Biodiv Sci ›› 2023, Vol. 31 ›› Issue (12): 23392. DOI: 10.17520/biods.2023392
• Special Feature: Celebrating Alfred Russel Wallace’s Bicentenary • Previous Articles Next Articles
Xiaofan Shang1(), Jian Zhang1,*()(), Haojie Gao2, Weipeng Ku3, Yuke Bi4, Xiupeng Li5, Enrong Yan1()
Received:
2023-10-18
Accepted:
2023-12-14
Online:
2023-12-20
Published:
2023-12-16
Contact:
E-mail: Xiaofan Shang, Jian Zhang, Haojie Gao, Weipeng Ku, Yuke Bi, Xiupeng Li, Enrong Yan. Island area and climate jointly impact seed plant richness patterns across the Zhoushan Archipelago[J]. Biodiv Sci, 2023, 31(12): 23392.
Fig. 2 Spatial distributions of woody plant richness in 92 islands of the Zhoushan Archipelago. (a) Evergreen broad-leaved woody plants; (b) Deciduous broad-leaved woody plants; (c) The ratio of evergreen broad-leaved woody plant richness to all broad-leaved woody plant richness.
Fig. 3 Correlations between all seed plant richness and environmental drivers. (a) Area; (b) The distance to mainland (DM); (c) Shape index (SI); (d) Human influence index (HI); (e) Mean annual air temperature (MAT); (f) Mean annual precipitation (MAP); (g) Temperature seasonality (TS); and (h) Precipitation seasonality (PS).
Fig. 4 Effects of island physical characteristics, climate and human influence on native seed plant richness. (a) All seed plants; (b) Trees; (c) Shrubs; and (d) Herbs. The straight line represents the 95% confidence interval. The left side of the vertical dashed line indicates for negative correlations, while the right for positive correlations. The triangles indicate statistically significant estimates of standardized coefficients, and the dot points show the non-significant ones. Island characteristics, climate, human influence and their interactions are represented in green, blue, purple and red, respectively. Variable abbreviations are the same in Fig. 3. Interaction variables are separated by colons.
Fig. 5 Effects of island physical characteristics, climate and human influence on woody plant richness. (a) Evergreen broad-leaved woody plants; (b) Deciduous broad-leaved woody plants; and (c) The ratio of evergreen broad-leaved woody plant richness to all broad-leaved woody plant richness. The straight line represents the 95% confidence interval. The left side of the vertical dashed line indicates negative correlations, while the right for positive correlations. The triangles indicate statistically significant estimates of standardized coefficients, and the dot points show the non-significant ones. Island characteristics, climate, human influence and their interactions are represented in green, blue, purple and red, respectively. Variable abbreviations are the same in Fig. 3. Interaction variables are separated by colons.
[1] | Bartoń K (2023) MuMIn: Multi-Model Inference. https://CRAN.R-project.org/package=MuMIn. (accessed on 2023-08-25) |
[2] | Burnham KP, Anderson DA (2002) Model Selection and Multimodel Inference: A Practical Information-theoretic Approach, 2nd edn. Springer, New York. |
[3] |
Blackburn TM, Delean S, Pyšek P, Cassey P (2016) On the island biogeography of aliens: A global analysis of the richness of plant and bird species on oceanic islands. Global Ecology and Biogeography, 25, 859-868.
DOI URL |
[4] | Cabral JS, Weigelt P, Kissling WD, Kreft H (2014) Biogeographic, climatic and spatial drivers differentially affect α-, β- and γ-diversities on oceanic archipelagos. Proceedings of the Royal Society B: Biological Sciences, 281, 20133246. |
[5] |
Carvajal-Endara S, Hendry AP, Emery NC, Davies TJ (2017) Habitat filtering not dispersal limitation shapes oceanic island floras: Species assembly of the Galápagos archipelago. Ecology Letters, 20, 495-504.
DOI PMID |
[6] |
Chen CW, Xu AC, Wang YP (2020) Area threshold and trait-environment associations of butterfly assemblages in the Zhoushan Archipelago, China. Journal of Biogeography, 48, 785-797.
DOI URL |
[7] | Cribari-Neto F, Zeileis A (2010) Beta regression in R. Journal of Statistical Software, 34, 1-24. |
[8] | Delectis Florae Reipublicae Popularis Sinicae Agendae Academicae Sinicae Edita (1959-2004) Flora Reipublicae Popularis Sinicae (Tomus 1-80) Science Press, Beijing. (in Chinese) |
[中国科学院中国植物志编辑委员会 (1959-2004) 中国植物志(第1-80卷). 科学出版社, 北京.] | |
[9] |
Fu PL, Jiang YJ, Wang AY, Brodribb TJ, Zhang JL, Zhu SD, Cao KF (2012) Stem hydraulic traits and leaf water-stress tolerance are co-ordinated with the leaf phenology of angiosperm trees in an Asian tropical dry karst forest. Annals of Botany, 110, 189-199.
DOI URL |
[10] | Gao HJ (2018) Three newly recorded plants in Zhoushan Islands, Zhejiang. Guihaia, 38, 1286-1289. (in Chinese with English abstract) |
[高浩杰 (2018) 浙江舟山群岛三种新记录植物. 广西植物, 38, 1286-1289.] | |
[11] | Gao HJ, Wang GM, Yu QJ (2015) Distribution characteristics and species diversity of seed plants in Zhoushan, Zhejiang. Plant Science Journal, 33, 61-71. (in Chinese with English abstract) |
[高浩杰, 王国明, 郁庆君 (2015) 舟山市种子植物物种多样性及其分布特征. 植物科学学报, 33, 61-71.] | |
[12] | GBIF (2022) GBIF Occurrence Download. https://doi.org/10.15468/dl.kae3ym. (accessed on 2022-01-08) |
[13] | Ge JL, Berg B, Xie ZQ (2019) Climatic seasonality is linked to the occurrence of the mixed evergreen and deciduous broad-leaved forests in China. Ecosphere, 10, 10, e02862. |
[14] |
Ge JL, Xie ZQ (2017) Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: Implications for the definition of the mixed forest. Ecology and Evolution, 7, 3636-3644.
DOI PMID |
[15] |
Gillespie RG, Baldwin BG, Waters JM, Fraser CI, Nikula R, Roderick GK (2012) Long-distance dispersal: A framework for hypothesis testing. Trends in Ecology & Evolution, 27, 47-56.
DOI URL |
[16] | Givnish T (2002) Adaptive significance of evergreen vs. deciduous leaves: Solving the triple paradox. Silva Fennica, 36, 703-743. |
[17] |
Gleditsch JM, Behm JE, Ellers J, Jesse WAM, Helmus MR (2023) Contemporizing island biogeography theory with anthropogenic drivers of species richness. Global Ecology and Biogeography, 32, 233-249.
DOI URL |
[18] |
Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP (2010) Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21, 300-317.
DOI URL |
[19] |
Helmus MR, Mahler DL, Losos JB (2014) Island biogeography of the Anthropocene. Nature, 513, 543-546.
DOI |
[20] |
Honnay O, Piessens K, Van Landuyt W, Hermy M, Gulinck H (2003) Satellite based land use and landscape complexity indices as predictors for regional plant species diversity. Landscape and Urban Planning, 63, 241-250.
DOI URL |
[21] | Hortal J, Triantis KA, Meiri S, Thébault E, Sfenthourakis S (2009) Island species richness increases with habitat diversity. The American Naturalist, 174, E205-E217. |
[22] |
Jesse WA, Behm JE, Helmus MR, Ellers J (2018) Human land use promotes the abundance and diversity of exotic species on Caribbean Islands. Global Change Biology, 24, 4784-4796.
DOI PMID |
[23] |
Jin XF, Lu YF, Ding BY, Li GY, Chen ZH, Zhang FG (2022) Species cataloging of the seed plants in Zhejiang, East China. Biodiversity Science, 30, 21408. (in Chinese with English abstract)
DOI |
[金孝锋, 鲁益飞, 丁炳扬, 李根有, 陈征海, 张方钢 (2022) 浙江种子植物物种编目. 生物多样性, 30, 21408.] | |
[24] |
Karger DN, Wilson AM, Mahony C, Zimmermann NE, Jetz W (2021) Global daily 1 km land surface precipitation based on cloud cover-informed downscaling. Scientific Data, 8, 307.
DOI PMID |
[25] |
Kreft H, Jetz W, Mutke J, Kier G, Barthlott W (2008) Global diversity of island floras from a macroecological perspective. Ecology Letters, 11, 116-127.
DOI PMID |
[26] |
Kubota Y, Shiono T, Kusumoto B (2015) Role of climate and geohistorical factors in driving plant richness patterns and endemicity on the East Asian continental islands. Ecography, 38, 639-648.
DOI URL |
[27] |
Liu J, Matthews TJ, Zhong L, Liu J, Wu D, Yu M (2020) Environmental filtering underpins the island species—Area relationship in a subtropical anthropogenic archipelago. Journal of Ecology, 108, 424-432.
DOI URL |
[28] |
Liu JL, Liu TT, Zhou YY, Chen Y, Lu LJ, Jin XJ, Hu RY, Zhang YP, Zhang YH (2023) Plant diversity on islands in the Anthropocene: Integrating the effects of the theory of island biogeography and human activities. Basic and Applied Ecology, 72, 45-53.
DOI URL |
[29] |
Liu XY, Zhao CL, Xu MS, Liang QM, Zhu XT, Li L, Yan ER (2019) Beta diversity of vascular plants and its drivers in sea-islands of eastern China. Biodiversity Science, 27, 380-387. (in Chinese with English abstract)
DOI |
[刘翔宇, 赵慈良, 许洺山, 梁启明, 朱晓彤, 李亮, 阎恩荣 (2019) 中国东部海岛维管植物的beta多样性及其驱动因素. 生物多样性, 27, 380-387.]
DOI |
|
[30] |
Lomolino MV (2000) Ecology’s most general, yet protean pattern: The species-area relationship. Journal of Biogeography, 27, 17-26.
DOI URL |
[31] | Lomolino MV, Riddle BR, Whittaker RJ (2017) Biogeography, 5th edn Oxford University Press, Sunderland, MA. |
[32] | MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton. |
[33] | Matthews TJ, Triantis K (2021) Island biogeography. Current Biology, 31, R1201-R1207. |
[34] | NSII National Specimen Information Infrastructure (2022) Specimen Search Portal. http://www.nsii.org.cn/2017/. (accessed on 2022-01-08). (accessed on 2022-01-08) |
[35] |
Pierce S, Negreiros D, Cerabolini BEL, Kattge J, Díaz S, Kleyer M, Shipley B, Wright SJ, Soudzilovskaia NA, Onipchenko VG, van Bodegom P, Frenette-Dussault C, Weiher E, Pinho BX, Cornelissen JHC, Grime JP, Thompson K, Hunt R, Wilson PJ, Buffa G, Nyakunga OC, Reich PB, Caccianiga M, Mangili F, Ceriani RM, Luzzaro A, Brusa G, Siefert A, Barbosa NPU, Chapin III FS, Cornwell WK, Fang JY, Fernandes GW, Garnier E, Stradic SL, Peñuelas J, Melo FPL, Slaviero A, Tabarelli M, Tampucci D (2017) A global method for calculating plant CSR ecological strategies applied across biomes world-wide. Functional Ecology, 31, 444-457.
DOI URL |
[36] | R Core Team (2022) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org. (accessed on 2023-09-01) |
[37] |
Russell JC, Kueffer C (2019) Island biodiversity in the Anthropocene. Annual Review of Environment and Resources, 44, 31-60.
DOI |
[38] |
Schrader J, König C, Triantis K, Trigas P, Kreft H, Weigelt P (2020) Species-area relationships on small islands differ among plant growth forms. Global Ecology and Biogeography, 29, 814-829.
DOI URL |
[39] |
Šímová I, Violle C, Svenning J, Kattge J, Engemann K, Sandel B, Peet RK, Wiser SK, Blonder B, McGill BJ, Boyle B, Morueta-Holme N, Kraft NJB, van Bodegom PM, Gutiérrez AG, Bahn M, Ozinga WA, Tószögyová A, Enquist BJ (2018) Spatial patterns and climate relationships of major plant traits in the New World differ between woody and herbaceous species. Journal of Biogeography, 45, 895-916.
DOI URL |
[40] | Song YC (2013) Evergreen Broad-leaved Forests in China: Classification, Ecology, and Conservation Science Press, Beijing. (in Chinese) |
宋永昌 (2013) 中国常绿阔叶林: 分类·生态·保育. 科学出版社, 北京.] | |
[41] |
Storch D, Keil P, Jetz W (2012) Universal species-area and endemics-area relationships at continental scales. Nature, 488, 78-81.
DOI |
[42] | The Editorial Committee of Sea Islands of China (2014) Sea Islands of China. China Ocean Press, Beijing. (in Chinese) |
[中国海岛志编纂委员会 (2014) 中国海岛志. 海洋出版社, 北京.] | |
[43] |
Triantis KA, Sfenthourakis S (2012) Island biogeography is not a single-variable discipline: The small island effect debate. Diversity and Distributions, 18, 92-96.
DOI URL |
[44] | Valli AT, Kougioumoutzis K, Iliadou E, Panitsa M, Trigas P (2019) Determinants of alpha and beta vascular plant diversity in Mediterranean island systems: The Ionian Islands, Greece. Nordic Journal of Botany, 37, e02156. |
[45] |
Vellend M (2010) Conceptual synthesis in community ecology. The Quarterly Review of Biology, 85, 183-206.
DOI URL |
[46] | Vellend M (2016) The Theory of Ecological Communities (MPB-57). Princeton University Press, Princeton. |
[47] | Vellend M (translated by Zhang J, Zhang ZC, Wang YZ, Liu XY, Song HJ, Gao ZW, Wang X, Zhang R)(2020) The Theory of Ecological Communities. Higher Education Press, Beijing. (in Chinese) |
[张健, 张昭臣, 王宇卓, 刘翔宇, 宋厚娟, 高志文, 王昕, 张然 译 (2020) 生态群落理论. 高等教育出版社, 北京.] | |
[48] | Walentowitz A, Ferreira-Arruda T, Irl SD, Kreft H, Beierkuhnlein C (2023) Disentangling natural and anthropogenic drivers of native and non-native plant diversity on North Sea Islands. Journal of Biogeography, https://onlinelibrary.wiley.com/doi/10.1111/jbi.14753. |
[49] |
Walentowitz A, Troiano C, Christiansen JB, Steinbauer MJ, Barfod AS (2022) Plant dispersal characteristics shape the relationship of diversity with area and isolation. Journal of Biogeography, 49, 1599-1608.
DOI URL |
[50] |
Wang DR, Zhao YH, Tang SP, Liu XX, Li WD, Han P, Zeng D, Yang Y, Wei GP, Kang Y, Si XF (2023) Nearby large islands diminish biodiversity of the focal island by a negative target effect. Journal of Animal Ecology, 92, 492-502.
DOI URL |
[51] | Wang GM, Ye B (2017) Floristic composition and diversity of typical plant community in Zhoushan Archipelago, East China. Chinese Journal of Ecology, 36, 349-358. (in Chinese with English abstract) |
[王国明, 叶波 (2017) 舟山群岛典型植物群落物种组成及多样性. 生态学杂志, 36, 349-358.] | |
[52] | Wang YP, Chen CW, Millien V (2018) A global synthesis of the small-island effect in habitat islands. Proceedings of the Royal Society B: Biological Sciences, 285, 20181868. |
[53] | Wei YJ, Yang YF, He QY, Cai YH, Song GY (2016) Distribution of plants and relationship between plants and environment factors in Small Yangshan Island, Zhejiang Shengsi. Journal of Shanghai Normal University (Natural Sciences), 45, 81-93. (in Chinese with English abstract) |
[魏永杰, 杨耀芳, 何琴燕, 蔡燕红, 宋国元 (2016) 浙江嵊泗小洋山岛植物分布特点和环境因子分析. 上海师范大学学报(自然科学版), 45, 81-93.] | |
[54] | Weigelt P, Jetz W, Kreft H (2013) Bioclimatic and physical characterization of the world’s islands. Proceedings of the National Academy of Sciences, USA, 110, 15307-15312. |
[55] |
Weigelt P, Kreft H (2013) Quantifying island isolation—Insights from global patterns of insular plant species richness. Ecography, 36, 417-429.
DOI URL |
[56] | WFO World Flora Online (2023) An Online Flora of All Known Plants. http://www.worldfloraonline.org. (accessed on 2023-10-15) |
[57] |
Xie YQ, Huang H, Wang CX, He YQ, Jiang YX, Liu ZL, Deng CY, Zheng YS (2023) Determinants of species-area relationship and species richness of coastal endemic plants in the Fujian Islands. Biodiversity Science, 31, 22345. (in Chinese with English abstract)
DOI |
[谢艳秋, 黄晖, 王春晓, 何雅琴, 江怡萱, 刘子琳, 邓传远, 郑郁善 (2023) 福建海岛滨海特有植物种-面积关系及物种丰富度决定因素. 生物多样性, 31, 22345.]
DOI |
|
[58] |
Xu M, Yang A, Yang X, Cao W, Zhang Z, Li Z, Zhang Y, Zhang H, You W, Yan ER, Wardle DA (2023) Island area and remoteness shape plant and soil bacterial diversity through land use and biological invasion. Functional Ecology, 37, 1232-1244.
DOI URL |
[59] |
Yan ER, Si XF, Zhang J, Chen XY (2022) Edward O. Wilson and the Theory of Island Biogeography. Biodiversity Science, 30, 22024. (in Chinese with English abstract)
DOI |
[阎恩荣, 斯幸峰, 张健, 陈小勇 (2022) E. O. 威尔逊与岛屿生物地理学理论. 生物多样性, 30, 22024.] | |
[60] |
Yu J, Shen L, Li DD, Guo SL (2019) Determinants of bryophyte species richness on the Zhoushan Archipelago, China. Basic and Applied Ecology, 37, 38-50.
DOI URL |
[61] |
Yu MJ, Hu G, Feeley K, Wu JG, Ding P (2012) Richness and composition of plants and birds on land-bridge islands: Effects of island attributes and differential responses of species groups. Journal of Biogeography, 39, 1124-1133.
DOI URL |
[62] | Zanaga D, Van De Kerchove R, Daems D, De Keersmaecker W, Brockmann C, Kirches G, Wevers J, Cartus O, Santoro M, Fritz S, Lesiv M, Herold M, Tsendbazar NE, Xu PP, Ramoino F, Arino O (2022) ESA WorldCover 10 m 2021 v200. https://zenodo.org/record/7254221. (accessed on 2023-03-15) |
[63] |
Zhang J, Qian H (2023) U.Taxonstand: An R package for standardizing scientific names of plants and animals. Plant Diversity, 45, 1-5.
DOI |
[64] | Zheng JM, Fang X, Zhu XP, Zhu DD, Deng CY, Huang LJ (2017) Vegetation characteristics and plant diversity of Waimalangshan Island, Zhoushan. Guihaia, 37, 271-279. (in Chinese with English abstract) |
[郑俊鸣, 方笑, 朱雪平, 朱丹丹, 邓传远, 黄柳菁 (2017) 外马廊山岛植被特性与植物多样性. 广西植物, 37, 271-279.] | |
[65] | Zhu H, Ge BJ, Ye XY (2015) Seed plant flora of Dongfushan Island in Zhoushan, Zhejiang Province. Journal of Zhejiang A&F University, 32, 150-155. (in Chinese with English abstract) |
[朱弘, 葛斌杰, 叶喜阳 (2015) 浙江舟山东福山岛种子植物区系初探. 浙江农林大学学报, 32, 150-155.] | |
[66] | Zhu JY, Hu JF, Ou DY, Huang Y, Wei ZL, Wu HZJ, Jin SH (2020) Species components and hazards of alien invasive plants in Putuoshan Island, Zhejiang Province. Journal of Zhejiang A&F University, 37, 737-744. (in Chinese with English abstract) |
[朱峻熠, 胡军飞, 欧丹燕, 黄燕, 魏子璐, 吴昊正基, 金水虎 (2020) 浙江普陀山外来入侵植物组成及危害现状. 浙江农林大学学报, 37, 737-744.] |
[1] | Yanyu Ai, Haixia Hu, Ting Shen, Yuxuan Mo, Jinhua Qi, Liang Song. Vascular epiphyte diversity and the correlation analysis with host tree characteristics: A case in a mid-mountain moist evergreen broad-leaved forest, Ailao Mountains [J]. Biodiv Sci, 2024, 32(5): 24072-. |
[2] | Yanqiu Xie, Hui Huang, Chunxiao Wang, Yaqin He, Yixuan Jiang, Zilin Liu, Chuanyuan Deng, Yushan Zheng. Determinants of species-area relationship and species richness of coastal endemic plants in the Fujian islands [J]. Biodiv Sci, 2023, 31(5): 22345-. |
[3] | Xing Chen, Shuwen Tu, Zun Dai, Shuang Gao, Youfang Wang, Shichen Xing, Bojia Wei, Luyan Tang, Ruiping Shi, Xiaorui Wang, Yongying Liu, Dongping Zhao, Xia Tang, Xue Yao, Mingshui Zhao, Hanxing Wu, Xiangbin Qi, Jian Zhang, Min Li, Jian Wang. Bryophytes diversity of Tianmushan National Nature Reserve, Zhejiang Province [J]. Biodiv Sci, 2023, 31(4): 22649-. |
[4] | Yujie Xue, Anpeng Cheng, Shan Li, Xiaojuan Liu, Jingwen Li. The effects of environment and species diversity on shrub survival in subtropical forests [J]. Biodiv Sci, 2023, 31(3): 22443-. |
[5] | De Gao, Yanping Wang. A review of the small-island effect detection methods and method advancement [J]. Biodiv Sci, 2023, 31(12): 23299-. |
[6] | Yanping Wang, Minchu Zhang, Chengxiu Zhan. A review on the nested distribution pattern (nestedness): Analysis methods, mechanisms and conservation implications [J]. Biodiv Sci, 2023, 31(12): 23314-. |
[7] | Jinyu Yang, Wanlong Zhu. Impact of habitat variation and human activities on small mammal community structure and diversity in Diannan Town, Jianchuan County, Yunnan [J]. Biodiv Sci, 2023, 31(11): 23246-. |
[8] | Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu. Dynamics of soil nematode community during the succession of forests in southern subtropical China [J]. Biodiv Sci, 2022, 30(12): 22205-. |
[9] | Chaodan Guo, Jinfang Zhu, Xiaoyan Liu, Caiyun Zhao, Junsheng Li. Contrasting biodiversity of invasive herbs inside and outside nature reserves in Guizhou [J]. Biodiv Sci, 2021, 29(5): 596-604. |
[10] | Zhi Yao, Jun Guo, Chenzhong Jin, Yongbo Liu. Endangered mechanisms for the first-class protected Wild Plants with Extremely Small Populations in China [J]. Biodiv Sci, 2021, 29(3): 394-408. |
[11] | Yumei Pan, Naili Zhang. Effects of tree diversity on enzyme activity in litter of a subtropical forest ecosystem [J]. Biodiv Sci, 2021, 29(11): 1447-1460. |
[12] | Ying Xiang, Suqun Liu, Xinglong Huang, Zhixiao Liu, Youxiang Zhang, Fangzhou Ma. Butterfly diversity and its influencing factors in the Hunan Gaowangjie National Nature Reserve and its surrounding area [J]. Biodiv Sci, 2020, 28(8): 940-949. |
[13] | Min Deng, Mingwei Liao, Chenbin Wang, Chengqing Liao, Zujie Kang, Fangzhou Ma, Guohua Huang. Influence of human disturbance on butterfly diversity in the Hupingshan National Nature Reserve [J]. Biodiv Sci, 2020, 28(8): 931-939. |
[14] | Jiangyan Shi, Hai Yang, Junqin Hua, Yuze Zhao, Jianqiang Li, Jiliang Xu. The relationship between the diurnal activity rhythm of Reeves’s pheasant (Syrmaticus reevesii) and human disturbance revealed by camera trapping [J]. Biodiv Sci, 2020, 28(7): 796-805. |
[15] | Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn