Biodiv Sci ›› 2025, Vol. 33 ›› Issue (1): 24247. DOI: 10.17520/biods.2024247 cstr: 32101.14.biods.2024247
• Original Papers: Microbial Diversity • Previous Articles Next Articles
Yuan Liu1,2, Jianqing Du3,4(), Liyuan Ma4, Gang Yang1,*(
)(
), Jianqing Tian2,*(
)(
)
Received:
2024-06-19
Accepted:
2024-09-24
Online:
2025-01-20
Published:
2024-12-19
Contact:
* E-mail: Supported by:
Yuan Liu, Jianqing Du, Liyuan Ma, Gang Yang, Jianqing Tian. Diversity and distribution of methanogen communities in the riparian wetlands of the Nam Co basin[J]. Biodiv Sci, 2025, 33(1): 24247.
Fig. 1 Sample collection and α-diversity of methanogen communities in soils of different ecological types. (A) Schematic diagram of sampling locations in the Niyaqu basin of Nam Co basin on the Qinghai-Tibetan Plateau; (B) Differences in the Shannon index of methanogens across different soil types (mean ± SE); (C) Variations in the Shannon index of methanogens in different soil types along the altitudinal gradient (mean ± SE). Different letters indicate significant differences (P < 0.05). S1-S4 indicate sample plots.
Fig. 2 Analyses of methanogen community structure, compositional changes, and distance-decay relationships. (A) Differences in methanogen communities based on Bray-Curtis distances; (B) Distance-decay curve showing the relationship between Bray-Curtis similarity and geographical distance (data converted to natural logarithm); (C) Methanogens composition at each sample site across different soil types. The dashed ellipse in Figure A and the shaded area in Figure B indicate 95% confidence intervals, and the solid line in Figure (B) indicates ordinary least squares linear regression.
类型 Type | R2 | P |
---|---|---|
高寒草甸 vs. 过渡带 Alpine meadow/Transitional zone | 0.055 | 0.353 |
高寒草甸 vs. 岸边带湿地 Alpine meadow/Riparian wetland | 0.117 | 0.001 |
过渡带 vs. 岸边带湿地 Transitional zone/Riparian wetland | 0.105 | 0.004 |
Table 1 Permutational multivariate analysis of variance of methanogen community structure differences in soils of different ecological types
类型 Type | R2 | P |
---|---|---|
高寒草甸 vs. 过渡带 Alpine meadow/Transitional zone | 0.055 | 0.353 |
高寒草甸 vs. 岸边带湿地 Alpine meadow/Riparian wetland | 0.117 | 0.001 |
过渡带 vs. 岸边带湿地 Transitional zone/Riparian wetland | 0.105 | 0.004 |
Fig. 3 The neutral community model fits the relationship between the frequency and relative abundance of OTUs in methanogenic archaeal communities in different soil types. R2 represents the overall goodness of fit of the neutral community model, with a negative R2 indicating a poor fit of the neutral community model. Nm is the product of the metacommunity size (N) and the mobility (m). The solid blue line in the figure represents the best-fit value of the neutral community model, the blue dashed line represents the 95% confidence interval of the model (estimate obtained by 1000 bootstrap), green indicates OTUs that occur more frequently than predicted by the neutral community model, and red indicates OTUs that occur more frequently than predicted by the neutral community model.
Fig. 4 Contribution of different source communities to methanogen communities in riparian wetlands (lateral and longitudinal dimensions). (A) Overall contribution of microbial communities from alpine meadows and transition zone soils to riparian wetlands; (B) Source analysis of riparian wetland communities at each sample site; (C) Overall contribution of methanogen communities in soils from the three different ecological types to the terminal riparian wetland (S4) community; (D) Contribution of the three soil community types to the terminal riparian wetland (S4) community at each site.
[1] | Albright MBN, Martiny JBH (2018) Dispersal alters bacterial diversity and composition in a natural community. The ISME Journal, 12, 296-299. |
[2] |
Anslan S, Azizi Rad M, Buckel J, Echeverria Galindo P, Kai JL, Kang WG, Keys L, Maurischat P, Nieberding F, Reinosch E, Tang HD, Tran TV, Wang YY, Schwalb A (2020) Reviews and syntheses: How do abiotic and biotic processes respond to climatic variations in the Nam Co catchment (Tibetan Plateau)? Biogeosciences, 17, 1261-1279.
DOI |
[3] |
Argiroff WA, Zak DR, Lanser CM, Wiley MJ (2017) Microbial community functional potential and composition are shaped by hydrologic connectivity in riverine floodplain soils. Microbial Ecology, 73, 630-644.
DOI PMID |
[4] |
Blake DR, Rowland FS (1988) Continuing worldwide increase in tropospheric methane, 1978 to 1987. Science, 239, 1129-1131.
PMID |
[5] |
Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114-2120.
DOI PMID |
[6] | Bräuer SL, Basiliko N, Siljanen HMP, Zinder SH (2020) Methanogenic Archaea in peatlands. FEMS Microbiology Letters, 367, fnaa172. |
[7] | Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology, 85, 1771-1789. |
[8] | Cao MM, Wang F, Ma S, Geng HH, Sun K (2024) Recent advances on greenhouse gas emissions from wetlands: Mechanism, global warming potential, and environmental drivers. Environmental Pollution, 355, 124204. |
[9] |
Carlson BS, Rotics S, Nathan R, Wikelski M, Jetz W (2021) Individual environmental niches in mobile organisms. Nature Communications, 12, 4572.
DOI PMID |
[10] |
Chase JM (2010) Stochastic community assembly causes higher biodiversity in more productive environments. Science, 328, 1388-1391.
DOI PMID |
[11] | Chen HB, Chang S (2020) Dissecting methanogenesis for temperature-phased anaerobic digestion: Impact of temperature on community structure, correlation, and fate of methanogens. Bioresource Technology, 306, 123104. |
[12] |
Chen SZ, Wang P, Liu HD, Xie W, Wan XS, Kao SJ, Phelps TJ, Zhang CL (2020) Population dynamics of methanogens and methanotrophs along the salinity gradient in Pearl River Estuary: Implications for methane metabolism. Applied Microbiology and Biotechnology, 104, 1331-1346.
DOI PMID |
[13] | Cheng L, Zheng ZZ, Wang C, Zhang H (2016) Recent advances in methanogens. Microbiology China, 43, 1143-1164. (in Chinese with English abstract) |
[承磊, 郑珍珍, 王聪, 张辉 (2016) 产甲烷古菌研究进展. 微生物学通报, 43, 1143-1164.] | |
[14] | Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Advances in Agronomy, 96, 1-63. |
[15] | Crump BC, Amaral-Zettler LA, Kling GW (2012) Microbial diversity in Arctic freshwaters is structured by inoculation of microbes from soils. The ISME Journal, 6, 1629-1639. |
[16] | Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proceedings of the National Academy of Sciences, USA, 112, E1326-E1332. |
[17] |
Finn DR, Ziv-El M, van Haren J, Park JG, Del Aguila-Pasquel J, Urquiza-Muñoz JD, Cadillo-Quiroz H (2020) Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza-marañón basin, Peruvian Amazonia. Frontiers in Microbiology, 11, 746.
DOI PMID |
[18] | Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. Proceedings of the National Academy of Sciences, USA, 105, 7774-7778. |
[19] |
Galand PE, Fritze H, Conrad R, Yrjälä K (2005) Pathways for methanogenesis and diversity of methanogenic Archaea in three boreal peatland ecosystems. Applied and Environmental Microbiology, 71, 2195-2198.
PMID |
[20] | Gao TG, Kang SC, Zhang TJ, Zhou SQ, Cuo L, Sillanpää M, Zhang YL (2015) Summer hydrological characteristics in glacier and non-glacier catchments in the Nam Co Basin, southern Tibetan Plateau. Environmental Earth Sciences, 74, 2019-2028. |
[21] | Gu H, Xiao FS, He ZL, Yan QY (2018) Microbial driven methane emission mechanisms in wetland ecosystems. Acta Microbiologica Sinica, 58, 618-632. (in Chinese with English abstract) |
[顾航, 肖凡书, 贺志理, 颜庆云 (2018) 湿地微生物介导的甲烷排放机制. 微生物学报, 58, 618-632.] | |
[22] |
Hattori S (2008) Syntrophic acetate-oxidizing microbes in methanogenic environments. Microbes and Environments, 23, 118-127.
PMID |
[23] | Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: Patterns, processes and prospects. Freshwater Biology, 60, 845-869. |
[24] | Huber P, Metz S, Unrein F, Mayora G, Sarmento H, Devercelli M (2020) Environmental heterogeneity determines the ecological processes that govern bacterial metacommunity assembly in a floodplain river system. The ISME Journal, 14, 2951-2966. |
[25] | Hui CZ, Li Y, Yuan SY, Zhang WL (2023) River connectivity determines microbial assembly processes and leads to alternative stable states in river networks. Science of the Total Environment, 904, 166797. |
[26] | Hui CZ, Li Y, Zhang WL, Zhang C, Niu LH, Wang LF, Zhang HJ (2022) Modelling structure and dynamics of microbial community in aquatic ecosystems: The importance of hydrodynamic processes. Journal of Hydrology, 605, 127351. |
[27] |
Immerzeel WW, van Beek LPH, Bierkens MFP (2010) Climate change will affect the Asian water towers. Science, 328, 1382-1385.
DOI PMID |
[28] | Iqbal A, Shang ZH, Rehman MLU, Ju MT, Rehman MMU, Rafiq MK, Ayub N, Bai YF (2019) Pattern of microbial community composition and functional gene repertoire associated with methane emission from Zoige wetlands, China—A review. Science of the Total Environment, 694, 133675. |
[29] | Kaiser K, Miehe G, Barthelmes A, Ehrmann O, Scharf A, Schult M, Schlütz F, Adamczyk S, Frenzel B (2008) Turf-bearing topsoils on the central Tibetan Plateau, China: Pedology, botany, geochronology. Catena, 73, 300-311. |
[30] |
Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiology Ecology, 53, 3-13.
PMID |
[31] | Lear G, Bellamy J, Case BS, Lee JE, Buckley HL (2014) Fine-scale spatial patterns in bacterial community composition and function within freshwater ponds. The ISME Journal, 8, 1715-1726. |
[32] | Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: A framework for multi-scale community ecology. Ecology Letters, 7, 601-613. |
[33] | Leng H, Yang Q, Huang GF, Bai LP (2020) Recent advances in hydrogenotrophic methanogenesis. Acta Microbiologica Sinica, 60, 2136-2160. (in Chinese with English abstract) |
[冷欢, 杨清, 黄钢锋, 白丽萍 (2020) 氢营养型产甲烷代谢途径研究进展. 微生物学报, 60, 2136-2160.] | |
[34] | Li CN, Tu B, Kou YP, Wang YS, Li XZ, Wang JM, Li JB (2021) The assembly of methanotrophic communities regulated by soil pH in a mountain ecosystem. Catena, 196, 104883. |
[35] | Li TT, Lu YY, Yu LF, Sun WJ, Zhang Q, Zhang W, Wang GC, Qin ZC, Yu LJ, Li HL, Zhang R (2020) Evaluation of CH4MODwetland and Terrestrial Ecosystem Model (TEM) used to estimate global CH4 emissions from natural wetlands. Geoscientific Model Development, 13, 3769-3788. |
[36] | Li WH, Siddique MS, Liu MJ, Graham N, Yu WZ (2022) The migration and microbiological degradation of dissolved organic matter in riparian soils. Water Research, 224, 119080. |
[37] | Li YS, Li YM, Ouyang ZY (2014) A research overview of methanogens. Environmental Science, 35, 2025-2030. (in Chinese with English abstract) |
[李煜珊, 李耀明, 欧阳志云 (2014) 产甲烷微生物研究概况. 环境科学, 35, 2025-2030.] | |
[38] | Liu YC, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea. Annals of the New York Academy of Sciences, 1125, 171-189. |
[39] | Lofton DD, Whalen SC, Hershey AE (2014) Effect of temperature on methane dynamics and evaluation of methane oxidation kinetics in shallow Arctic Alaskan lakes. Hydrobiologia, 721, 209-222. |
[40] | Lu Q, Zhang SY, Du JQ, Liu Q, Dong CX, Zhao JD, Wang YF, Yao M (2023) Multi-group biodiversity distributions and drivers of metacommunity organization along a glacial-fluvial-limnic pathway on the Tibetan Plateau. Environmental Research, 220, 115236. |
[41] | Lyu Z, Shao NN, Akinyemi T, Whitman WB (2018) Methanogenesis. Current Biology, 28, R727-R732. |
[42] | Machado-Silva F, Weintraub MN, Ward ND, Doro KO, Regier PJ, Ehosioke S, Thomas SP, Peixoto RB, Sandoval L, Forbrich I, Kemner KM, O’Loughlin EJ, Stetten L, Spanbauer T, Bridgeman TB, O’Meara T, Rod KA, Patel K, McDowell NG, Megonigal JP, Rich RL, Bailey VL (2024) Short-term groundwater level fluctuations drive subsurface redox variability. Environmental Science & Technology, 58, 14687-14697. |
[43] | Mansour I, Heppell CM, Ryo M, Rillig MC (2018) Application of the microbial community coalescence concept to riverine networks. Biological Reviews, 93, 1832-1845. |
[44] |
Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, Kamagata Y, Sakata S (2016) Methane production from coal by a single methanogen. Science, 354, 222-225.
PMID |
[45] | Milner AM, Khamis K, Battin TJ, Brittain JE, Barrand NE, Füreder L, Cauvy-Fraunié S, Gíslason GM, Jacobsen D, Hannah DM, Hodson AJ, Hood E, Lencioni V, Ólafsson JS, Robinson CT, Tranter M, Brown LE (2017) Glacier shrinkage driving global changes in downstream systems. Proceedings of the National Academy of Sciences, USA, 114, 9770-9778. |
[46] | Mitsch WJ, Gosselink JG (2000) The value of wetlands: Importance of scale and landscape setting. Ecological Economics, 35, 25-33. |
[47] |
Ozuolmez D, Na H, Lever MA, Kjeldsen KU, Jørgensen BB, Plugge CM (2015) Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: Teamwork or coexistence? Frontiers in Microbiology, 6, 492.
DOI PMID |
[48] |
Picazo F, Vilmi A, Aalto J, Soininen J, Casamayor EO, Liu YQ, Wu QL, Ren LJ, Zhou JZ, Shen J, Wang JJ (2020) Climate mediates continental scale patterns of stream microbial functional diversity. Microbiome, 8, 92.
DOI PMID |
[49] |
Ruiz-González C, Niño-García JP, del Giorgio PA (2015) Terrestrial origin of bacterial communities in complex boreal freshwater networks. Ecology Letters, 18, 1198-1206.
DOI PMID |
[50] | Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, Latreille P, Kim K, Wilson RK, Gordon JI (2007) Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proceedings of the National Academy of Sciences, USA, 104, 10643-10648. |
[51] | Seppey CVW, Cabrol L, Thalasso F, Gandois L, Lavergne C, Martinez-Cruz K, Sepulveda-Jauregui A, Aguilar-Muñoz P, Astorga-España MS, Chamy R, Dellagnezze BM, Etchebehere C, Fochesatto GJ, Gerardo-Nieto O, Mansilla A, Murray A, Sweetlove M, Tananaev N, Teisserenc R, Tveit AT, Van de Putte A, Svenning MM, Barret M (2023) Biogeography of microbial communities in high-latitude ecosystems: Contrasting drivers for methanogens, methanotrophs and global prokaryotes. Environmental Microbiology, 25, 3364-3386. |
[52] | Serrano-Silva N, Sarria-Guzmán Y, Dendooven L, Luna-Guido M (2014) Methanogenesis and methanotrophy in soil: A review. Pedosphere, 24, 291-307. |
[53] | Shen WY, Ji Y, Jia ZJ, Huang Q, Zhu XL, Ma J, Wang SW, Liu XL, Zhang GB, Xu H (2024) Historical water regime determines the methanogenic pathway response to the current soil: Water ratio. Soil and Tillage Research, 239, 106032. |
[54] |
Shenhav L, Thompson M, Joseph TA, Briscoe L, Furman O, Bogumil D, Mizrahi I, Pe’er I, Halperin E (2019) FEAST: Fast expectation-maximization for microbial source tracking. Nature Methods, 16, 627-632.
DOI PMID |
[55] |
Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environmental Microbiology, 8, 732-740.
PMID |
[56] | Svensson BH, Rosswall T (1984) In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos, 43, 341. |
[57] | Tang Q, Xue XF, Wang H, Xing P (2018) New knowledge of methanogens and methanotrophs in lake ecosystems. Journal of Lake Sciences, 30, 597-610. (in Chinese with English abstract) |
[唐千, 薛校风, 王惠, 邢鹏 (2018) 湖泊生态系统产甲烷与甲烷氧化微生物研究进展. 湖泊科学, 30, 597-610.] | |
[58] |
Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic Archaea: Ecologically relevant differences in energy conservation. Nature Reviews Microbiology, 6, 579-591.
DOI PMID |
[59] | Tian H, Du Y, Deng YM, Sun XL, Xu JW, Gan YQ, Wang YX (2024) Identification of methane cycling pathways in Quaternary alluvial-lacustrine aquifers using multiple isotope and microbial indicators. Water Research, 250, 121027. |
[60] | Tian W, Wang HM, Xiang X, Loni PC, Qiu X, Wang RC, Huang XY, Tuovinen OH (2023) Water table level controls methanogenic and methanotrophic communities and methane emissions in a Sphagnum-dominated peatland. Microbiology Spectrum, 11, e0199223. |
[61] | Tian W, Wang RC, Wang HM, Xiang X, Huang XY (2024) Hydrology drives spatiotemporal patterns of methane microbial communities and methane emissions in a sub-alpine peatland, Central China. Agricultural and Forest Meteorology, 353, 110050. |
[62] |
Turetsky MR, Kotowska A, Bubier J, Dise NB, Crill P, Hornibrook ERC, Minkkinen K, Moore TR, Myers-Smith IH, Nykänen H, Olefeldt D, Rinne J, Saarnio S, Shurpali N, Tuittila ES, Waddington JM, White JR, Wickland KP, Wilmking M (2014) A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands. Global Change Biology, 20, 2183-2197.
DOI PMID |
[63] | Vellend M (2001) Do commonly used indices of β-diversity measure species turnover? Journal of Vegetation Science, 12, 545-552. |
[64] | Vellend M, Srivastava DS, Anderson KM, Brown CD, Jankowski JE, Kleynhans EJ, Kraft NJB, Letaw AD, MacDonald AAM, MacLean JE, Myers-Smith IH, Norris AR, Xue XX (2014) Assessing the relative importance of neutral stochasticity in ecological communities. Oikos, 123, 1420-1430. |
[65] |
Volmer JG, Soo RM, Evans PN, Hoedt EC, Astorga Alsina AL, Woodcroft BJ, Tyson GW, Hugenholtz P, Morrison M (2023) Isolation and characterisation of novel Methanocorpusculum species indicates the genus is ancestrally host-associated. BMC Biology, 21, 59.
DOI PMID |
[66] |
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261-5267.
DOI PMID |
[67] |
Wen X, Yang SZ, Horn F, Winkel M, Wagner D, Liebner S (2017) Global biogeographic analysis of methanogenic Archaea identifies community-shaping environmental factors of natural environments. Frontiers in Microbiology, 8, 1339.
DOI PMID |
[68] |
Wik M, Varner RK, Anthony KW, MacIntyre S, Bastviken D (2016) Climate-sensitive northern lakes and ponds are critical components of methane release. Nature Geoscience, 9, 99-105.
DOI |
[69] | Xie L, Du SY, Bu F (2018) Homoacetogen and its application in environmental biotechnology. Journal of Tongji University (Natural Science), 46, 67-73, 108. (in Chinese with English abstract) |
[谢丽, 杜诗云, 卜凡 (2018) 同型产乙酸菌研究进展及其环境生物技术应用. 同济大学学报(自然科学版), 46, 67-73, 108.] | |
[70] |
Xiong W, Ni P, Chen YY, Gao YC, Shan BQ, Zhan AB (2017) Zooplankton community structure along a pollution gradient at fine geographical scales in river ecosystems: The importance of species sorting over dispersal. Molecular Ecology, 26, 4351-4360.
DOI PMID |
[71] |
Xue C, Li BK, Lei TY, Shan HY, Kong HZ (2022) Advances on the origin and evolution of biodiversity. Biodiversity Science, 30, 22460. (in Chinese with English abstract)
DOI |
[薛成, 李波卡, 雷天宇, 山红艳, 孔宏智 (2022) 生物多样性起源与进化研究进展. 生物多样性, 30, 22460.]
DOI |
|
[72] | Yang S, Wan RR, Li B (2022) Hydrological connectivity research in Lake Taihu Basin: Status, progress and future challenges. Journal of Lake Sciences, 34, 1055-1074. (in Chinese with English abstract) |
[杨素, 万荣荣, 李冰 (2022) 太湖流域水文连通性: 现状、研究进展与未来挑战. 湖泊科学, 34, 1055-1074.] | |
[73] | Yang SZ, Liebner S, Alawi M, Ebenhöh O, Wagner D (2014) Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. Journal of Microbiological Methods, 103, 3-5. |
[74] | Yang SZ, Liebner S, Winkel M, Alawi M, Horn F, Dörfer C, Ollivier J, He JS, Jin HJ, Kühn P, Schloter M, Scholten T, Wagner D (2017) In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biology and Biochemistry, 111, 66-77. |
[75] | Yang XS, Wang S, He Q, Wang ZJ, Zhang ZJ, Jiang CY, Ma LP, Liu XW, Hu BL, Li YM, Deng Y (2021) Microorganisms in the typical anaerobic digestion system of organic solid wastes: A review. Chinese Journal of Biotechnology, 37, 3425-3438. (in Chinese with English abstract) |
[杨兴盛, 王尚, 何晴, 王朱珺, 张照婧, 姜成英, 马黎萍, 刘贤伟, 胡宝兰, 李咏梅, 邓晔 (2021) 典型有机固废厌氧消化微生物研究现状与发展方向. 生物工程学报, 37, 3425-3438.] | |
[76] | Yi Y, Zhou Z, Huang Y, Cheng L (2023) Methanogen research in China: Current status and prospective. Acta Microbiologica Sinica, 63, 1796-1814. (in Chinese with English abstract) |
[易悦, 周卓, 黄艳, 承磊 (2023) 我国产甲烷古菌研究进展与展望. 微生物学报, 63, 1796-1814.] | |
[77] | Yuan J, Yuan YK, Zhu YH, Cao LK (2018) Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. Science of the Total Environment, 627, 770-781. |
[78] | Zhang B, Wu YH, Zhu LP, Wang JB, Li JS, Chen DM (2011) Estimation and trend detection of water storage at Nam Co Lake, central Tibetan Plateau. Journal of Hydrology, 405, 161-170. |
[79] | Zhang HJ, Xu HM, Wang SR, Qin MY, Zhao DY, Wu QL, Zeng J (2023) Habitats modulate influencing factors shaping the spatial distribution of bacterial communities along a Tibetan Plateau riverine wetland. Science of the Total Environment, 860, 160418. |
[80] | Zhang WT, Kang XM, Kang EZ, Audet J, Davidson TA, Zhang XD, Yan L, Li Y, Yan ZQ, Zhang KR, Wang JZ, Hu ZY (2022) Soil water content, carbon, and nitrogen determine the abundances of methanogens, methanotrophs, and methane emission in the Zoige alpine wetland. Journal of Soils and Sediments, 22, 470-481. |
[81] | Zhang ZS, Yu XJ, Song XL, Xue ZS, Wu HT (2019) Impacts of hydrological connectivity on key ecological processes and functions in wetlands: A general review. Wetland Science, 17, 1-8. (in Chinese with English abstract) |
[张仲胜, 于小娟, 宋晓林, 薛振山, 武海涛 (2019) 水文连通对湿地生态系统关键过程及功能影响研究进展. 湿地科学, 17, 1-8.] | |
[82] | Zhou YX, Chen KY, Muneer MA, Li CC, Shi HL, Tang Y, Zhang J, Ji BM (2022) Soil moisture and pH differentially drive arbuscular mycorrhizal fungal composition in the riparian zone along an alpine river of Nam Co watershed. Frontiers in Microbiology, 13, 994918. |
[1] | Rui Qu, Zhenjun Zuo, Youxin Wang, Liangjian Zhang, Zhigang Wu, Xiujuan Qiao, Zhong Wang. The biogeochemical niche based on elementome and its applications in different ecosystems [J]. Biodiv Sci, 2024, 32(4): 23378-. |
[2] | Mengyao Zheng, Yuan Li, Xuerong Wang, Yue Zhang, Tong Jia. Soil protozoa community assembly mechanism in different vegetation types of Luya Mountain [J]. Biodiv Sci, 2024, 32(4): 23419-. |
[3] | Kailun Xu, Xiaorong Chen, Minhua Zhang, Wanwan Yu, Sumei Wu, Zhicheng Zhu, Dingyun Chen, Rongguang Lan, Shu Dong, Yu Liu. Succession and topography jointly influence the diversity of plant sexual systems in the Baishanzu forest community [J]. Biodiv Sci, 2024, 32(12): 24338-. |
[4] | Shengxian Yang, Qing Yang, Xiaodong Li, Xin Chao, Huiqiu Liu, Lanruoxue Wei, Sang Ba. Deterministic processes dominate the geographic distribution pattern and community assembly of phytoplankton in typical plateau rivers [J]. Biodiv Sci, 2023, 31(7): 23092-. |
[5] | Fang Du, Xiaoying Rong, Peng Xu, Benfeng Yin, Yuanming Zhang. Bacterial diversity and community assembly responses to precipitation in the Gurbantunggut Desert [J]. Biodiv Sci, 2023, 31(2): 22492-. |
[6] | Jianyu Dong, Xin Sun, Qipeng Zhan, Yuyang Zhang, Xiumei Zhang. Patterns and drivers of beta diversity of subtidal macrobenthos community on the eastern coast of Laizhou Bay [J]. Biodiv Sci, 2022, 30(3): 21388-. |
[7] | Yin Wang, Jianming Wang, Mengjun Qu, Jingwen Li. Plant community assembly processes and key drivers in an arid inland river basin [J]. Biodiv Sci, 2022, 30(2): 21419-. |
[8] | Yongqingcuomu , Xinqiang Xi, Kechang Niu. Effect of plant species loss on grassland caterpillar in alpine meadows [J]. Biodiv Sci, 2022, 30(11): 22069-. |
[9] | Xiangcheng Mi, Xugao Wang, Guochun Shen, Xubin Liu, Xiaoyang Song, Xiujuan Qiao, Gang Feng, Jie Yang, Zikun Mao, Xuehong Xu, Keping Ma. Chinese Forest Biodiversity Monitoring Network (CForBio): Twenty years of exploring community assembly mechanisms and prospects for future research [J]. Biodiv Sci, 2022, 30(10): 22504-. |
[10] | Cheng Gao, Liang-Dong Guo. Progress on microbial species diversity, community assembly and functional traits [J]. Biodiv Sci, 2022, 30(10): 22429-. |
[11] | Shaopeng Wang, Mingyu Luo, Yanhao Feng, Chengjin Chu, Dayong Zhang. Theoretical advances in biodiversity research [J]. Biodiv Sci, 2022, 30(10): 22410-. |
[12] | Jiapeng Kang, Lu Han, Chunhui Feng, Haizhen Wang. Species abundance distribution in two riparian forests under contrasting environmental regimes in the Tarim Desert [J]. Biodiv Sci, 2021, 29(7): 875-886. |
[13] | Lei Dong, Jing Wang, Yonggang Liu, Zhiping Zhao, Xiangcheng Mi, Ke Guo. Phylogenetic structure of Vitex negundo var. heterophylla shrub communities and Spiraea trilobata shrub communities in the North Taihang Mountains [J]. Biodiv Sci, 2021, 29(1): 21-31. |
[14] | Gui Xujun, Lian Juyu, Zhang Ruyun, Li Yanpeng, Shen Hao, Ni Yunlong, Ye Wanhui. Vertical structure and its biodiversity in a subtropical evergreen broad- leaved forest at Dinghushan in Guangdong Province, China [J]. Biodiv Sci, 2019, 27(6): 619-629. |
[15] | Weng Changlu,Zhang Tiantian,Wu Donghao,Chen Shengwen,Jin Yi,Ren Haibao,Yu Mingjian,Luo Yuanyuan. Drivers and patterns of α- and β-diversity in ten main forest community types in Gutianshan, eastern China [J]. Biodiv Sci, 2019, 27(1): 33-41. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn