生物多样性 ›› 2014, Vol. 22 ›› Issue (3): 358-365.doi: 10.3724/SP.J.1003.2014.13202

所属专题: 生物多样性与生态系统功能

• • 上一篇    下一篇

古田山不同干扰程度森林的群落恢复动态

徐远杰1, 2, , A;*(), 林敦梅2, 米湘成2, 任海保2, 马克平2   

  1. 1 .西南林业大学云南生物多样性研究院, 昆明 650224
    2 .中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
  • 收稿日期:2013-09-17 接受日期:2014-02-22 出版日期:2014-05-20
  • 通讯作者: 徐远杰 E-mail:xuyuanjiegucas@126.com
  • 基金项目:
    国家自然科学基金(31300454)

Recovery dynamics of secondary forests with different disturbance intensity in the Gutianshan National Nature Reserve

Yuanjie Xu1, 2(), Dunmei Lin2, Xiangcheng Mi2, Haibao Ren2, Keping Ma2   

  1. 1. Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224
    2. State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
  • Received:2013-09-17 Accepted:2014-02-22 Online:2014-05-20

森林采伐后次生林的恢复过程对于生物多样性的保护和生态系统功能的重建具有重要意义。作者以古田山不同干扰程度的12个1 ha 森林样地为研究对象, 运用群落多元统计方法, 探讨了自然恢复过程中森林群落组成及物种多样性的动态变化及趋势。结果表明: 不同恢复阶段森林样地的群落组成存在显著性差异, 而同一恢复阶段的样地具有高度的相似性。物种丰富度随恢复进程有增加的趋势, 但各阶段差异并不显著; 物种均匀度除人工林较低以外, 其他恢复阶段之间无显著性差异。不同恢复阶段研究样地的群落组成及物种多样性的差异主要存在于林冠层。灌木及更新层具有各自的指示种, 人工林的指示种为落叶灌木或阳性乔木, 幼龄次生林的指示种为常绿灌木或小乔木, 老次生林的指示种为亚乔木层常绿树种, 老龄林的指示种为林冠层树种。上述结果表明古田山不同人为干扰程度森林群落的物种多样性具有较强的自我恢复能力。尽管物种组成难以预测, 但处于同一恢复阶段的森林, 其幼树的生活型组成呈现出一致的变化趋势。

关键词: 次生林恢复, 常绿阔叶林, 群落组成, 物种多样性, 人为干扰, 古田山自然保护区

Understanding the underlying processes of secondary forest recovery after disturbances such as logging is essential for biodiversity conservation and ecosystem rehabilitation. We surveyed 12 forest plots (1 ha in size) with different extents of anthropogenic disturbances in the Gutianshan National Nature Reserve and explored the community dynamics of secondary forest recovery by applying multivariate statistical ana- lysis. We found significant differences in community composition among various recovery phases, whereas high similarities of community composition were observed within the same recovery phase. No significant difference in species richness was observed among recovery stages, but species richness tended to increase during the recovery process. Species evenness in Chinese fir forests was relatively low whereas no significant difference occurred in other forests. The main differences in community composition and species diversity were found in the canopy layer. Respective indicator species were found in shrubs and regeneration layers during different recovery phases. The most representative indicator species were deciduous shrubs or heliophilous trees for plantation forests of Chinese fir, evergreen shrubs or small trees for young secondary forests, sub-canopy evergreen trees for old secondary forests, and canopy species for old-growth forests, respectively. Overall, species diversity recovered rigorously. Also the life-form composition of saplings in the same recovery phase presented consistent trends in spite of complex and unpredictable changes in species composition during the recovery process.

Key words: secondary forest recovery, evergreen broad-leaved forests, community composition, species diversity, anthropogenic disturbances, Gutianshan National Nature Reserve

图1

古田山不同恢复阶段森林样地聚类分析图。人工林样地包括01, 07, 11; 幼龄次生林样地包括03, 08, 09; 老次生林样地包括05, 06, 12; 老龄林样地包括02, 04, 10。"

表1

古田山不同恢复阶段森林样地优势种重要值的平均值(%)及其对组内相似性的贡献率(%)"

物种名
Species name
人工林
Chinese fir forests (CFF)
幼龄次生林 Young secondary forests (YSF) 老次生林
Old secondary forests (OSF)
老龄林
Old-growth forests (OGF)
杉木 Cunninghamia lanceolata 71.27 (25.85)
檵木 Loropetalum chinensis 3.06 (4.69) 2.70 (2.89) 6.17 (4.74)
隔药柃 Eurya muricata 3.02 (4.68) 2.78 (3.04) 2.80 (3.77)
马尾松 Pinus massoniana 1.71 (3.79) 7.37 (4.92) 14.33 (7.55)
石栎 Lithocarpus glaber 1.90 (3.54) 5.32 (3.89) 7.98 (5.36)
山合欢 Albizia kalkora 0.81 (2.82)
黄瑞木 Adinandra millettii 0.77 (2.34)
柳叶蜡梅 Chimonanthus salicifolius 3.05 (2.08)
黄檀 Dalbergia hupeana 0.64 (1.98)
拟赤杨 Alniphyllum fortunei 0.59 (1.95)
甜槠 Castanopsis eyrei 23.76 (9.03) 5.89 (4.31) 15.69 (8.73)
米槠 C. carlesii 9.04 (5.27) 8.32 (3.43)
木荷 Schima superba 4.56 (3.51) 11.30 (6.61) 10.95 (6.25)
马银花 Rhododendron ovatum 3.11 (3.26) 5.44 (4.86)
麂角杜鹃 R. latoucheae 2.95 (3.18) 5.36 (5.26)
短尾越橘 Vaccinium carlesii 3.30 (3.04)
青冈 Cyclobalanopsis glauca 2.52 (2.80) 5.39 (4.02) 5.12 (2.53)
Castanopsis fargesii 2.18 (2.94
杨梅 Myrica rubra 2.04 (2.82)
浙江红山茶 Camellia chekiangoleosa 2.43 (2.94)
浙江新木姜子 Neolitsea aurata var. chekiangensis 1.47 (2.81)
红楠 Machilus thunbergii 2.74 (2.46)
窄基红褐柃 Eurya rubiginosa var. attenuata 2.38 (2.49)

图2

古田山不同恢复阶段森林样地主林层、亚乔木层、灌木及更新层无度量多维标定图。C: 林冠层; S: 亚乔木层; R: 灌木及更新层。不同林层后面的数字为样方号。OGF, OSF, YSF, CFF同表1。"

图3

古田山不同恢复阶段森林样地物种多样性指数。CFF, OGF, OSF, YSF同表1。"

图4

古田山不同恢复阶段森林样地林冠层、亚乔木层、灌木及更新层k-优势度图。CFF, OGF, OSF, YSF同表1。"

表2

古田山不同恢复阶段森林样地灌木及更新层指示种"

树种 Tree species 组别
Group
指示值
Value
P
P<0.05
山合欢 Albizia kalkora CFF 84.3 0.0188
拟赤杨 Alniphyllum fortunei CFF 59.7 0.0346
楤木 Aralia chinensis CFF 80.4 0.0188
紫珠 Callicarpa bodinieri CFF 69.0 0.0412
大青 Clerodendrum cyrtophyllum CFF 62.3 0.0346
杉木 Cunninghamia lanceolata CFF 98.6 0.0188
黄檀 Dalbergia hupeana CFF 79.7 0.0188
小果冬青 Ilex micrococca CFF 93.5 0.0188
山胡椒 Lindera glauca CFF 85.0 0.0188
山鸡椒 Litsea cubeba CFF 89.2 0.0188
马尾松 Pinus massoniana CFF 66.2 0.0188
化香 Platycarya strobilacea CFF 86.3 0.0354
豆腐柴 Premna microphylla CFF 68.4 0.0168
水马桑 Weigela japonica var. sinica CFF 86.2 0.0188
栀子 Gardenia jasminoides CSF 45.0 0.0486
野漆 Toxicodendron succedaneum YSF 74.6 0.0496
短尾越桔 Vaccinium carlesii YSF 48.8 0.0456
厚叶冬青 Ilex elmerriliana YSF 67.9 0.0128
宁波木犀 Osmanthus cooperi YSF 74.7 0.0160
石斑木 Rhaphiolepis indica YSF 65.7 0.0160
赤楠 Syzygium buxifolium YSF 75.7 0.0088
冬青 Ilex chinensis OSF 67.1 0.0190
浙闽樱 Prunus schneideriana OSF 51.4 0.0130
檵木 Loropetalum chinensis OSF 49.9 0.0166
乳源木莲 Manglietia yuyuanensis OSF 91.6 0.0376
刨花楠 Machilus pauhoi OSF 100.0 0.0190
浙江红山茶 Camellia chekiangoleosa OGF 94.0 0.0146
窄基红褐柃 Eurya rubiginosa var. attenuata OGF 64.6 0.0332
麂角杜鹃 Rhododendron latoucheae OGF 55.1 0.0162
秀丽槭 Acer elegantulum OGF 100.0 0.0162
钩栲 Castanopsis tibetana OGF 96.9 0.0446
浙江樟 Cinnamomum japonicum OGF 97.8 0.0162
灰白蜡瓣花 Corylopsis glandulifera OGF 99.3 0.0162
小叶青冈 Cyclobalanopsis gracilis OGF 97.5 0.0162
细叶青冈 C. myrsinaefolia OGF 100.0 0.0162
尾叶冬青 Ilex wilsonii OGF 96.5 0.0066
马醉木 Pieris japonica OGF 74.7 0.0334

附图1

古田山不同恢复阶段森林样地(100 m × 100 m)地形图。图中数字为相对高程; 人工林样地包括01, 07, 11; 幼龄次生林样地包括03, 08, 09; 老次生林样地包括05, 06, 12; 老龄林样地包括02, 04, 10。"

[1] Baker PJ, Bunyavejchewin S, Oliver CD, Ashton PS (2005) Disturbance history and historical stand dynamics of a seasonal tropical forest in western Thailand.Ecological Monographs, 75, 317-343.
[2] Bengtsson J, Nilsson SG, Franc A, Menozzi P (2000) Biodiversity, disturbances, ecosystem function and management of European forests.Forest Ecology and Management, 132, 39-50.
[3] Bruelheide H, Böhnke M, Both S, Fang T, Assmann T, Baruffol M, Bauhus J, Buscot F, Chen XY, Ding BY, Durka W, Erfmeier A, Fischer M, Geißler C, Guo DL, Guo LD, Härdtle W, He JS, Hector A, Kröber W, Kühn P, Lang A, Nadrowski K, Pei KQ, Scherer-Lorenzen M, Shi XZ, Scholten T, Schuldt A, Trogisch S, von Oheimb G, Welk E, Wirth C, Wu YT, Yang XF, Zeng XQ, Zhang SR, Zhou HZ, Ma KP, Schmid B (2011) Community assembly during secondary forest succession in a Chinese subtropical forest.Ecological Monographs, 81, 25-41.
[4] Cannon C, Peart DR, Leighton M, Kartawinata K (1994) The structure of lowland rainforest after selective logging in West Kalimantan, Indonesia.Forest Ecology and Management, 67, 49-68.
[5] Capers RS, Chazdon RL, Brenes AR, Alvarado BV (2005) Successional dynamics of woody seedling communities in wet tropical secondary forests.Journal of Ecology, 93, 1071-1084.
[6] Carignan V, Villard MA (2001) Selecting indicator species to monitor ecological integrity: a review.Environmental Monitoring and Assessment, 78, 45-61.
[7] Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances.Perspectives in Plant Ecology, Evolution and Systematics, 6, 51-71.
[8] Chazdon RL, Letcher SG, Van Breugel M, Martínez-Ramos M, Bongers F, Bryan F (2007) Rates of change in tree communities of secondary Neotropical forests following major disturbances.Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 273-289.
[9] Dent DH, DeWalt SJ, Denslow JS (2012) Secondary forests of central Panama increase in similarity to old-growth forest over time in shade tolerance but not species composition.Journal of Vegetation Science, 24, 530-542.
[10] DeWalt SJ, Maliakal SK, Denslow JS (2003) Changes in vegetation structure and composition along a tropical forest chronosequence: implications for wildlife.Forest Ecology and Management, 182, 139-151.
[11] Diekmann M (2003) Species indicator values as an important tool in applied plant ecology—a review.Basic and Applied Ecology, 4, 493-506.
[12] Ding SY (丁圣彦), Song YC (宋永昌) (1998) Declining causes of Pinus massoniana in the processes of succession of evergreen broad-leaved forest.Acta Botanica Sinica(植物学报), 40, 755-760. (in Chinese with English abstract)
[13] Dupuy JM, Chazdon RL (2008) Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests.Forest Ecology and Management, 255, 3716-3725.
[14] Finegan B (1996) Pattern and process in neotropical secondary rain forests: the first 100 years of succession.Trends in Ecology and Evolution, 11, 119-124.
[15] Fornwalt PJ, Kaufmann MR, Huckaby LS, Stohlgrenvon TJ (2009) Effects of past logging and grazing on understory plant communities in a montane Colorado forest.Plant Ecology, 203, 99-109.
[16] Guariguata MR, Ostertag R (2001) Neotropical secondary forest succession: changes in structural and functional characteristics.Forest Ecology and Management, 148, 185-206.
[17] Hu ZH (胡正华), Yu MJ (于明坚), Ding BY (丁炳扬), Fang T (方腾), Qian HY (钱海源), Chen QC (陈启瑺) (2003) Types of evergreen broad-leaved forests and their species diversity in Gutian Mountain National Nature Reserve.Chinese Journal of Applied and Environmental Biology(应用与环境生物学报), 9, 341-345. (in Chinese with English abstract)
[18] Kassi NK, Decocq G (2008) Successional patterns of plant species and community diversity in a semi-deciduous tropical forest under shifting cultivation.Journal of Vegetation Science, 19, 809-820.
[19] Klanderud K, Mbolatiana HZH, Vololomboahangy MN, Radimbison MA, Roger E, Totland Ø, Rajeriarison C (2010) Recovery of plant species richness and composition after slash-and-burn agriculture in a tropical rainforest in Madagascar.Biodiversity and Conservation, 19, 187-204.
[20] Kubota Y, Katsuda K, Kikuzawa K (2005) Secondary succession and effects of clear-logging on diversity in the subtropical forests on Okinawa Island, southern Japan.Biodiversity and Conservation, 14, 879-901.
[21] McDonald RI, Motzkin G, Foster DR (2008) The effect of logging on vegetation composition in Western Massachusetts.Forest Ecology and Management, 255, 4021-4031.
[22] Mishra BP, Tripathi OP, Tripathi RS, Pandey HN (2004) Effects of anthropogenic disturbance on plant diversity and community structure of a sacred grove in Meghalaya, northeast India.Biodiversity and Conservation, 13, 421-436.
[23] Norden N, Chazdon RL, Chao A, Jiang YH, Vilchez-Alvarado B (2009) Resilience of tropical rain forests: tree community reassembly in secondary forests.Ecology Letters, 12, 385-394.
[24] Peña-Claros M (2003) Changes in forest structure and species composition during secondary forest succession in the Bolivian Amazon.Biotropica, 35, 450-461.
[25] Sagar R, Raghubanshi AS, Singh JS (2003) Tree species composition, dispersion and diversity along a disturbance gradient in a dry tropical forest region of India.Forest Ecology and Management, 186, 61-71.
[26] Saldarriaga JG, West DC, Tharp ML, Uhl C (1988) Long-term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela.Journal of Ecology, 76, 938-958.
[27] Smith RGB, Nichols JD, Vanclay JK (2005) Dynamics of tree diversity in undisturbed and logged subtropical rainforest in Australia.Biodiversity and Conservation, 14, 2447-2463.
[28] Verburg R, van Eijk-Bos C (2003) Effects of selective logging on tree diversity, composition and plant functional type patterns in a Bornean rain forest.Journal of Vegetation Science, 14, 99-110.
[29] Villela DM, Nascimento MT, Aragão LE, Gama DM (2006) Effect of selective logging on forest structure and nutrient cycling in a seasonally dry Brazilian Atlantic forest.Journal of Biogeography, 33, 506-516.
[30] von Oheimb G, Härdtle W (2009) Selection harvest in temperate deciduous forests: impact on herb layer richness and composition.Biodiversity and Conservation, 18, 271-287.
[31] Wang XH, Kent M, Fang XF (2007) Evergreen broad-leaved forest in Eastern China: its ecology and conservation and the importance of resprouting in forest restoration.Forest Ecology and Management, 245, 76-87.
[32] Zhu Y (祝燕), Zhao GF (赵谷风), Zhang LW (张俪文), Shen GC (沈国春), Mi XC (米湘成), Ren HB (任海保), Yu MJ (于明坚), Chen JH (陈建华), Chen SW (陈声文), Fang T (方腾), Ma KP (马克平) (2008) Community composition and structure of a Gutianshan forest dynamics plot in a mid-subtropical evergreen broad-leaved forest, East China.Chinese Journal of Plant Ecology(植物生态学报), 32, 262-273. (in Chinese with English abstract)
[1] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[2] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[3] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[4] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[5] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[6] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[7] 李俊凝, 李通, 魏玉莲. (2019) 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系. 生物多样性, 27(8): 880-886.
[8] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[9] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. (2019) 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局. 生物多样性, 27(7): 778-786.
[10] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[11] 邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响. 生物多样性, 27(6): 607-618.
[12] 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43(5): 383-395.
[13] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. (2019) 海南岛翼手目物种多样性现状与分布预测. 生物多样性, 27(4): 400-408.
[14] 颜文博,吉晟男,帅凌鹰,赵雷刚,朱大鹏,曾治高. (2019) 秦岭南坡陕西洋县辖区哺乳动物物种多样性的空间分布格局. 生物多样性, 27(2): 177-185.
[15] 陈作艺, 许晓静, 朱素英, 翟梦怡, 李扬. (2019) 中国沿海洛氏角毛藻复合群的多样性组成及地理分布. 生物多样性, 27(2): 149-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed