Biodiversity Science ›› 2016, Vol. 24 ›› Issue (4): 453-461.doi: 10.17520/biods.2015246

Special Issue: Plant Diversity in the Dry Valleys of Southwest China

• Original Papers • Previous Article     Next Article

Simulation of the potential range of Pistacia weinmannifolia in Southwest China with climate change based on the maximum-entropy (Maxent) model

Lingxiao Ying1, Ye Liu2, Shaotian Chen3, Zehao Shen1, *()   

  1. 1 Department of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871.
    2 School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, Guangdong 518055.
    3 Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204
  • Received:2015-09-14 Accepted:2016-01-15 Online:2016-05-11
  • Shen Zehao E-mail:shzh@urban.pku.edu.cn

Pistacia weinmannifolia is a characteristic species of dry valleys in Southwest China. In this study, 165 presence points of P. weinmannifolia were identified through field surveys, along with point data of 22 environmental factors. The suitable habitat model was formulated using the maximum-entropy (Maxent) algorithm and applied to simulate the potential range of the species in Southwest China, and to project the change of species range in past and future climate scenarios. The results indicate that the Maxent model gave a high accuracy in habitat predictions for P. weinmannifolia. Temperature seasonality, minimum temperature and precipitation were the major constraining climatic factors. Contemporarily, the environment suitable for P. weinmannifolia was located in the dry valleys of major rivers in Southwest China, and the regions was characterized by decreased temperature variability, no temperatures below 0°C, and low precipitation. Simulations using climate scenarios of the Last Inter-Glacial (LIG) and Last Glacial Maximum (LGM) periods indicated that the distribution of P. weinmannifolia was centered around the valleys of major rivers in Southwest China, substantially expanded eastward first, and retreated westward following climate change during glacial and inter-glacial periods, supporting the hypothesis of “glacial out-of-Hengduan Mts.”. Under the future climate scenario (2061-2080) with three representative concentration pathways (RCPs), the potential distribution of P. weinmannifolia was projected to migrate eastward to the valleys in the adjacent region of the Yunnan-Guizhou Plateau and Sichuan Basin, and the adjacent region of the Plateau and western Guangxi, reflecting a high possibility of increasing dryness in the river valleys in the future, while its current distribution might disappear. The potential distribution of P. weinmannifolia would decrease by 33% in Southwest China under the future scenario with both RCP2.6 and 4.5, but would increase with RCP8.5.

Key words: Maxent model, Pistacia weinmannifolia, species range, suitable habitat, climate change

Fig. 1

Study area and locations of 165 samples and 133 meteorological stations"

Table 1

22 environmental variables used for modeling potential suitable distribution of Pistacia weinmannifolia"

环境变量 Environmental variables 代号 Code
年均温 Mean annual temperature Bio1
昼夜温差月均值 Mean diurnal range (Mean of monthly (max temperature - min temperature)) Bio2
等温性 Isothermality (Bio2/Bio7 × 100) Bio3
温度季节性变化标准差 Standard deviation of temperature seasonality Bio4
最暖月最高温 Max. temperature of warmest month Bio5
最冷月最低温 Min. temperature of coldest month Bio6
温度年较差 Temperature annual range (Bio5 - Bio6) Bio7
最湿季均温 Mean temperature of wettest quarter Bio8
最干季均温 Mean temperature of driest quarter Bio9
最暖季均温 Mean temperature of warmest quarter Bio10
最冷季均温 Mean temperature of coldest quarter Bio11
年降水量 Annual precipitation Bio12
最湿月降水量 Precipitation of wettest month Bio13
最干月降水量 Precipitation of driest month Bio14
降水量季节性变异系数 Coefficient of variation of precipitation seasonality Bio15
最湿季降水量 Precipitation of wettest quarter Bio16
最干季降水量 Precipitation of driest quarter Bio17
最暖季降水量 Precipitation of warmest quarter Bio18
最冷季降水量 Precipitation of coldest quarter Bio19
海拔 Elevation -
坡度 Slope -
坡向 Aspect -

Fig. 2

Reveiver operating characteristic (ROC) curve of Maxent model for Pistacia weinmannifolia"

Table 2

Dominant environmental variables for potential suitable distribution of Pistacia weinmannifolia"

环境变量
Environmental variables
贡献率
Contribution (%)
相关性
Correlation*
温度季节变化标准差
SD of temperature seasonality
24.2 -
等温性 Isothermality 15.3 +
最湿月降水量
Precipitation of wettest month
11.2 -
温度年较差
Temperature annual range
9.8 -
最湿季均温
Mean temperature of wettest quarter
7.6 -
年均温 Mean annual temperature 6.7 +
年降水量 Annual precipitation 4.5 -
最冷季均温
Mean temperature of coldest quarter
4.2 +

Fig. 3

Patterns of potential distribution for Pistacia weinmannifolia in Southwest China under climate change in different periods, and only the east region of the study area (east of 95° E) was showed to highlight the suitable distributions for Pistacia weinmannifolia. There is no distribution in the west of 95° E. (a) Last Inter-Glacial (LIG); (b) Last Glacial Maximum (LGM); (c) Current period; (d) Future with RCP2.6; (e) Future with RCP4.5; (f) Future with RCP8.5."

1 An Z (2000) The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19, 171-187.
2 Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of climate change on the future of biodiversity. Ecology Letters, 15, 365-377.
3 Boulangeat I, Gravel D, Thuiller W (2012) Accounting for dispersal and biotic interactions to disentangle the drivers of species distributions and their abundances. Ecology Letters, 15, 584-593.
4 Cai W, Borlace S, Lengaigne M, van Rensch P, Collins M, Vecchi G, Timmermann A, Santoso A, McPhaden MJ, Wu L, England MH, Wang G, Guilyardi E, Jin FF (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 4, 111-116.
5 Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026.
6 Cox CB, Moore PD, Marquardt WC, Demaree RS, Grieve RB (1993) Biogeography: An Ecological and Evolutionary Approach 6th edn. Blackwell Scientific Publications, London.
7 Coyne JA, Orr HA (2004) Speciation. Sinauer Associates,Sunderland.
8 Dieleman CM, Branfireun BA, McLaughlin JW, Lindo Z (2015) Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability. Global Change Biology, 21, 388-395.
9 Dong M, Wu TW, Wang ZZ, Xin XG, Zhang F (2013) Simulation of the precipitation and its variation during the 20th century using the BCC climate model (BCC_CSM1.0). Journal of Applied Meteorological Science, 24(1), 1-11.(in Chinese with English abstract)
[董敏, 吴统文, 王在志, 辛晓歌, 张芳 (2013) BCC_CSM1.0模式对20世纪降水及其变率的模拟. 应用气象学报, 24(1), 1-11.]
10 Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE, Araujo M (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129-151.
11 Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of Maxent for ecologists. Diversity and Distributions, 17, 43-57.
12 Fan DM, Yue JP, Nie ZL, Li ZM, Comes HP, Sun H (2013) Phylogeography of Sophora davidii (Leguminosae) across the ‘acros-Kaiyong Line’, an important phytogeographic boundary in Southwest China. Molecular Ecology, 22, 4270-4288.
13 Farr TG, Kobrick M (2000) Shuttle radar topography mission produces a wealth of data. Eos, Transactions American Geophysical Union, 81, 583-585.
14 Fu LG (2001) Higher Plants of China, Vol. 8. Qingdao Publishing House, Qingdao.(in Chinese with English foreword)
[傅立国 (2001) 中国高等植物第八卷. 青岛出版社, 青岛.]
15 Gelviz-Gelvez SM, Pavón NP, Illoldi-Rangel P, Ballesteros- Barrera C (2015) Ecological niche modeling under climate change to select shrubs for ecological restoration in Central Mexico. Ecological Engineering, 74, 302-309.
16 Hasumi H, Emori S (2004) K-1 Coupled GCM (MIROC) description. Center for Climate System Research (CCSR), University of Tokyo, Tokyo.
17 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
18 Hu Q, Jiang DB, Fan GZ (2015) Climate change projection on the Tibetan Plateau: results of CMIP5 models. Chinese Journal of Atmospheric Sciences, 39, 260-270.(in Chinese with English abstract)
[胡芩, 姜大膀, 范广洲 (2015) 青藏高原未来气候变化预估: CMIP5 模式结果. 大气科学, 39, 260-270.]
19 Intergovernmental Panel on Climate Change (IPCC) (2013) Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
20 Kharin VV, Zwiers FW, Zhang X, Wehner M (2013) Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119, 345-357.
21 Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophysical Research Letters, 38, L08705.
22 Kozhoridze G, Orlovsky N, Orlovsky L, Blumberg DG, Golan-Goldhirsh A (2015) Geographic distribution and migration pathways of Pistacia—present, past and future. Ecography, 38, 1-14.
23 Lin RP, Zhou TJ (2015) Reproducibility and future projections of the precipitation structure in East Asia in four Chinese GCMs that participated in the CMIP5 experiments. Chinese Journal of Atmospheric Sciences, 39, 338-356.(in Chinese with English abstract)
[林壬萍, 周天军 (2015) 参加CMIP5计划的四个中国模式模拟的东亚地区降水结构特征及未来变化. 大气科学, 39, 338-356.]
24 Liu XD, Cheng ZG, Zhang R (2009) The A1B scenario projection for climate change over the Tibetan Plateau in the next 30-50 years. Plateau Meteorology, 28, 475-484.(in Chinese with English abstract)
[刘晓东, 程志刚, 张冉 (2009) 青藏高原未来30~50年A1B情景下气候变化预估. 高原气象, 28, 475-484.]
25 Liu Y, Li P, Xu Y, Shi SL, Ying LX, Zhang WJ, Peng PH, Shen ZH (2016) Quantitative classification and ordination for plant communities in dry valleys of Southwest China. Biodiversity Science, 24, 378-388.(in Chinese with English abstract)
[刘晔, 李鹏, 许玥, 石松林, 应凌霄, 张婉君, 彭培好, 沈泽昊 (2016) 中国西南干旱河谷植物群落的数量分类和排序分析. 生物多样性, 24, 378-388.]
26 Merow C, Smith MJ, Silander JA (2013) A practical guide to Maxent for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography, 36, 1058-1069.
27 Miller RG (1968) Jackknifing variances. The Annals of Mathematical Statistics, 39, 567-582.
28 Moor H, Hylander K, Norberg J (2015) Predicting climate change effects on wetland ecosystem services using species distribution modeling and plant functional traits. AMBIO, 44, 113-126.
29 Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, Mitchell JFB, Nakicenovic N, Riahi K, Smith SJ, Stouffer RJ, Thomson AM, Weyant JP, Wilbanks TJ (2010) The next generation of scenarios for climate change research and assessment. Nature, 463, 747-756.
30 Otto-Bliesner BL, Marshall SJ, Overpeck JT, Miller GH, Hu A (2006) Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science, 311, 1751-1753.
31 Patricola CM, Chang P, Saravanan R (2015) Impact of Atlantic SST and high frequency atmospheric variability on the 1993 and 2008 Midwest floods: regional climate model simulations of extreme climate events. Climatic Change, 129, 397-411.
32 Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
33 Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161-175.
34 Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecological Applications, 19, 181-197.
35 Pio DV, Engler R, Linder HP, Monadjem A, Cotterill FPD, Taylor PJ, Schoeman MC, Price BW, Villet MH, Eick G, Salamin N, Guisan A (2014) Climate change effects on animal and plant phylogenetic diversity in southern Africa. Global Change Biology, 20, 1538-1549.
36 Planton S, Déqué M, Chauvin F, Terray L (2008) Expected impacts of climate change on extreme climate events. Comptes Rendus Geoscience, 340, 564-574.
37 Qiu YX, Fu CX, Comes HP (2011) Plant molecular phylogeography in China and adjacent regions: tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
38 Raes N, ter Steege H (2007) A null-model for significance testing of presence-only species distribution models. Ecography, 30, 727-736.
39 Royle JA, Chandler RB, Yackulic C, Nichols JD (2012) Likelihood analysis of species occurrence probability from presence-only data for modelling species distributions. Methods in Ecology and Evolution, 3, 545-554.
40 Ruiz-Labourdette D, Nogués-Bravo D, Ollero HS, Schmitz MF, Pineda FD (2012) Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. Journal of Biogeography, 39, 162-176.
41 Shi YJ, Ren YL, Wang SG, Shang KZ, Li X, Zhou GL (2012) Verification of simulation ability of BCC_CSM climate model in regional climate change in China. Plateau Meteorology, 31, 1257-1267.(in Chinese with English abstract)
[石彦军, 任余龙, 王式功, 尚可政, 李旭, 周甘霖 (2012) BCC_CSM气候模式对中国区域气候变化模拟能力的检验. 高原气象, 31, 1257-1267.]
42 Thuiller W, Lavergne S, Roquet C, Boulangeat I, Lafourcade B, Araujo MB (2011) Consequences of climate change on the tree of life in Europe. Nature, 470, 531-534.
43 van der Wal J, Murphy HT, Kutt AS, Perkins GC, Bateman BL, Perry JJ, Reside AE (2013) Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nature Climate Change, 3, 239-243.
44 van Zyl JJ (2001) The shuttle radar topography mission (SRTM): a breakthrough in remote sensing of topography. Acta Astronautica, 48, 559-565.
45 Veloz SD, Williams JW, Blois JL, He F, Otto-Bliesner, Liu Z (2012) No-analog climates and shifting realized niches during the late quaternary: implications for 21st-century predictions by species distribution models. Global Change Biology, 18, 1698-1713.
46 Wang B (2002) Rainy season of the Asian-Pacific summer monsoon. Journal of Climate, 15, 386-398.
47 Wang Y, Zhang C, Li K (2013) Investigation on the distribution of Pistacia weinmannifolia in dry-hot valley of Yunnan Province. Forest Resources Management, (3), 156-160.(in Chinese with English abstract)
[王妍, 张超, 李昆 (2013) 云南干热河谷地区清香木分布调查. 林业资源管理, (3), 156-160.]
48 Wang Y, Zhang C, Li K (2014) Responses of Pistacia weinmannifolia seedling to different water gradient in dry-hot valley. Journal of Central South University of Forestry & Technology, 34(10), 19-25.(in Chinese with English abstract)
[王妍, 张超, 李昆 (2014) 干热河谷乡土树种清香木幼苗生长对不同水分梯度的响应. 中南林业科技大学学报, 34(10), 19-25.]
49 Xie L, Yang ZY, Wen J, Li DZ, Yi TS (2014) Biogeographic history of Pistacia (Anacardiaceae), emphasizing the evolution of the Madrean-Tethyan and the eastern Asian-Tethyan disjunctions. Molecular Phylogenetics and Evolution, 77, 136-146.
50 Xu CH, Xu Y (2012) The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 5, 527-533.
51 Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell GEH, Veran S (2013) Presence-only modelling using Maxent: when can we trust the inferences? Methods in Ecology and Evolution, 4, 236-243.
52 Yu DH, Yuan CJ, An MT, Li H, Yan LB (2014) Study on the niche characteristics of main tree species of Pistacia weinmannifolia community in natural forest along Chishui River. Journal of West China Forestry Science, 43(6), 91-96.(in Chinese with English abstract)
[余德会, 袁丛军, 安明态, 李鹤, 严令斌 (2014) 赤水河流域清香木天然群落主要树种生态位研究. 西部林业科学, 43(6), 91-96.]
53 Zhao X, Sun H, Hou A, Zhao Q, Wei T, Xin W (2005) Antioxidant properties of two gallotannins isolated from the leaves of Pistacia weinmannifolia. Biochimica et Biophysica Acta, 1725, 103-110.
54 Zhou BH (2008) Volatile oil in the leaves of Pistacia weinmannifolia and their antibacterial effects. Chinese Journal of Applied Chemistry, 25, 305-308.(in Chinese with English abstract)
[周葆华 (2008) 清香木叶挥发油成分及其抑菌作用. 应用化学, 25, 305-308.]
55 Zhou X, Li QQ, Sun XB, Wei M (2014) Simulation and projection of temperature in China with BCC_CSM1.1 model. Journal of Applied Meteorological Science, 25, 95-106.(in Chinese with English abstract)
[周鑫, 李清泉, 孙秀博, 魏敏 (2014) BCC_CSM1.1模式对我国气温的模拟和预估. 应用气象学报, 25, 95-106.]
[1] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. (2019) Influence of future climate change in suitable habitats of tea in different countries . Biodiv Sci, 27(6): 595-606.
[2] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. (2019) Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems . Chin J Plant Ecol, 43(6): 471-479.
[3] LIU Xiao-Tong, YUAN Quan, NI Jian. (2019) Research advances in modelling plant species distribution in China . Chin J Plant Ecol, 43(4): 273-283.
[4] JIAO Liang, WANG Ling-Ling, LI Li, CHEN Xiao-Xia, YAN Xiang-Xiang. (2019) Divergent responses of radial growth of Larix sibirica to climate change in Altay Mountains of Xinjiang, China . Chin J Plant Ecol, 43(4): 320-330.
[5] ZHANG Fu-Guang, ZENG Biao, YANG Tai-Bao. (2019) Spatiotemporal distribution changes in alpine desert belt in Qilian Mountains under climate changes in past 30 years . Chin J Plant Ecol, 43(4): 305-319.
[6] WEN Xiao-Shi, CHEN Bin-Hang, ZHANG Shu-Bin, XU Kai, YE Xin-Yu, NI Wei-Jie, WANG Xiang-Ping. (2019) Relationships of radial growth with climate change in larch plantations of different stand ages and species . Chin J Plant Ecol, 43(1): 27-36.
[7] Hongfei Zhuang,Yinbo Zhang,Wei Wang,Yueheng Ren,Fangzheng Liu,Jinhong Du,Yue Zhou. (2018) Optimized hot spot analysis for probability of species distribution under different spatial scales based on MaxEnt model: Manglietia insignis case . Biodiv Sci, 26(9): 931-940.
[8] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. (2018) Amphibian species richness patterns in karst regions in Southwest China and its environmental associations . Biodiv Sci, 26(9): 941-950.
[9] Anrong Liu,Teng Yang,Wei Xu,Zijian Shangguan,Jinzhou Wang,Huiying Liu,Yu Shi,Haiyan Chu,Jin-Sheng He. (2018) Status, issues and prospects of belowground biodiversity on the Tibetan alpine grassland . Biodiv Sci, 26(9): 972-987.
[10] Xiuwei Liu, Douglas Chesters, Chunsheng Wu, Qingsong Zhou, Chaodong Zhu. (2018) A horizon scan of the impacts of environmental change on wild bees in China . Biodiv Sci, 26(7): 760-765.
[11] ZHOU Tong,CAO Ru-Yin,WANG Shao-Peng,CHEN Jin,TANG Yan-Hong. (2018) Responses of green-up dates of grasslands in China and woody plants in Europe to air temperature and precipitation: Empirical evidences based on survival analysis . Chin J Plan Ecolo, 42(5): 526-538.
[12] Yuan-Feng SUN, Hong-Wei WAN, Yu-Jin ZHAO, Shi-Ping CHEN, Yong-Fei BAI. (2018) Spatial patterns and drivers of root turnover in grassland ecosystems in China . Chin J Plan Ecolo, 42(3): 337-348.
[13] WU Qi-Qian, WANG Chuan-Kuan. (2018) Dynamics in foliar litter decomposition for Pinus koraiensis and Quercus mongolica in a snow-depth manipulation experiment . Chin J Plan Ecolo, 42(2): 153-163.
[14] Xiaoyu Wu,Shikui Dong,Shiliang Liu,Quanru Liu,Yuhui Han,Xiaolei Zhang,Xukun Su,Haidi Zhao,Jing Feng. (2018) Identifying priority areas for grassland endangered plant species in the Sanjiangyuan Nature Reserve based on the MaxEnt model . Biodiv Sci, 26(2): 138-148.
[15] Huijie Qiao,Xiaoyi Wang,Wei Wang,Zhenhua Luo,Ke Tang,Yan Huang,Shengnan Yang,Weiwei Cao,Xinquan Zhao,Jianping Jiang,Junhua Hu. (2018) From nature reserve to national park system pilot: Changes of environmental coverage in the Three-River-Source National Park and implications for amphibian and reptile conservation . Biodiv Sci, 26(2): 202-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed