hao Z, Harmon ME, Hubbell SP, Kenfack D, Lin Y, Makana JR, Malizia A, Malizia LR, Pabst RJ, Pongpattananurak N, Su SH, Sun IF, Tan S, Thomas D, Mantgem PJ, Wang X, Wiser SK, Zavala MA (2014) Rate of tree carbon accumulation increases continuously with tree size. Nature, 507, 90-93.
[43] Tilman D, Downing JA (1994) Biodiversity and stability in grasslands. Nature, 367, 363-365.
[44] Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C (2001) Diversity and productivity in a long-term grassland experiment. Science, 294, 843-845.
[45] Wang WF, Lei XD, Ma ZH, Kneeshaw DD, Peng CH (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forest Science, 57, 506-515.
[46] Wilson EO (1988) The current state of biological diversity. In: Biodiversity (eds Wilson EO, Peter F), pp. 3-18. National Academies Press, Washington, DC.
[47] Yuan F, Wu JG, Li A, Rowe H, Bai YF, Huang JH, Han XG (2015) Spatial patterns of soil nutrients, plants diversity, and aboveground biomass in the Inner Mongolia grassland before and after a biodiversity removal experiment. Landscape Ecology, 30, 1737-1750.
[48] Zang RG, Yu SX, Liu JY, Yang YC (1999) The gap phase regeneration in a tropical montane rain forest in Bawangling, Hainan Island. Acta Ecologica Sinica, 19, 151-158.
[49] Zhang QG, Zhang DY (2003) Biodiversity and ecosystem function: recent advances and trends. Biodiversity Science, 11, 351-363. (in Chinese with English abstract)
[张全国, 张大勇 (2003) 生物多样性与生态系统功能: 最新的进展与动向. 生物多样性, 11, 351-363.]
[50] Zhang Y, Chen HYH (2015) Individual size inequality links forest diversity and above-ground biomass. Journal of Ecology, 103, 1245-1252.
[1] Dan Liu,Zhongling Guo,Xiaoyang Cui,Chunnan Fan. (2020) Comparison of five associations of Taxus cuspidata and their species diversity . Biodiv Sci, 28(3): 340-349.
[2] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. (2020) Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake . Biodiv Sci, 28(2): 155-165.
[3] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. (2020) Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow . Biodiv Sci, 28(2): 107-116.
[4] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. (2020) Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China . Biodiv Sci, 28(2): 117-127.
[5] DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. (2020) Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe . Chin J Plant Ecol, 44(1): 33-43.
[6] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[7] WU Pan,PENG Xi-Qiang,YANG Shu-Ren,GAO Ya-Nan,BAI Feng-Hua,YI Shi-Jie,DU Ning,GUO Wei-Hua. (2019) Spatial distribution patterns and correlation of Tamarix chinensis population in coastal wetlands of Shandong, China . Chin J Plant Ecol, 43(9): 817-824.
[8] FANG Wen-Jing,CAI Qiong,ZHU Jiang-Ling,JI Cheng-Jun,YUE Ming,GUO Wei-Hua,ZHANG Feng,GAO Xian-Ming,TANG Zhi-Yao,FANG Jing-Yun. (2019) Distribution, community structures and species diversity of larch forests in North China . Chin J Plant Ecol, 43(9): 742-752.
[9] Yibo Tan,Wenhui Shen,Zi Fu,Wei Zheng,Zhiyang Ou,Zhangqiang Tan,Yuhua Peng,Shilong Pang,Qinfei He,Xiaorong Huang,Feng He. (2019) Effect of environmental factors on understory species diversity in Southwest Guangxi Excentrodendron tonkinense forests . Biodiv Sci, 27(9): 970-983.
[10] TANG Li-Li,YANG Tong,LIU Hong-Yan,KANG Mu-Yi,WANG Ren-Qing,ZHANG Feng,GAO Xian-Ming,YUE Ming,ZHANG Mei,ZHENG Pu-Fan,SHI Fu-Chen. (2019) Distribution and species diversity patterns of Vitex negundo var. heterophylla shrublands in North China . Chin J Plant Ecol, 43(9): 825-833.
[11] Zihong Chen,Yuanbing Wang,Yongdong Dai,Kai Chen,Ling Xu,Qingcheng He. (2019) Species diversity and seasonal fluctuation of entomogenous fungi of Ascomycota in Taibaoshan Forest Park in western Yunnan . Biodiv Sci, 27(9): 993-1001.
[12] Tolgor Bau, Xueshan Wang, Peng Zhang. (2019) Floristic of agarics and boletus in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 867-873.
[13] MIAO Bai-Ling, LIANG Cun-Zhu, SHI Ya-Bo, LIANG Mao-Wei, LIU Zhong-Ling. (2019) Temporal changes in precipitation altered aboveground biomass in a typical steppe in Nei Mongol, China . Chin J Plant Ecol, 43(7): 557-565.
[14] Jiao Meng, Li Jing, Zhao Huifeng, Wu Chunsheng, Zhang Aibing. (2019) Species diversity and global distribution of Limacodidae (Lepidoptera) using online databases . Biodiv Sci, 27(7): 778-786.
[15] Zhang Mingming,Yang Zhaohui,Wang Cheng,Wang Jiaojiao,Hu Canshi,Lei Xiaoping,Shi Lei,Su Haijun,Li Jiaqi. (2019) Camera-trapping survey on mammals and birds in Fanjingshan National Nature Reserve, Guizhou, China . Biodiv Sci, 27(7): 813-818.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed