生物多样性 ›› 2019, Vol. 27 ›› Issue (6): 607-618.doi: 10.17520/biods.2018346

• 研究报告 • 上一篇    下一篇

模拟氮沉降对北京东灵山辽东栎群落林下植物物种多样性的影响

邹安龙, 马素辉, 倪晓凤, 蔡琼, 李修平, 吉成均()   

  1. 北京大学城市与环境学院, 地表过程分析与模拟教育部重点实验室, 北京 100871
  • 收稿日期:2018-12-30 接受日期:2019-05-16 出版日期:2019-06-20
  • 通讯作者: 吉成均 E-mail:jicj@pku.edu.cn
  • 基金项目:
    国家自然科学基金(31770431)

Response of understory plant diversity to nitrogen deposition in Quercus wutaishanica forests of Mt. Dongling, Beijing

Zou Anlong, Ma Suhui, Ni Xiaofeng, Cai Qiong, Li Xiuping, Ji Chengjun()   

  1. College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871
  • Received:2018-12-30 Accepted:2019-05-16 Online:2019-06-20
  • Contact: Ji Chengjun E-mail:jicj@pku.edu.cn

氮沉降是驱动生物多样性变化的重要因素之一。一般认为氮沉降会改变物种多样性, 而且在外源氮添加条件下, 禾草类植物和落叶灌木比杂类草和常绿灌木更具竞争优势。不过该结论更多是从高寒草甸和荒漠草原等生态系统中得到, 主要是针对同一生活型内植物之间的竞争关系, 不涉及不同生活型植物之间的相互作用, 并且由于草原和草甸等生态系统没有明显的垂直结构, 同一层次中植物的高度差异较小, 有可能高估了光照因素对植物的作用。因此从森林生态系统入手, 可以进一步阐述不同生活型植物对氮沉降的响应。本文以我国北方典型的落叶阔叶林——辽东栎(Quercus wutaishanica)林为研究对象, 设置CK (0 kg N·ha -1·yr -1)、N50 (50 kg N·ha -1·yr -1)和N100 (100 kg N·ha -1·yr -1) 3个梯度氮添加实验, 模拟氮沉降对温带森林生物多样性的影响。8年连续的氮添加实验结果显示: (1)氮添加显著降低了林下植物的物种丰富度和多样性, 改变了群落的物种组成; (2)氮添加提高了灌木植物的物种丰富度和多样性; 降低了草本植物的丰富度; (3)氮添加降低了禾草类植物的重要值, 提高了杂类草的重要值。该研究表明, 长期氮添加会显著改变林下植物的物种组成, 不同生活型植物对氮添加的响应亦有所差别。造成该现象的原因可能是由土壤环境变化(如养分含量提高, pH值下降)和植物获取光照能力强弱(如灌木植物获取光资源要多于草本植物)导致。

关键词: 氮沉降, 物种丰富度, 辽东栎, 林下植物, 物种多样性

Nitrogen deposition is one of the major driving factors for biodiversity. Generally speaking, graminoids and deciduous shrubs compete more for nitrogen than forbs and evergreen shrubs. However, previous studies have mainly focused on a single life-form of plants in alpine meadows or desert steppes, ignoring the range of different life-forms across different habitats. Furthermore, there is no obvious canopy or vertical structure in these ecosystems that might exacerbate light limitation. Hence, there need to be more nitrogen experiments in other more complicated ecosystems (e.g. forest ecosystem) to better understand how nitrogen affects understory plants. We conducted an 8-year N fertilization experiment with three treatment levels (0 kg N·ha -1·yr -1, 50 kg N·ha -1·yr -1, 100 kg N·ha -1·yr -1) in the Quercus wutaishanica forest at Mt. Dongling, Beijing to study the response of temperate forest understory plants to nitrogen deposition. We found that: (1) Nitrogen addition reduced the species richness and biodiversity of understory plants and changed the species composition and community structure significantly. (2) Nitrogen addition increased richness of the shrub layer, but decreased richness of the herbaceous layer. (3) Graminoids responded negatively to nitrogen deposition, while forbs were positively affected. The study shows that richness and species composition change differently in response to nitrogen deposition for different life-forms of plants. In fact, the entire community of understory plants may shift in response to a change in soil resources (e.g. increase in nutrient contents and decrease in pH) and light availability (e.g. shrubs can access light easier than herbs).

Key words: nitrogen deposition, species richness, Quercus wutaishanica, understory plants, biodiversity

表1

2018年各处理的林下植物基本情况, 其中‘+’代表有该物种, ‘-’代表无该物种。CK、N50、N100分别表示0、50、100 kg N·ha-1·yr-1氮添加处理。"

物种 Species 平均高度
Average height (cm)
平均盖度
Average
cover (%)
CK N50 N100 物种 Species 平均高度
Average height (cm)
平均盖度
Average
cover (%)
CK N50 N100
草本 Herbs 莠竹 Microstegium nodosum 39.85 0.30 + + +
细叶薹草 Carex rigescens 15.56 14.91 + + + 香茶菜 Rabdosia amethystoides 68.27 0.20 + - +
野青茅 Deyeuxia arundinacea 30.32 33.21 + + + 费菜 Sedum aizoon 28.12 0.10 + - +
银背风毛菊 Saussurea nivea 15.47 19.68 + + + 展枝沙参 Adenophora divaricata 43.55 0.06 + + -
瓣蕊唐松草
Thalictrum petaloideum
23.25 9.43 + + + 裂叶蒿 Artemisia tanacetifolia 58.28 0.15 + - -
糙苏 Phlomis umbrosa 45.27 1.96 + + - 乳浆大戟 Euphorbia esula 33.36 0.24 + - -
穿山龙 Dioscorea nipponica 23.43 2.28 + + + 斑叶堇菜 Viola variegata 18.34 0.32 - + -
小红菊 Dendranthema chanetii 13.79 2.71 + + + 黄花败酱 Patrinia scabiosaefolia 30.78 0.28 - + -
白及 Bletilla striata 26.67 1.43 + + - 裂叶堇菜 Viola dissecta 15.38 0.58 - + -
三脉紫菀 Aster ageratoides 33.36 1.65 + + + 黄瓜菜 Paraixeris denticulata 18.68 0.30 - - +
棉团铁线莲 Clematis hexapetala 29.38 1.25 + + + 灌木 Shrubs
藜芦 Veratrum nigrum 31.63 1.67 + - - 土庄绣线菊 Spiraea pubescens 143.78 10.96 + + +
苍术 Atractylodes lancea 34.02 1.18 + + - 大花溲疏 Deutzia grandiflora 108.33 13.68 + + +
地榆 Sanguisorba officinalis 27.58 1.37 + - + 胡枝子 Lespedeza bicolor 98.82 17.45 + + +
龙须菜 Asparagus schoberioides 35.55 0.52 + + + 照山白
Rhododendron micranthum
102.96 22.78 + + +
轮叶沙参 Adenophora tetraphylla 44.08 0.35 + - - 六道木 Abelia biflora 272.94 15.33 + + +
蒙古风毛菊 Saussurea mongolica 36.25 1.24 + + + 三裂绣线菊 Spiraea trilobata 77.39 5.61 + + +
茜草 Rubia cordifolia 23.14 0.62 + + + 小花溲疏 Deutzia parviflora 129.48 5.29 + + +
四叶葎 Galium bungei 18.85 0.33 + + + 迎红杜鹃
Rhododendron mucronulatum
124.76 3.24 + + +
玉竹 Polygonatum odoratum 16.92 0.75 + + + 金银忍冬 Lonicera maackii 176.50 4.36 - + +
小柴胡 Bupleurum tenue 14.58 0.30 + + + 圆叶鼠李 Rhamnus globosa 85.43 0.50 - - +
蒙古蒿 Artenmisia mongolica 78.64 0.28 + - - 牛叠肚 Rubus crataegifolius 68.95 0.80 - - +
鸡腿堇菜 Viola acuminata 13.23 0.35 + + +

表2

氮添加对2011年和2018年不同处理优势物种重要值变化的影响(平均值 ± 标准误差, n = 3)。不同字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

物种 Species 2011 2018
CK N50 N100 CK N50 N100
草本 Herbaceous
细叶薹草 Carex rigescens 15.53 ± 3.93a 14.25 ± 1.95a 20.53 ± 1.11a 10.16 ± 0.98a 8.29 ± 0.36a 4.17 ± 0.21b
野青茅 Deyeuxia arundinacea 40.82 ± 5.15a 36.64 ± 4.11a 32.14 ± 3.66a 39.95 ± 7.41a 35.94 ± 3.91a 34.24 ± 4.66a
银背风毛菊 Saussurea nivea 8.26 ± 3.99a 9.73 ± 1.28a 8.49 ± 2.29a 9.77 ± 2.45a 12.49 ± 4.78a 8.78 ± 1.75a
瓣蕊唐松草 Thalictrum petaloideum 3.73 ± 1.31a 4.17 ± 2.45a 7.18 ± 1.74a 4.73 ± 1.53a 9.84 ± 4.12a 8.97 ± 3.93a
灌木 Shrubs
土庄绣线菊 Spiraea pubescens 22.32 ± 3.53a 18.17 ± 5.41a 18.74 ± 6.22a 21.19 ± 3.03a 20.81 ± 2.48a 9.30 ± 3.63b
大花溲疏 Deutzia grandiflora 12.57 ± 2.57a 11.64 ± 2.39a 12.53 ± 3.26a 7.00 ± 2.12a 15.80 ± 4.64b 26.12 ± 2.52b
胡枝子 Lespedeza bicolor 15.18 ± 2.10a 13.09 ± 3.72a 16.08 ± 4.64a 15.15 ± 6.16a 20.10 ± 1.91a 22.33 ± 6.26a
照山白 Rhododendron micranthum 11.56 ± 5.66a 13.99 ± 2.81a 16.50 ± 1.78a 15.83 ± 4.44a 22.50 ± 3.73a 21.59 ± 2.82a
六道木 Abelia biflora 9.31 ± 1.54a 9.93 ± 5.22a 6.84 ± 1.06a 8.80 ± 5.55a 13.50 ± 8.48a 12.50 ± 3.73a

图1

氮添加对2011年和2018年林下植物物种丰富度和Shannon-Wiener指数的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

图2

氮添加对2011年和2018年草本层植物物种丰富度、Shannon-Wiener指数、植物高度、植物盖度的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

图3

氮添加对2011年和2018年灌木层植物物种丰富度、Shannon-Wiener指数、植物高度、植物盖度的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

图4

氮添加对2011年和2018年林下植物基尼系数的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

图5

氮添加对2018年林下优势种植物叶片全碳和全含量的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

图6

氮添加对2018年土壤全碳、全氮、全磷以及pH值的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

图7

氮添加对2011年和2018年禾草类植物以及杂类草重要值变化的影响(平均值 ± 标准误差, n = 3)。不同小写字母表示各处理差异显著(P < 0.05)。CK、N50、N100含义同表1。"

[1] Aerts R, Chapin III FS ( 1999) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
doi: 10.1016/S0065-2504(08)60016-1
[2] Aerts R, van der Peijl MJ ( 1993) A simple model to explain the dominance of low-productive perennials in nutrient-poor habitats. Oikos, 66, 144-147.
doi: 10.2307/3545208
[3] Alatalo RV ( 1981) Problems in the measurement of evenness in ecology. Oikos, 37, 199-204.
doi: 10.2307/3544465
[4] Avolio ML, Koerner SE, Pierre KJL, Wilcox KR, Wilson GWT, Smith MD, Collins S ( 2014) Changes in plant community composition, not diversity, during a decade of nitrogen and phosphorus additions drive above-ground productivity in a tallgrass prairie. Journal of Ecology, 102, 1649-1660.
doi: 10.1111/jec.2014.102.issue-6
[5] Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman JW, Fenn M, Gilliam F, Nordin A, Pardo L, Devries W ( 2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: A synthesis. Ecological Applications, 20, 30-59.
doi: 10.1890/08-1140.1
[6] Bobbink R, Hornung M, Roelofs JGM ( 1998) The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology, 86, 717-738.
doi: 10.1046/j.1365-2745.1998.8650717.x
[7] Bretharte MS, Mack MC, Goldsmith GR, Sloan DB, DeMarco J, Shaver GR, Ray PM, Biesinger Z, Chapin III FS ( 2008) Plant functional types do not predict biomass responses to removal and fertilization in Alaskan tussock tundra. Journal of Ecology, 96, 713-726.
doi: 10.1111/jec.2008.96.issue-4
[8] Carroll JA, Caporn SJM, Johnson D, Morecroft MD, Lee JA ( 2003) The interactions between plant growth, vegetation structure and soil processes in semi-natural acidic and calcareous grasslands receiving long-term inputs of simulated pollutant nitrogen deposition. Environmental Pollution, 121, 363-376.
doi: 10.1016/S0269-7491(02)00241-5
[9] Chapin III FS ( 2003) Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change. Annals of Botany, 91, 455-463.
doi: 10.1093/aob/mcg041
[10] Clark CM, Tilman D ( 2008) Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451, 712-715.
[11] Demalach N, Zaady E, Kadmon R ( 2017) Light asymmetry explains the effect of nutrient enrichment on grassland diversity. Ecology Letters, 20, 60-69.
doi: 10.1111/ele.2017.20.issue-1
[12] Dobben VHF, Braak CJF, Dirkse GM ( 1999) Undergrowth as a biomonitor for deposition of nitrogen and acidity in pine forest. Forest Ecology and Management, 114, 83-95.
doi: 10.1016/S0378-1127(98)00383-1
[13] Du EZ ( 2017) Integrating species composition and leaf nitrogen content to indicate effects of nitrogen deposition. Environment Pollution, 221, 392-397.
doi: 10.1016/j.envpol.2016.12.001
[14] Du EZ, Zhou Z, Li P, Hu XY, Ma YC, Wang W, Zheng CY, Zhu JX, He JS, Fang JY ( 2013) NEECF: A project of nutrient enrichment experiments in China’s forests. Journal of Plant Ecology, 6, 428-435.
doi: 10.1093/jpe/rtt008
[15] Duffy JE, Godwin CM, Cardinale BJ ( 2017) Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature, 549, 261-264.
[16] Falkowski P, Scholes RJ, Boyle EA, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S, Mackenzie FT, Moore B, Pedersen TF, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W ( 2000) The global carbon cycle: A test of our knowledge of earth as a system. Science, 290, 291-296.
doi: 10.1126/science.290.5490.291
[17] Fan HB, Huang YZ, Yuan YH, Li YY, Huang RZ, Fan HY ( 2007) Carbon cycling of forest ecosystems in reponse to global nitrogen deposition: A review. Acta Ecologica Sinica 27, 2997-3009. (in Chinese with English abstract)
[ 樊后保, 黄玉梓, 袁颖红, 李燕燕, 黄荣珍, 樊海燕 ( 2007) 森林生态系统碳循环对全球氮沉降的响应. 生态学报, 27, 2997-3009.]
[18] Fang Y, Xun F, Bai WM, Zhang WH, Li LH ( 2012) Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe. PLoS ONE, 7, e47369.
doi: 10.1371/journal.pone.0047369
[19] Gao XM, Wang W, Du XJ, Ma KP ( 2001) Size structure, ecological significance and population origin of Quercus wutaishanica forest in Beijing mountainous area. Acta Phytoecologica Sinica, 25, 673-678. (in Chinese with English abstract)
[ 高贤明, 王巍, 杜晓军, 马克平 ( 2001) 北京山区辽东栎林的径级结构、种群起源及生态学意义. 植物生态学报, 25, 673-678.]
[20] Gilliam FS ( 2006) Response of the herbaceous layer of forest ecosystems to excess nitrogen deposition. Journal of Ecology, 94, 1176-1191.
doi: 10.1111/jec.2006.94.issue-6
[21] Gilliam FS ( 2007) The ecological significance of the herbaceous layer in temperate forest ecosystems. BioScience, 57, 845-858.
doi: 10.1641/B571007
[22] Gilliam FS, Roberts MR ( 2003) The Herbaceous Layer in Forests of Eastern North America, 2nd edn. Oxford University Press, New York.
[23] Gilliam FS, Welch NT, Phillips AH, Billmyer JH, Peterjohn WT, Fowler ZK, Walter CA, Burnham MB, May JD, Adams MB ( 2016) Twenty-five-year response of the herbaceous layer of a temperate hardwood forest to elevated nitrogen deposition. Ecosphere, 7, e01250.
doi: 10.1002/ecs2.1250
[24] Harpole WS, Tilman D ( 2007) Grassland species loss resulting from reduced niche dimension. Nature, 446, 791-793.
[25] Hedwall PO, Nordin A, Strengbom J, Brunet J, Olsson B ( 2013) Does background nitrogen deposition affect the response of boreal vegetation to fertilization? Oecologia, 173, 615-624.
doi: 10.1007/s00442-013-2638-3
[26] Horswill P, O’Sullivan O, Phoenix GK, Lee JA, Leake JR ( 2008) Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environmental Pollution, 155, 340-349.
[27] Hu JY, Zhu JX, Zhou Z, Li P, Cui J, Tang ZY, Fang JY ( 2014) Effects of experimental nitrogen additions on understory species diversity in four forests in China. Acta Scientiarum Naturalium Universitatis Pekinensis, 50, 904-910. (in Chinese with English abstract)
[ 胡钧宇, 朱剑霄, 周璋, 李鹏, 崔珺, 唐志尧, 方精云 ( 2014) 氮添加对4种森林类型林下植物多样性的影响. 北京大学学报(自然科学版), 50, 904-910.]
[28] Hutchings MJ, John EA, Wijesinghe DK ( 2003) Toward understanding the consequences of soil heterogeneity for plant populations and communities. Ecology, 84, 2322-2334.
doi: 10.1890/02-0290
[29] Johannes MHK, Wedin D, Tilman D ( 2001) Biodiversity and decomposition in experimental grassland ecosystems. Oecologia, 126, 429-433.
doi: 10.1007/s004420000537
[30] Kempton RA, Taylor LR ( 1976) Models and statistics for species diversity. Nature, 262, 818-820.
[31] Klein JA, Harte J, Zhao XQ ( 2007) Experimental warming, not grazing, decreases rangeland quality on the Tibetan Plateau. Ecological Applications, 17, 541-557.
doi: 10.1890/05-0685
[32] Li LJ, Zeng DH, Yu ZY, Ai GY, Yang D, Mao R ( 2010) Effects of fertilizations on species composition and diversity of grassland in Keerqin Sandy Lands. Acta prataculturae sinica, 19, 109-115. (in Chinese with English abstract)
[ 李禄军, 曾德慧, 于占源, 艾桂艳, 杨丹, 毛瑢 ( 2010) 施肥对科尔沁沙质草地群落物种组成和多样性的影响. 草业学报, 19, 109-115.]
[33] Liu C, Bu ZJ, Ma JZ, Yuan M, Feng L, Liu SS ( 2015) Comparative study on the response of deciduous and evergreen shrubs to nitrogen and phosphorus input in Hani Peatland of Changbai Mountains. Chinese Journal of Ecology, 34, 2711-2719. (in Chinese with English abstract)
[ 刘超, 卜兆君, 马进泽, 袁敏, 冯璐, 刘莎莎 ( 2015) 哈泥泥炭地落叶和常绿两类灌木对氮磷输入增加响应的对比. 生态学杂志, 34, 2711-2719.]
[34] Lü CQ, Tian HQ ( 2007) Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data. Journal of Geophysical Research, 12, D22S05.
[35] Lu XK, Mo JM, Dong SF ( 2008) Effects of nitrogen deposition on forest biodiversity: A review. Acta Ecologica Sinica, 28, 5532-5548. (in Chinese with English abstract)
[ 鲁显楷, 莫江明, 董少峰 ( 2008) 氮沉降对森林生物多样性的影响. 生态学报, 28, 5532-5548.]
[36] Lu XK, Mo JM, Gilliam FS, Zhou GY, Fang YT ( 2010) Effects of experimental nitrogen additions on plant diversity in an old-growth tropical forest. Global Change Biology, 16, 2688-2700.
doi: 10.1111/gcb.2010.16.issue-10
[37] Niu DC, Yuan XB, Cease AJ, Wen HY, Zhang CP, Fu H, Elser JJ ( 2017) The impact of nitrogen enrichment on grassland ecosystem stability depends on nitrogen addition level. Science of the Total Environment, 618, 1334-1338.
[38] Nordin A, Strengbom J, Forsum A, Ericson L ( 2009) Complex biotic interactions drive long-term vegetation change in a nitrogen enriched boreal forest. Ecosystems, 12, 1204-1211.
doi: 10.1007/s10021-009-9287-8
[39] Ren ZW, Li Q, Chu CJ, Zhao LQ, Zhang JQ, Ai DC, Yang YB, Wang G ( 2010) Effects of resource additions on species richness and ANPP in an alpine meadow community. Journal of Plant Ecology, 3, 25-31.
doi: 10.1093/jpe/rtp034
[40] Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Walker MT, Walker M, Wall DH ( 2000) Biodiversity-global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
doi: 10.1126/science.287.5459.1770
[41] Santiago LS ( 2015) Nutrient limitation of eco-physiological processes in tropical trees. Trees, 29, 1291-1300.
doi: 10.1007/s00468-015-1260-x
[42] Smith MD, Knapp AK, Collins SL ( 2009) A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
doi: 10.1890/08-1815.1
[43] Stevens CJ, Dise NB, Gowing DJG, Mountford JO ( 2006) Loss of forb diversity in relation to nitrogen deposition in the UK. Global Change Biology, 12, 1460-1465.
doi: 10.1111/gcb.2006.12.issue-8
[44] Stevens CJ, Dise NB, Mountford JO, Gowing DJ ( 2004) Impact of nitrogen deposition on the species richness of grasslands. Science, 303, 1876-1879.
doi: 10.1126/science.1094678
[45] Strengbom J, Nordin A ( 2012) Physical disturbance determines effects from nitrogen addition on ground vegetation in boreal coniferous forests. Journal of Vegetation Science, 23, 361-371.
doi: 10.1111/j.1654-1103.2011.01359.x
[46] Strengbom J, Nordin A, Ericson TN ( 2001) Slow recovery of boreal forest ecosystem following decreased nitrogen input. Functional Ecology, 15, 451-457.
doi: 10.1046/j.0269-8463.2001.00538.x
[47] Strengbom J, Walheim M, Näsholm T, Ericson L ( 2003) Regional differences in the occurrence of understorey species reflect nitrogen deposition in Swedish forests. Ambio, 32, 91-97.
doi: 10.1579/0044-7447-32.2.91
[48] Sun SC, Chen LZ ( 2000) Seed demography of Quercus liaotungensis in Dongling Mountain region. Acta phytoecologica sinica, 24, 215-221. (in Chinese with English abstract)
[ 孙书存, 陈灵芝 ( 2000) 东灵山地区辽东栎种子库统计. 植物生态学报, 24, 215-221.]
[49] Tian D, Du EZ, Jiang L, Ma SH, Zeng WJ, Zou AL, Feng CY, Xu LC, Xing AJ, Wang W, Zheng CY, Ji CJ, Shen HH, Fang JY ( 2018) Responses of forest ecosystems to increasing N deposition in China: A critical review. Environmental Pollution, 243, 75-86.
doi: 10.1016/j.envpol.2018.08.010
[50] Tian QY, Liu NN, Bai WM, Li LH, Chen JQ, Reich PB, Yu Q, Guo DL, Smith MD, Knapp AK, Cheng WX, Lu P, Gao Y, Yang A, Wang TZ, Li X, Wang ZW, Ma YB, Han XG, Zhang WH ( 2016) A novel soil manganese mechanism drives plant species loss with increased nitrogen deposition in a temperate steppe. Ecology, 97, 65-74.
doi: 10.1890/15-0917.1
[51] Vitousek PM, Howarth RW ( 1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13, 87-115.
[52] Walter CA, Adams MB, Gilliam FS, Peterjohn WT ( 2017) Non-random species loss in a forest herbaceous layer following nitrogen addition. Ecology, 98, 2322-2332.
doi: 10.1002/ecy.1928
[53] Wang QSY, Zheng CY, Zhang XY, Zeng FX, Xing J ( 2016) Impacts of nitrogen addition on foliar nitrogen and phosphorus stoichiometry in a subtropical evergreen broad-leaved forest in Mount Wuyi. Chinese Journal of Plant Ecology, 40, 1124-1135. (in Chinese with English abstract)
[ 王乔姝怡, 郑成洋, 张歆阳, 曾发旭, 邢娟 ( 2016) 氮添加对武夷山亚热带常绿阔叶林植物叶片氮磷化学计量特征的影响. 植物生态学报, 40, 1124-1135.]
[54] Wedin D, Tilman D ( 1993) Competition among grasses along a nitrogen gradient: Initial conditions and mechanisms of competition. Ecological Monographs, 63, 199-229.
doi: 10.2307/2937180
[55] Weiner J, Solbrig OT ( 1984) The meaning and measurement of size hierarchies in plant populations. Oecologia, 61, 334-336.
doi: 10.1007/BF00379630
[56] Wilson SD, Tilman WD ( 1993) Plant competition and resource availability in response to disturbance and fertilization. Ecology, 74, 599-612.
doi: 10.2307/1939319
[57] Xia JY, Wan SQ ( 2008) Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179, 428-439.
doi: 10.1111/nph.2008.179.issue-2
[58] Xing AJ, Xu LC, Shen HH, Du EZ, Liu XY, Fang JY ( 2019) Long term effect of nitrogen addition on understory community in a Chinese boreal forest. Science of the Total Environment, 646, 989-995.
doi: 10.1016/j.scitotenv.2018.07.350
[59] Yang Q, Wang W, Zeng H ( 2018) Effects of nitrogen addition on the plant diversity and biomass of degraded grasslands of Nei Mongol, China. Chinese Journal of Plant Ecology, 42, 430-441. (in Chinese with English abstract)
[ 杨倩, 王娓, 曾辉 ( 2018) 氮添加对内蒙古退化草地植物群落多样性和生物量的影响. 植物生态学报, 42, 430-441.]
[60] Yao H, Hu XY, Zhu JL, Zhu JX, Ji CJ, Fang JY ( 2015) Soil respiration and the 20-year change in three temperate forests in Mt. Dongling, Beijing. Chinese Journal of Plant Ecology, 39, 849-856. (in Chinese with English abstract)
[ 姚辉, 胡雪洋, 朱江玲, 朱剑霄, 吉成均, 方精云 ( 2015) 北京东灵山3种温带森林土壤呼吸及其20年的变化. 植物生态学报, 39, 849-856.]
[1] 谭一波, 申文辉, 付孜, 郑威, 欧芷阳, 谭长强, 彭玉华, 庞世龙, 何琴飞, 黄小荣, 何峰. (2019) 环境因子对桂西南蚬木林下植被物种多样性变异的解释. 生物多样性, 27(9): 970-983.
[2] 唐丽丽,杨彤,刘鸿雁,康慕谊,王仁卿,张峰,高贤明,岳明,张梅,郑璞帆,石福臣. (2019) 华北地区荆条灌丛分布及物种多样性空间分异 规律. 植物生态学报, 43(9): 825-833.
[3] 秦浩,张殷波,董刚,张峰. (2019) 山西关帝山森林群落物种、谱系和功能多样性海拔格局. 植物生态学报, 43(9): 762-773.
[4] 陈自宏, 王元兵, 代永东, 陈凯, 徐玲, 何謦成. (2019) 滇西太保山森林公园子囊菌门虫生真菌物种多样性及其消长动态. 生物多样性, 27(9): 993-1001.
[5] 方文静,蔡琼,朱江玲,吉成均,岳明,郭卫华,张峰,高贤明,唐志尧,方精云. (2019) 华北地区落叶松林的分布、群落结构和物种多样性. 植物生态学报, 43(9): 742-752.
[6] 邹安龙,李修平,倪晓凤,吉成均. (2019) 模拟氮沉降对北京东灵山辽东栎林树木生长的影响. 植物生态学报, 43(9): 783-792.
[7] 崔宝凯, 袁海生, 周丽伟, 何双辉, 魏玉莲. (2019) 大小兴安岭针叶树倒木上木腐真菌的物种多样性. 生物多样性, 27(8): 887-895.
[8] 李俊凝, 李通, 魏玉莲. (2019) 丰林国家级自然保护区木腐真菌多样性与寄主倒木的关系. 生物多样性, 27(8): 880-886.
[9] 图力古尔, 王雪珊, 张鹏. (2019) 大小兴安岭地区伞菌和牛肝菌类区系. 生物多样性, 27(8): 867-873.
[10] 焦萌, 李晶, 赵慧峰, 武春生, 张爱兵. (2019) 基于在线数据库的鳞翅目刺蛾科昆虫物种多样性及其全球分布格局. 生物多样性, 27(7): 778-786.
[11] 张明明,杨朝辉,王丞,王娇娇,胡灿实,雷孝平,石磊,粟海军,李佳琦. (2019) 贵州梵净山国家级自然保护区鸟兽红外相机监测. 生物多样性, 27(7): 813-818.
[12] 刘艳, 杨钰爽. (2019) 生物多样性保护优先区对重庆苔藓植物多样性保护的重要性. 生物多样性, 27(6): 677-682.
[13] 王攀, 朱湾湾, 牛玉斌, 樊瑾, 余海龙, 赖江山, 黄菊莹. (2019) 氮添加对荒漠草原植物群落组成与微生物生物量生态化学计量特征的影响. 植物生态学报, 43(5): 427-436.
[14] 张新新, 王茜, 胡颖, 周玮, 陈晓阳, 胡新生. (2019) 植物边缘种群遗传多样性研究进展. 植物生态学报, 43(5): 383-395.
[15] 胡宜峰, 余文华, 岳阳, 黄正澜懿, 李玉春, 吴毅. (2019) 海南岛翼手目物种多样性现状与分布预测. 生物多样性, 27(4): 400-408.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed