Biodiv Sci ›› 2023, Vol. 31 ›› Issue (12): 23299. DOI: 10.17520/biods.2023299
• Special Feature: Celebrating Alfred Russel Wallace’s Bicentenary • Previous Articles Next Articles
De Gao^{1}^{,}^{2}(), Yanping Wang^{1}^{,}^{*}()()
Received:
20230824
Accepted:
20231211
Online:
20231220
Published:
20231230
Contact:
Email: De Gao, Yanping Wang. A review of the smallisland effect detection methods and method advancement[J]. Biodiv Sci, 2023, 31(12): 23299.
模型形状 Model shape  模型 Model  公式 Equation^{1}  参数数量 Number of parameters 

直线形 Linear shape  线性模型 Linear  S = c + z × A  2 
“C”形 Convex shape  渐近模型 Asymptotic  S = d − c × z^A  3 
“C”形 Convex shape  对数模型 Logarithmic  S = c + z × log(A)  2 
“C”形 Convex shape  小林模型 Kobayashi  S = c × log(1 + A/z)  2 
“C”形 Convex shape  莫诺模型 Monod  S = d/(1 + c × A^(−1))  2 
“C”形 Convex shape  负指数模型 Negative exponential  S = d × (1 − exp(−z × A))  2 
“C”形 Convex shape  持久性函数1模型 Persistence function 1  S = c × A^z × exp(−d × A)  3 
“C”形 Convex shape  幂函数模型 Power  S = c × A^z  2 
“C”形 Convex shape  罗森茨魏格幂函数模型 Power Rosenzweig  S = f + c × A^z  3 
“C”形 Convex shape  有理函数模型 Rational  S = (c + z × A)/(1 + d × A)  3 
“S”形 Sigmoidal shape  扩展幂函数2模型 Extended power 2  S = c × A^(z − (d/A))  3 
“S”形 Sigmoidal shape  冈珀茨模型 Gompertz  S = d × exp(−exp(−z × (A − c)))  3 
“S”形 Sigmoidal shape  逻辑斯蒂模型 Logistic  S = c/(f + A^(−z))  3 
“S”形 Sigmoidal shape  摩根默瑟弗洛丁模型 MorganMercerFlodin  S = d/(1 + c × A^(−z))  3 
“S”形 Sigmoidal shape  持久性函数2模型 Persistence function 2  S = c × A^z × exp(−d/A)  3 
“S”形 Sigmoidal shape  威布尔3模型 Weibull3  S = d × (1 − exp(−c × A^z))  3 
“S”形 Sigmoidal shape  威布尔4模型 Weibull4  S = d × (1 − exp(−c × A^z))^f  4 
“S”形 Sigmoidal shape  BetaP模型 BetaP  S = d × (1 − (1 + (A/c)^z)^(−f))  4 
“S”形 Sigmoidal shape  查普曼理查兹模型 ChapmanRichards  S = d × (1 − exp(−z × A)^c)  3 
“C”形或“S”形 Convex or sigmoidal shape  扩展幂函数1模型 Extended power 1  S = c × A^(z × A^(−d))  3 
Table 1 The 20 speciesarea relationship models available in the sars package (modified from Matthews et al, 2019)
模型形状 Model shape  模型 Model  公式 Equation^{1}  参数数量 Number of parameters 

直线形 Linear shape  线性模型 Linear  S = c + z × A  2 
“C”形 Convex shape  渐近模型 Asymptotic  S = d − c × z^A  3 
“C”形 Convex shape  对数模型 Logarithmic  S = c + z × log(A)  2 
“C”形 Convex shape  小林模型 Kobayashi  S = c × log(1 + A/z)  2 
“C”形 Convex shape  莫诺模型 Monod  S = d/(1 + c × A^(−1))  2 
“C”形 Convex shape  负指数模型 Negative exponential  S = d × (1 − exp(−z × A))  2 
“C”形 Convex shape  持久性函数1模型 Persistence function 1  S = c × A^z × exp(−d × A)  3 
“C”形 Convex shape  幂函数模型 Power  S = c × A^z  2 
“C”形 Convex shape  罗森茨魏格幂函数模型 Power Rosenzweig  S = f + c × A^z  3 
“C”形 Convex shape  有理函数模型 Rational  S = (c + z × A)/(1 + d × A)  3 
“S”形 Sigmoidal shape  扩展幂函数2模型 Extended power 2  S = c × A^(z − (d/A))  3 
“S”形 Sigmoidal shape  冈珀茨模型 Gompertz  S = d × exp(−exp(−z × (A − c)))  3 
“S”形 Sigmoidal shape  逻辑斯蒂模型 Logistic  S = c/(f + A^(−z))  3 
“S”形 Sigmoidal shape  摩根默瑟弗洛丁模型 MorganMercerFlodin  S = d/(1 + c × A^(−z))  3 
“S”形 Sigmoidal shape  持久性函数2模型 Persistence function 2  S = c × A^z × exp(−d/A)  3 
“S”形 Sigmoidal shape  威布尔3模型 Weibull3  S = d × (1 − exp(−c × A^z))  3 
“S”形 Sigmoidal shape  威布尔4模型 Weibull4  S = d × (1 − exp(−c × A^z))^f  4 
“S”形 Sigmoidal shape  BetaP模型 BetaP  S = d × (1 − (1 + (A/c)^z)^(−f))  4 
“S”形 Sigmoidal shape  查普曼理查兹模型 ChapmanRichards  S = d × (1 − exp(−z × A)^c)  3 
“C”形或“S”形 Convex or sigmoidal shape  扩展幂函数1模型 Extended power 1  S = c × A^(z × A^(−d))  3 
Fig. 2 Fitting the speciesarea relationship of amphibians of the West Indies using a twosegmented piecewise regression models with a flat slope within the area threshold (Model 4 in Gao & Wang, 2022). (a) The residual sum of squares varies with the iteration of the area threshold; (b) Fitting results of the speciesarea relationship. The data used for analysis are from Appendix 1.
模型 Model  公式 Equation^{1}  片段数量 Number of segments 

1  Y = c_{1} + (log A ≤ T_{1}) z_{1} log A + (log A > T_{1}) [z_{1 }T_{1} + z_{2} (log A  T_{1})]  2 
2  Y = c_{1} + (log A ≤ T_{1}) [z_{1} log A + (z_{2}  z_{1}) T_{1}] + (log A > T_{1}) z_{2} log A  2 
3  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1}) (c_{2} + z_{2} log A)  2 
4  Y = c_{1} + (log A > T_{1}) z_{1} (log A  T_{1})  2 
5  Y = c_{1} + (log A ≤ T_{1}) z_{1} T_{1} + (log A > T_{1}) z_{1} log A  2 
6  Y = (log A ≤ T_{1}) c_{1} + (log A > T_{1}) (c_{2} + z_{1} log A)  2 
7  Y = c_{1} + (log A ≤ T_{1}) z_{1} log A + (log A > T_{1}) z_{1 }T_{1}  2 
8  Y = c_{1} + (log A ≤ T_{1}) z_{1 }(log A  T_{1})  2 
9  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1}) c_{2}  2 
10  Y = (log A ≤ T_{2}) [c_{1} + (log A ≤ T_{1}) z_{1} T_{1} + (log A > T_{1}) z_{1} log A] + (log A > T_{2}) (c_{2} + z_{2} log A)  3 
11  Y = (log A ≤ T_{1}) c_{1} + (log A > T_{1} AND log A ≤ T_{2}) (c_{2} + z_{1} log A) + (log A > T_{2}) (c_{3} + z_{2} log A)  3 
12  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1} AND log A ≤ T_{2}) (c_{2} + z_{2} log A) + (log A > T_{2}) (c_{3} + z_{3} log A)  3 
13  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1} AND log A ≤ T_{2}) (c_{2} + z_{2} log A) + (log A > T_{2}) c_{3}  3 
14  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1} AND log A ≤ T_{2}) [(c_{1 } c_{2 }+ z_{1} T_{1 } z_{2} T_{2}) (log A  T_{1}) / (T_{1 }T_{2}) + c_{1} + z_{1 }T_{1}] + (log A > T_{2}) (c_{2} + z_{2} log A)  3 
Table 2 The 14 piecewise models for the detection of the smallisland effect (organized from Gao et al, 2019)
模型 Model  公式 Equation^{1}  片段数量 Number of segments 

1  Y = c_{1} + (log A ≤ T_{1}) z_{1} log A + (log A > T_{1}) [z_{1 }T_{1} + z_{2} (log A  T_{1})]  2 
2  Y = c_{1} + (log A ≤ T_{1}) [z_{1} log A + (z_{2}  z_{1}) T_{1}] + (log A > T_{1}) z_{2} log A  2 
3  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1}) (c_{2} + z_{2} log A)  2 
4  Y = c_{1} + (log A > T_{1}) z_{1} (log A  T_{1})  2 
5  Y = c_{1} + (log A ≤ T_{1}) z_{1} T_{1} + (log A > T_{1}) z_{1} log A  2 
6  Y = (log A ≤ T_{1}) c_{1} + (log A > T_{1}) (c_{2} + z_{1} log A)  2 
7  Y = c_{1} + (log A ≤ T_{1}) z_{1} log A + (log A > T_{1}) z_{1 }T_{1}  2 
8  Y = c_{1} + (log A ≤ T_{1}) z_{1 }(log A  T_{1})  2 
9  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1}) c_{2}  2 
10  Y = (log A ≤ T_{2}) [c_{1} + (log A ≤ T_{1}) z_{1} T_{1} + (log A > T_{1}) z_{1} log A] + (log A > T_{2}) (c_{2} + z_{2} log A)  3 
11  Y = (log A ≤ T_{1}) c_{1} + (log A > T_{1} AND log A ≤ T_{2}) (c_{2} + z_{1} log A) + (log A > T_{2}) (c_{3} + z_{2} log A)  3 
12  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1} AND log A ≤ T_{2}) (c_{2} + z_{2} log A) + (log A > T_{2}) (c_{3} + z_{3} log A)  3 
13  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1} AND log A ≤ T_{2}) (c_{2} + z_{2} log A) + (log A > T_{2}) c_{3}  3 
14  Y = (log A ≤ T_{1}) (c_{1} + z_{1} log A) + (log A > T_{1} AND log A ≤ T_{2}) [(c_{1 } c_{2 }+ z_{1} T_{1 } z_{2} T_{2}) (log A  T_{1}) / (T_{1 }T_{2}) + c_{1} + z_{1 }T_{1}] + (log A > T_{2}) (c_{2} + z_{2} log A)  3 
Fig. 3 Fitting the speciesarea relationship of amphibians of the West Indies using a threesegmented piecewise regression model (Model 6 in Gao & Wang, 2022). (a) The residual sum of squares varies with the iteration of the second area threshold; (b) The residual sum of squares varies with the iteration of the first area threshold; (c) Fitting results of the speciesarea relationship. The data used for analysis are from Appendix 1.
Fig. 4 A structural equation model for the effects of area and habitat diversity on species richness according to Triantis et al, 2006. (a) On large islands, area has both direct and indirect impacts on species richness; (b) On small islands, the direct impact of area on species richness disappears. a, bA, bH, and SIE are standardized regression coefficients. Solid and dashed lines represent the significant and nonsignificant effects at the 0.05 level respectively.
属性 Attribute  种面积关系形状比较法 SAR shape comparison  断点回归法Breakpoint/piecewise regression  零模型法Null model  路径分析法Path analysis  树模型法Treebased model 

能否计算SIE面积阈值 Whether being able to calculate the SIE area threshold  否 No  是 Yes  否 No  是 Yes  是 Yes 
能否判断SIE区间内SAR具有斜率 Whether being able to determine SAR slope within the limit of the SIE  否 No  是 Yes  否 No  否 No  否 No 
是否只依赖岛屿面积和物种丰富度数据 Whether only relying on island area and species richness data  是 Yes  是 Yes  是 Yes  否 No  否 No 
是否必须将岛屿面积对数转化 Whether logarithmic transformation is required for island area  否 No  是 Yes  否 No  否 No  否 No 
犯I类错误的概率 Probability of making type I error^{1}  低 Low  高 High  低 Low  低 Low  低 Low 
犯II类错误的概率 Probability of making type II error^{2}  高 High  低 Low  低 Low  高 High  高 High 
使用这5种SIE检测方法的论文数 Number of publications using the five SIE detection methods  5  45  4  9  1 
Table 3 Attribute comparison among the five smallisland effect (SIE) detection methods
属性 Attribute  种面积关系形状比较法 SAR shape comparison  断点回归法Breakpoint/piecewise regression  零模型法Null model  路径分析法Path analysis  树模型法Treebased model 

能否计算SIE面积阈值 Whether being able to calculate the SIE area threshold  否 No  是 Yes  否 No  是 Yes  是 Yes 
能否判断SIE区间内SAR具有斜率 Whether being able to determine SAR slope within the limit of the SIE  否 No  是 Yes  否 No  否 No  否 No 
是否只依赖岛屿面积和物种丰富度数据 Whether only relying on island area and species richness data  是 Yes  是 Yes  是 Yes  否 No  否 No 
是否必须将岛屿面积对数转化 Whether logarithmic transformation is required for island area  否 No  是 Yes  否 No  否 No  否 No 
犯I类错误的概率 Probability of making type I error^{1}  低 Low  高 High  低 Low  低 Low  低 Low 
犯II类错误的概率 Probability of making type II error^{2}  高 High  低 Low  低 Low  高 High  高 High 
使用这5种SIE检测方法的论文数 Number of publications using the five SIE detection methods  5  45  4  9  1 
Fig. 7 The speciesarea relationship of amphibians of the West Indies. (a) All amphibianinhabited islands; (b) Removing the top 40% of large islands from all amphibianinhabited islands. The data used for analysis are from Appendix 1.
[1] 
Arrhenius O (1921) Species and area. Journal of Ecology, 9, 9599.
DOI URL 
[2]  Burnham KP, Anderson DR (2002) Model Selection and Multimodel Inference: A Practical InformationTheoretic Approach. Springer, New York. 
[3] 
Burns KC, McHardy PR, Pledger S (2009) The smallisland effect: Fact or artefact? Ecography, 32, 269276.
DOI URL 
[4] 
Chen CW, Xu AC, Wang YP (2021) Area threshold and traitenvironment associations of butterfly assemblages in the Zhoushan Archipelago, China. Journal of Biogeography, 48, 785797.
DOI URL 
[5] 
Chen CW, Yang XR, Tan XW, Wang YP (2020) The role of habitat diversity in generating the smallisland effect. Ecography, 43, 12411249.
DOI URL 
[6] 
Connor EF, McCoy ED (1979) The statistics and biology of the speciesarea relationship. The American Naturalist, 113, 791833.
DOI URL 
[7] 
De’ath G, Fabricius KE (2000) Classification and regression trees: A powerful yet simple technique for ecological data analysis. Ecology, 81, 31783192.
DOI URL 
[8] 
Dengler J (2010) Robust methods for detecting a small island effect. Diversity and Distributions, 16, 256266.
DOI URL 
[9] 
Dengler J, Matthews TJ, Steinbauer MJ, Wolfrum S, Boch S, Chiarucci A, Conradi T, Dembicz I, Marcenò C, García‐Mijangos I, Nowak A, Storch D, Ulrich W, Campos JA, Cancellieri L, Carboni M, Ciaschetti G, De Frenne P, Dolezal J, Dolnik C, Essl F, Fantinato E, Filibeck G, Grytnes JA, Guarino R, Güler B, Janišová M, Klichowska E, Kozub Ł, Kuzemko A, Manthey M, Mimet A, Naqinezhad A, Pedersen C, Peet RK, Pellissier V, Pielech R, Potenza G, Rosati L, Terzi M, Valkó O, Vynokurov D, White H, Winkler M, Biurrun I (2020) Speciesarea relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 47, 7286.
DOI URL 
[10] 
Drakare S, Lennon JJ, Hillebrand H (2006) The imprint of the geographical, evolutionary and ecological context on speciesarea relationships. Ecology Letters, 9, 215227.
DOI PMID 
[11] 
Fattorini S (2007) To fit or not to fit? A poorly fitting procedure produces inconsistent results when the speciesarea relationship is used to locate hotspots. Biodiversity and Conservation, 16, 25312538.
DOI URL 
[12]  Forster G (1777) A voyage around the world in his Majesty’s sloop, resolution, commanded by Captain James Cook, during the years 1772, 3, 4, and 5. B. Volume 1. White B, Robson J, Elmsly P, Robinson G, London. 
[13]  Forster JR (1778) Observations made During a Voyage Round the World. Robinson G, London. 
[14] 
Gao D, Cao Z, Xu P, Perry G (2019) On piecewise models and speciesarea patterns. Ecology and Evolution, 9, 83518361.
DOI 
[15] 
Gao D, Perry G (2016) Detecting the small island effect and nestedness of herpetofauna of the West Indies. Ecology and Evolution, 6, 53905403.
DOI PMID 
[16]  Gao D, Wang YP (2022) A global synthesis of the smallisland effect in amphibians and reptiles. Ecography, 2022, e05957. 
[17] 
Gao D, Wang YP (2024) Nonlinear thresholds in the effect of area on three dimensions of diversity of herpetofauna in the West Indies. Journal of Biogeography, 51, 439453.
DOI URL 
[18] 
Gentile G, Argano R (2005) Island biogeography of the Mediterranean Sea: The speciesarea relationship for terrestrial isopods. Journal of Biogeography, 32, 17151726.
DOI URL 
[19]  Gilpin ME, Diamond JM (1976) Calculation of immigration and extinction curves from the speciesareadistance relation. Proceedings of the National Academy of Sciences, USA, 73, 41304134. 
[20] 
Guilhaumon F, Mouillot D, Gimenez O (2010) mmSAR: An Rpackage for multimodel speciesarea relationship inference. Ecography, 33, 420424.
DOI URL 
[21] 
Harcourt AH, Doherty DA (2005) Speciesarea relationships of primates in tropical forest fragments: A global analysis. Journal of Applied Ecology, 42, 630637.
DOI URL 
[22]  He F, Legendre P (2002) Species diversity patterns derived from speciesarea models. Ecology, 83, 11851198. 
[23]  Henderson RW, Powell R (2001) Responses by the West Indian herpetofauna to humaninfluenced resources. Caribbean Journal of Science, 37, 4154. 
[24]  Hubbell SP (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ. 
[25] 
Lomolino MV (2000) Ecology’s most general, yet protean pattern: The speciesarea relationship. Journal of Biogeography, 27, 1726.
DOI URL 
[26] 
Lomolino MV, Weiser MD (2001) Towards a more general speciesarea relationship: Diversity on all islands, great and small. Journal of Biogeography, 28, 431445.
DOI URL 
[27]  MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton, NJ. 
[28]  Matthews TJ, Rigal F (2021) Thresholds and the speciesarea relationship: A set of functions for fitting, evaluating and plotting a range of commonly used piecewise models in R. Frontiers of Biogeography, 13, e49404. 
[29] 
Matthews TJ, Rigal F, Kougioumoutzis K, Trigas P, Triantis KA (2020) Unravelling the smallisland effect through phylogenetic community ecology. Journal of Biogeography, 47, 23412352.
DOI URL 
[30] 
Matthews TJ, Triantis KA, Whittaker RJ, Guihaumon F (2019) sar: An R package for fitting, evaluating and comparing speciesarea relationship models. Ecography, 42, 14461455.
DOI 
[31] 
Menegotto A, Rangel TF, Schrader J, Weigelt P, Kreft H (2020) A global test of the subsidized island biogeography hypothesis. Global Ecology and Biogeography, 29, 320330.
DOI 
[32] 
Morrison LW (2014) The smallisland effect: Empty islands, temporal variability and the importance of species composition. Journal of Biogeography, 41, 10071017.
DOI URL 
[33]  Muggeo VMR (2008) Segmented: An R package to fit regression models with brokenline relationships. R News, 8, 2025. 
[34] 
Neigel JE (2003) Speciesarea relationships and marine conservation. Ecological Applications, 13, 138145.
DOI URL 
[35] 
Niering WA (1963) Terrestrial ecology of Kapingamarangi atoll, Caroline Islands. Ecological Monographs, 33, 131160.
DOI URL 
[36] 
Qie L, Lee TM, Sodhi NS, Lim SLH (2011) Dung beetle assemblages on tropical landbridge islands: Small island effect and vulnerable species. Journal of Biogeography, 38, 792804.
DOI URL 
[37]  Raxworthy CJ, Nussbaum RA (2000) Extinction and extinction vulnerability of amphibians and reptiles in Madagascar. Amphibian and Reptile Conservation, 2, 1523. 
[38]  Rosenzweig ML (1995) Species Diversity in Space and Time. Cambridge University Press, Cambridge. 
[39]  Rosenzweig ML (2004) Applying speciesarea relationships to the conservation of diversity. In: Frontiers of Biogeography: New Directions in the Geography of Nature (eds Lomolino MV, Heaney LR), pp. 325343. Sinauer Associates, Sunderland, MA. 
[40] 
Rosindell J, Cornell SJ (2009) Speciesarea curves, neutral models, and longdistance dispersal. Ecology, 90, 17431750.
DOI PMID 
[41] 
Schrader J, König C, Triantis KA, Trigas P, Kreft H, Weigelt P (2020) Speciesarea relationships on small islands differ among plant growth forms. Global Ecology and Biogeography, 29, 814829.
DOI URL 
[42] 
Schrader J, Moeljono S, Keppel G, Kreft H (2019) Plants on small islands revisited: The effects of spatial scale and habitat quality on the speciesarea relationship. Ecography, 42, 14051414.
DOI 
[43] 
Sfenthourakis S (1996) The speciesarea relationship of terrestrial isopods (Isopoda; Oniscidea) from the Aegean Archipelago (Greece): A comparative study. Global Ecology and Biogeography Letters, 5, 149157.
DOI URL 
[44] 
Sfenthourakis S, Triantis KA, Proios K, Rigal F (2021) The role of ecological specialization in shaping patterns of insular communities. Journal of Biogeography, 48, 243252.
DOI URL 
[45]  Sonderegger D (2020) SiZer: Significant Zero Crossings. R package version 0.17. https://CRAN.Rproject.org/package=SiZer. (accessed on 20220709) 
[46] 
Stark SC, Bunker DE, Carson WP (2006) A null model of exotic plant diversity tested with exotic and native speciesarea relationships. Ecology Letters, 9, 136141.
PMID 
[47] 
Tjørve E (2003) Shapes and functions of speciesarea curves: A review of possible models. Journal of Biogeography, 30, 827835.
DOI URL 
[48] 
I) A review of new models and parameterizations. Journal of Biogeography, 36, 14351445.
DOI URL 
[49] 
Triantis KA, Guilhaumon F, Whittaker RJ (2012) The island speciesarea relationship: Biology and statistics. Journal of Biogeography, 39, 215231.
DOI URL 
[50] 
Triantis KA, Sfenthourakis S (2012) Island biogeography is not a singlevariable discipline: The small island effect debate. Diversity and Distributions, 18, 9296.
DOI URL 
[51] 
Triantis KA, Vardinoyannis K, Tsolaki EP, Botsaris I, Lika K, Mylonas M (2006) Reapproaching the small island effect. Journal of Biogeography, 33, 914923.
DOI URL 
[52]  von Humboldt A (1807) Ideen zur einer Geographie der Pflanstzen nebst einem Naturgemälde der Tropenländer, Cotta, Tübringen. 
[53]  Wang YP, Chen CW, Millien V (2018) A global synthesis of the smallisland effect in habitat islands. Proceedings of the Royal Society B: Biological Sciences, 285, 20181868. 
[54] 
Wang YP, Chen CW, Millien V (2023) The integration of the small‐island effect and nestedness pattern. Journal of Biogeography, 50, 12341243.
DOI URL 
[55] 
Wang YP, Millien V, Ding P (2016) On empty islands and the smallisland effect. Global Ecology and Biogeography, 25, 13331345.
DOI URL 
[56] 
Wang YP, Wu Q, Wang X, Liu C, Wu LB, Chen CW, Ge DP, Song X, Chen CS, Xu AC, Ding P (2015) Smallisland effect in snake communities on islands of an inundated lake: The need to include zeroes. Basic and Applied Ecology, 16, 1927.
DOI URL 
[57] 
Wang YP, Zhang M, Wang SY, Ding ZF, Zhang JC, Sun JJ, Li P, Ding P (2012) No evidence for the small island effect in avian communities on islands of an inundated lake. Oikos, 121, 19451952.
DOI URL 
[58] 
Whitehead DR, Jones CE (1969) Small islands and the equilibrium theory of insular biogeography. Evolution, 23, 171179.
DOI PMID 
[59]  Whittaker RJ, FernandezPalacios JM (2007) Island Biogeography: Ecology, Evolution, and Conservation, 2nd edn. Oxford University Press, Oxford. 
[60]  Wintle BA, Kujala H, Whitehead A, Cameron A, Veloz S, Kukkala A, Moilanen A, Gordon A, Lentini PE, Cadenhead NCR, Bekessy SA (2019) Global synthesis of conservation studies reveals the importance of small habitat patches for biodiversity. Proceedings of the National Academy of Sciences, USA, 116, 909914. 
[61] 
Yan YZ, Jarvie S, Zhang Q, Han P, Liu QF, Zhang SS, Liu PT (2023) Habitat heterogeneity determines species richness on small habitat islands in a fragmented landscape. Journal of Biogeography, 50, 976986.
DOI URL 
[62] 
Yan YZ, Jarvie S, Zhang Q, Zhang SS, Han P, Liu QF, Liu PT (2021) Small patches are hotspots for biodiversity conservation in fragmented landscapes. Ecological Indicators, 130, 108086.
DOI URL 
[63] 
Yu J, Li DD, Zhang ZY, Guo SL (2020) Speciesarea relationship and smallisland effect of bryophytes on the Zhoushan Archipelago, China. Journal of Biogeography, 47, 978992.
DOI URL 
[1]  Yanqiu Xie, Hui Huang, Chunxiao Wang, Yaqin He, Yixuan Jiang, Zilin Liu, Chuanyuan Deng, Yushan Zheng. Determinants of speciesarea relationship and species richness of coastal endemic plants in the Fujian islands [J]. Biodiv Sci, 2023, 31(5): 22345. 
[2]  Yanping Wang, Minchu Zhang, Chengxiu Zhan. A review on the nested distribution pattern (nestedness): Analysis methods, mechanisms and conservation implications [J]. Biodiv Sci, 2023, 31(12): 23314. 
[3]  Xiaofan Shang, Jian Zhang, Haojie Gao, Weipeng Ku, Yuke Bi, Xiupeng Li, Enrong Yan. Island area and climate jointly impact seed plant richness patterns across the Zhoushan Archipelago [J]. Biodiv Sci, 2023, 31(12): 23392. 
[4]  Lan Xiao, Biao Dong, Linting Zhang, Chuanyuan Deng, Xia Li, Jianhui Liu, Duancong Wu. Distribution pattern of plant species richness of uninhabited islands in the Bohai Sea area [J]. Biodiv Sci, 2022, 30(4): 21231. 
[5]  Yunzhi Qin, Jiaxin Zhang, Jianming Liu, Mengting Liu, Dan Wan, Hao Wu, Yang Zhou, Hongjie Meng, Zhiqiang Xiao, Handong Huang, Yaozhan Xu, Zhijun Lu, Xiujuan Qiao, Mingxi Jiang. Community composition and spatial structure in the Badagongshan 25 ha Forest Dynamics Plot in Hunan Province [J]. Biodiv Sci, 2018, 26(9): 10161022. 
[6]  Xu Xiang, Zhang Huayong, Xie Ting, Sun Qingqing, Tian Yonglan. Elevational pattern of seed plant diversity in Xishuangbanna and its mechanisms [J]. Biodiv Sci, 2018, 26(7): 678689. 
[7]  Xingfeng Si, Yuhao Zhao, Chuanwu Chen, Peng Ren, Di Zeng, Lingbing Wu, Ping Ding. Betadiversity partitioning: methods, applications and perspectives [J]. Biodiv Sci, 2017, 25(5): 464480. 
[8]  Lei Zhong, ChiaHao ChangYang, Pin Lu, Xueping Gu, Zupei Lei, Yanben Cai, Fangdong Zheng, IFang Sun, Mingjian Yu. Community structure and species composition of the secondary evergreen broadleaved forest: the analyses for a 9 ha forest dynamics plot in Wuyanling Nature Reserve, Zhejiang Province, East China [J]. Biodiv Sci, 2015, 23(5): 619629. 
[9]  Manyu Yan, Xiaojun Du, Aihua Zhao, Mingchun Peng. Individual woody speciesarea relationship in a deciduous broadleaved forest in Baotianman, Henan Province [J]. Biodiv Sci, 2015, 23(5): 630640. 
[10]  Aichun Xu, Xingfeng Si, Yanping Wang, Ping Ding. Camera traps and the minimum trapping effort for grounddwelling mammals in fragmented habitats in the Thousand Island Lake, Zhejiang Province [J]. Biodiv Sci, 2014, 22(6): 764772. 
[11]  Shikui Dong,Lin Tang,Xuexia Wang,Yinghui Liu,Shiliang Liu,Quanru Liu,Yu Wu,Yuanyuan Li,Xukun Su,Chen Zhao. Minimum plot size for estimating plant biodiversity of the alpine grasslands on the QinghaiTibetan Plateau [J]. Biodiv Sci, 2013, 21(6): 651657. 
[12]  Zhiyao Tang, Xiujuan Qiao, Jingyun Fang. Speciesarea relationship in biological communities [J]. Biodiv Sci, 2009, 17(6): 549559. 
[13]  Wenhong Deng, Wei Gao. The effects of forest patch sizes on bird species diversity and individual density [J]. Biodiv Sci, 2005, 13(3): 204212. 
[14]  CHEN Bo, BAO ZhiYi. Indicators for monitoring biodiversity in urban and suburban parks [J]. Biodiv Sci, 2003, 11(2): 169176. 
[15]  BAI YongFei, XU ZhiXin, LI DeXin. Study on α diversity of four Stipa communities in Inner Mongolia Plateau [J]. Biodiv Sci, 2000, 08(4): 353360. 
Viewed  
Full text 


Abstract 


Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 01062836137, 62836665 Email: biodiversity@ibcas.ac.cn