Biodiv Sci ›› 2021, Vol. 29 ›› Issue (6): 735-745. DOI: 10.17520/biods.2020331
• Original Papers:Plant Diversity • Previous Articles Next Articles
Aixia Wang1,2, Jingjing Ma1,2, Huidie Gong1,2, Guoan Fan1,2, Mao Wang1, Hongmei Zhao1,2, Junhui Cheng1,2,*()
Received:
2020-08-16
Accepted:
2020-12-16
Online:
2021-06-20
Published:
2021-05-16
Contact:
Junhui Cheng
Aixia Wang, Jingjing Ma, Huidie Gong, Guoan Fan, Mao Wang, Hongmei Zhao, Junhui Cheng. Patterns and drivers of species richness of early spring annual ephemeral plants in northern Xinjiang[J]. Biodiv Sci, 2021, 29(6): 735-745.
样地号 Sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 物种丰富度 Species richness (Mean ± SD) |
---|---|---|---|---|
1 | 44.12° | 80.84° | 696 | 6.6 ± 1.17 |
2 | 43.46° | 81.92° | 1,130 | 1.5 ± 0.53 |
3 | 43.67° | 81.16° | 914 | 5.0 ± 0.94 |
4 | 43.66° | 81.99° | 739 | 4.6 ± 1.65 |
5 | 43.61° | 82.75° | 826 | 2.5 ± 0.58 |
6 | 43.40° | 83.15° | 934 | 3.6 ± 1.07 |
7 | 43.64° | 81.69° | 678 | 3.0 ± 1.85 |
8 | 44.37° | 87.88° | 448 | 5.6 ± 1.26 |
9 | 44.09° | 88.68° | 748 | 2.7 ± 0.67 |
10 | 43.69° | 89.51° | 1,488 | 1.2 ± 0.42 |
11 | 44.21° | 90.07° | 742 | 3.3 ± 1.49 |
12 | 44.96° | 88.94° | 556 | 2.8 ± 1.14 |
13 | 44.95° | 88.58° | 632 | 3.5 ± 1.72 |
14 | 45.22° | 87.78° | 589 | 3.3 ± 1.42 |
15 | 45.41° | 86.91° | 395 | 3.5 ± 1.51 |
16 | 45.47° | 85.75° | 286 | 1.3± 0.50 |
17 | 46.23° | 85.84° | 502 | 1.5 ± 0.71 |
18 | 47.28° | 86.73° | 665 | 1.25 ± 0.50 |
19 | 47.67° | 86.88° | 497 | 1.6 ± 0.70 |
20 | 47.04° | 88.92° | 802 | 1.6 ± 0.70 |
21 | 47.50° | 87.31° | 494 | 1.7 ± 0.67 |
22 | 47.04° | 88.92° | 802 | 1.0# |
23 | 46.79° | 89.58° | 954 | 1.6 ± 0.97 |
24 | 45.82° | 89.52° | 1,021 | 2.6 ± 1.78 |
25 | 45.16° | 89.36° | 1,073 | 1.2 ± 0.42 |
26 | 44.63° | 88.82° | 538 | 4.8 ± 1.32 |
27 | 44.16° | 88.71° | 603 | 3.0 ± 1.25 |
28 | 44.91° | 84.81° | 287 | 4.2 ± 1.23 |
29 | 46.04° | 83.60° | 864 | 4.0 ± 2.49 |
30 | 44.93° | 82.62° | 211 | 2.1 ± 1.29 |
31 | 44.52° | 82.91° | 411 | 3.5 ± 1.31 |
32 | 44.35° | 85.09° | 532 | 6.1 ± 2.60 |
Table 1 Basic information (latitude, longitude and elevation) and species richness
样地号 Sites | 纬度 Latitude (N) | 经度 Longitude (E) | 海拔 Elevation (m) | 物种丰富度 Species richness (Mean ± SD) |
---|---|---|---|---|
1 | 44.12° | 80.84° | 696 | 6.6 ± 1.17 |
2 | 43.46° | 81.92° | 1,130 | 1.5 ± 0.53 |
3 | 43.67° | 81.16° | 914 | 5.0 ± 0.94 |
4 | 43.66° | 81.99° | 739 | 4.6 ± 1.65 |
5 | 43.61° | 82.75° | 826 | 2.5 ± 0.58 |
6 | 43.40° | 83.15° | 934 | 3.6 ± 1.07 |
7 | 43.64° | 81.69° | 678 | 3.0 ± 1.85 |
8 | 44.37° | 87.88° | 448 | 5.6 ± 1.26 |
9 | 44.09° | 88.68° | 748 | 2.7 ± 0.67 |
10 | 43.69° | 89.51° | 1,488 | 1.2 ± 0.42 |
11 | 44.21° | 90.07° | 742 | 3.3 ± 1.49 |
12 | 44.96° | 88.94° | 556 | 2.8 ± 1.14 |
13 | 44.95° | 88.58° | 632 | 3.5 ± 1.72 |
14 | 45.22° | 87.78° | 589 | 3.3 ± 1.42 |
15 | 45.41° | 86.91° | 395 | 3.5 ± 1.51 |
16 | 45.47° | 85.75° | 286 | 1.3± 0.50 |
17 | 46.23° | 85.84° | 502 | 1.5 ± 0.71 |
18 | 47.28° | 86.73° | 665 | 1.25 ± 0.50 |
19 | 47.67° | 86.88° | 497 | 1.6 ± 0.70 |
20 | 47.04° | 88.92° | 802 | 1.6 ± 0.70 |
21 | 47.50° | 87.31° | 494 | 1.7 ± 0.67 |
22 | 47.04° | 88.92° | 802 | 1.0# |
23 | 46.79° | 89.58° | 954 | 1.6 ± 0.97 |
24 | 45.82° | 89.52° | 1,021 | 2.6 ± 1.78 |
25 | 45.16° | 89.36° | 1,073 | 1.2 ± 0.42 |
26 | 44.63° | 88.82° | 538 | 4.8 ± 1.32 |
27 | 44.16° | 88.71° | 603 | 3.0 ± 1.25 |
28 | 44.91° | 84.81° | 287 | 4.2 ± 1.23 |
29 | 46.04° | 83.60° | 864 | 4.0 ± 2.49 |
30 | 44.93° | 82.62° | 211 | 2.1 ± 1.29 |
31 | 44.52° | 82.91° | 411 | 3.5 ± 1.31 |
32 | 44.35° | 85.09° | 532 | 6.1 ± 2.60 |
Fig. 2 Relationships of species richness of early spring annual ephemeral plants with elevation (a), annual mean temperature (b), precipitation in winter (c), precipitation from February to May (d), precipitation anomaly from February to May since the Last Glacial Maximum (e), soil nutrients conditions (f, g) and aboveground biomass (h). The solid and dotted lines represented fitted relationship and its confidence interval at the significant level of 0.05. SOC and TN were abbreviations of soil organic carbon and total nitrogen, respectively. Here winter was defined from December to February.
Fig. 3 Direct and indirect effects of elevation (Ele), climate (Clim, including precipitation in winter, precipitation from February to May, anomaly of precipitation from February to May since the Last Glacial Maximum and annual mean temperature), soil nutrient availability (Soil, including soil pH, and ratio of soil organic carbon to total nitrogen) and aboveground biomass (AGB) on species richness (SR) of early spring ephemeral plants. The blue and red line indicated the positive and negative path coefficients, respectively. * P< 0.05, **P< 0.01, ***P< 0.0001.
Fig. 4 Total effects of elevation, climate, soil nutrient availability and aboveground biomass on species richness of early spring annual ephemeral plants
[1] |
Abedi M, Bartelheimer M, Poschlod P (2013) Aluminium toxic effects on seedling root survival affect plant composition along soil reaction gradients—A case study in dry sandy grasslands. Journal of Vegetation Science, 24,1074-1085.
DOI URL |
[2] |
Adler PB, Levine JM (2007) Contrasting relationships between precipitation and species richness in space and time. Oikos, 116,221-232.
DOI URL |
[3] |
Adler PB, Seabloom EW, Borer ET, Hillebrand H, Hautier Y, Hector A, Harpole WS, O'Halloran LR, Grace JB, Anderson TM, Bakker JD, Biederman LA, Brown CS, Buckley YM, Calabrese LB, Chu CJ, Cleland EE, Collins SL, Cottingham KL, Crawley MJ, Damschen EI, Davies KF, DeCrappeo NM, Fay PA, Firn J, Frater P, Gasarch EI, Gruner DS, Hagenah N, Hille Ris Lambers J, Humphries H, Jin VL, Kay AD, Kirkman KP, Klein JA, Knops JMH, La Pierre KJ, Lambrinos JG, Li W, MacDougall AS, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Mortensen B, Orrock JL, Prober SM, Pyke DA, Risch AC, Schuetz M, Smith MD, Stevens CJ, Sullivan LL, Wang G, Wragg PD, Wright JP, Yang LH (2011) Productivity is a poor predictor of plant species richness. Science, 333,1750-1753.
DOI URL |
[4] |
Agrawal AA, Ackerly DD, Adler F, Arnold AE, Cáceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E (2007) Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 5,145-152.
DOI URL |
[5] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89,2140-2153.
DOI URL |
[6] | Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical information-theoretic approach. Springer, New York. |
[7] |
Ceulemans T, Stevens CJ, Duchateau L, Jacquemyn H, Gowing DJG, Merckx R, WallaceH, van Rooijen N, Goethem T, Bobbink R, Dorland E, Gaudnik C, Alard D, Corcket E, Muller S, Dise NB, Dupré C, Diekmann M, Honnay O (2014) Soil phosphorus constrains biodiversity across European grasslands. Global Change Biology, 20,3814-3822.
DOI PMID |
[8] |
Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature, 416,427-430.
DOI URL |
[9] | Editorial Committee of Flora of Xinjiang(1996) Flora of Xinjiang. Xinjiang Science and Technology and Hygiene Press, Urumqi. (in Chinese) |
[ 新疆植物志编辑委员会 (1996) 新疆植物志. 新疆科技卫生出版社, 乌鲁木齐.] | |
[10] |
Fan LL, Li Y, Tang LS, Ma J (2013) Combined effects of snow depth and nitrogen addition on ephemeral growth at the southern edge of the Gurbantunggut Desert, China. Journal of Arid Land, 5,500-510.
DOI URL |
[11] |
Fan LL, Ma J, Wu LF, Xu GQ, Li Y, Tang LS (2012) Response of the herbaceous layer to snow variability at the south margin of the Gurbantonggut Desert of China. Chinese Journal of Plant Ecology, 36,126-135. (in Chinese with English abstract)
DOI URL |
[ 范连连, 马健, 吴林峰, 徐贵青, 李彦, 唐立松 (2012) 古尔班通古特沙漠南缘草本层对积雪变化的响应. 植物生态学报, 36,126-135.]
DOI |
|
[12] |
Feng G, Mao LF, Sandel B, Swenson NG, Svenning JC (2016) High plant endemism in China is partially linked to reduced glacial-interglacial climate change. Journal of Biogeography, 43,145-154.
DOI URL |
[13] | Fraser LH, Pither J, Jentsch A, Sternberg M, Zobel M, Askarizadeh D, Bartha S, Beierkuhnlein C, Bennett JA, Bittel A, Boldgiv B, Boldrini II, Bork E, Brown L, Cabido M, Cahill J, Campetella G, Chelli S, Cohen O, Csergo AM, Díaz S, Enrico L, Ensing D, Fidelis A, Fridley JD, Foster B, Garris H, Goheen JR, Henry HAL, Hohn M, Jouri MH, Klironomos J, Koorem K, Lawrence-Lodge R, Long RJ, Manning P, Mitchell R, Moora M, Müller SC, Nabinger C, Naseri K, Overbeck GE, Palmer TM, Parsons S, Pesek M, Pillar VD, Pringle RM, Roccaforte K, Schmidt A, Shang ZH, Stahlmann R, Stotz GC, Sugiyama SI, Szentes S, Thompson D, Tungalag R, UndrakhboldS, van Rooyen M, Wellstein C, Wilson JB, Zupo T, Carlyle CN (2015) Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 349,302-305. |
[14] |
Gough L, Shaver GR, Carroll J, Royer DL, Laundre JA (2000) Vascular plant species richness in Alaskan arctic tundra: The importance of soil pH. Journal of Ecology, 88,54-66.
DOI URL |
[15] | Grierson CS, Barnes SR, Chase MW, Clarke M, Grierson D, Edwards KJ, Jellis GJ, Jones JD, Knapp S, Oldroyd G, Poppy G, Temple P, Williams R, Bastow R (2011) One hundred important questions facing plant science research. New Phytologist, 192,6-12. |
[16] | Guo QF, Berry WL (1998) Species richness and biomass: Dissection of the hump-shaped relationships. Ecology, 79,2555-2559. |
[17] | Guo QF, Kelt DA, Sun ZY, Liu HX, Hu LJ, Ren H, Wen J (2013) Global variation in elevational diversity patterns. Scientific Reports, 3,3007. |
[18] | Hawkins BA, Field R, Cornell HV, Currie DJ, Guégan JF, Kaufman DM, Kerr JT, Mittelbach GG, Oberdorff T, O'Brien EM, Porter EE, Turner JRG (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology, 84,3105-3117. |
[19] | HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM (2012) Rethinking community assembly through the lens of coexistence theory. Annual Review of Ecology, Evolution, and Systematics, 43,227-248. |
[20] | Hudabaierdi MJT, Xu JG (2000) List of the Higher Plants in Xinjiang. Xinjiang University Press, Urumqi. (in Chinese) |
[ 米吉提·胡达拜尔地, 徐建国 (2000) 新疆高等植物检索表. 新疆大学出版社, 乌鲁木齐.] | |
[21] | Institute of Soil Science, Chinese Academy of Sciences (1978) Analysis of Soil Physicochemical Properties, Shanghai Scientific & Technical Publishers, Shanghai. (in Chinese) |
[ 中国科学院南京土壤研究所 (1978) 土壤理化分析. 上海科学技术出版社, 上海.] | |
[22] | Jarzyna MA, Jetz W (2018) Taxonomic and functional diversity change is scale dependent. Nature Communications, 9,2565. |
[23] | Körner C (2007) The use of ‘altitude' in ecological research. Trends in Ecology & Evolution, 22,569-574. |
[24] | Lan HY, Zhang FC (2008) Reviews on special mechanisms of adaptability of early-spring ephemeral plants to desert habitats in Xinjiang. Acta Botanica Boreali-Occidentalia Sinica, 28,1478-1485. (in Chinese with English abstract) |
[ 兰海燕, 张富春 (2008) 新疆早春短命植物适应荒漠环境的机理研究进展. 西北植物学报, 28,1478-1485.] | |
[25] | Li QM, Zeng Y, Sun QM, Liu T, Han ZQ, Li YG, Liu HF (2014) Precipitation in May is a key factor to determinate the distribution of ephemeral plants in Gurbantünggüt Desert. Chinese Journal of Ecology, 33,2038-2045. (in Chinese with English abstract) |
[ 李巧梅, 曾勇, 孙钦明, 刘彤, 韩志全, 李勇冠, 刘华峰 (2014) 决定古尔班通古特沙漠短命植物分布的关键因子是5月降水. 生态学杂志, 33,2038-2045.] | |
[26] | Li XY (2000) Preliminary studying the characteristic of roots and relations between roots and environment of ephemerals in Xinjiang. Arid Zone Research, 17(3),28-34. (in Chinese with English abstract) |
[ 李向义 (2000) 新疆短命植物根系特征与立地条件的关系. 干旱区研究, 17(3),28-34.] | |
[27] | Lomolino MV (2001) Elevation gradients of species-density: Historical and prospective views. Global Ecology and Biogeography, 10,3-13. |
[28] | Lü LS, Cai HY, Yang Y, Wang ZH, Zeng H (2018) Geographic patterns and environmental determinants of gymnosperm species diversity in China. Biodiversity Science, 26,1133-1146. (in Chinese with English abstract) |
[ 吕丽莎, 蔡宏宇, 杨永, 王志恒, 曾辉 (2018) 中国裸子植物的物种多样性格局及其影响因子. 生物多样性, 26,1133-1146.] | |
[29] | Mao ZM, Zhang DM (1994) The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research, 11(3),1-26. (in Chinese with English abstract) |
[ 毛祖美, 张佃民 (1994) 新疆北部早春短命植物区系纲要. 干旱区研究, 11(3),1-26.] | |
[30] | Otto-Bliesner BL, Brady EC, Clauzet G, Tomas R, Levis S, Kothavala Z (2006) Last Glacial Maximum And Holocene Climate in CCSM3. Journal of Climate, 19,2526-2544. |
[31] | Palpurina S, WagnerV, von Wehrden H, Hájek M, Horsák M, Brinkert A, Hölzel N, Wesche K, Kamp J, Hájková P, Danihelka J, Lustyk P, Merunková K, Preislerová Z, Kočí M, Kubešová S, Cherosov M, Ermakov N, German D, Gogoleva P, Lashchinsky N, Martynenko V, Chytrý M (2017) The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 26,425-434. |
[32] | Pennisi E (2005) What determines species diversity? . Science, 309,90. |
[33] | Qiu J, Tan DY, Fan DY (2007) Characteristics of photosynthesis and biomass allocation of spring ephemerals in the Junggar Desert. Acta Phytoecologica Sinica, 31,883-891. (in Chinese with English abstract) |
[ 邱娟, 谭敦炎, 樊大勇 (2007) 准噶尔荒漠早春短命植物的光合特性及生物量分配特点. 植物生态学报, 31,883-891.] | |
[34] | R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. |
[35] | Rakotoarinivo M, Blach-Overgaard A, Baker WJ, Dransfield J, Moat J, Svenning JC (2013) Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar:A tropical biodiversity hotspot. Proceedings of the Royal Society B: Biological Sciences, 280,20123048. |
[36] | Sanchez G (2013) PLS Path Modeling with R. Trowchez Editions, Berkeley, California. |
[37] | Shi ZT, Song YG, An ZS (2006) Evolution of Gurbantunggut Desert recorded by Tianshan Loess. Journal of Desert Research, 26,675-679. (in Chinese with English abstract) |
[ 史正涛, 宋友桂, 安芷生 (2006) 天山黄土记录的古尔班通古特沙漠形成演化. 中国沙漠, 26,675-679.] | |
[38] | Song YY, Zhou CB, Zhang WH (2011) Vegetation coverage, species richness, and dune stability in the southern part of Gurbantünggüt Desert. Ecological Research, 26,79-86. |
[39] | Sun Y, Zhang T, Tian CY, Li XL, Feng G (2009) Response of grass growth and productivity to enhanced water input in ephemeral desert grassland in Gurbantunggut Desert. Acta Ecologica Sinica, 29,1859-1868. (in Chinese with English abstract) |
[ 孙羽, 张涛, 田长彦, 李晓林, 冯固 (2009) 增加降水对荒漠短命植物当年牧草生长及群落结构的影响. 生态学报, 29,1859-1868.] | |
[40] | Tang ZY, Wang ZH, Fang JY (2009) Historical hypothesis in explaining spatial patterns of species richness. Biodiversity Science, 17,635-643. (in Chinese with English abstract) |
[ 唐志尧, 王志恒, 方精云 (2009) 生物多样性分布格局的地史成因假说. 生物多样性, 17,635-643.] | |
[41] | Tao Y, Liu YB, Wu GL, Zhang YM (2016) Regional-scale ecological stoichiometric characteristics and spatial distribution patterns of key elements in surface soils in the Junggar Desert, China. Acta Prataculturae Sinica, 25(7),13-23. (in Chinese with English abstract) |
[ 陶冶, 刘耀斌, 吴甘霖, 张元明 (2016) 准噶尔荒漠区域尺度浅层土壤化学计量特征及其空间分布格局. 草业学报, 25(7),13-23.] | |
[42] | Wang JJ, Pan FY, Soininen J, Heino J, Shen J (2016) Nutrient enrichment modifies temperature-biodiversity relationships in large-scale field experiments. Nature Communications, 7,13960. |
[43] | Wang L, Liu C, Alves DG, Frank DA, Wang DL (2015) Plant diversity is associated with the amount and spatial structure of soil heterogeneity in meadow steppe of China. Landscape Ecology, 30,1713-1721. |
[44] | Wang XQ, Jiang J, Lei JQ, Zhang WM, Qian YB (2003) The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geographica Sinica, 58,598-605. (in Chinese with English abstract) |
[ 王雪芹, 蒋进, 雷加强, 张伟民, 钱亦兵 (2003) 古尔班通古特沙漠短命植物分布及其沙面稳定意义. 地理学报, 58,598-605.] | |
[45] | Wang ZH, Fang JY, Tang ZY, Lin X (2012) Relative role of contemporary environment versus history in shaping diversity patterns of China's woody plants. Ecography, 35,1124-1133. |
[46] | Yuan SF, Tang HP (2010) Patterns of ephemeral plant communities and their adaptations to temperature and precipitation regimes in Dzungaria Desert, Xinjiang. Biodiversity Science, 18,346-354. (in Chinese with English abstract) |
[ 袁素芬, 唐海萍 (2010) 新疆准噶尔荒漠短命植物群落特征及其水热适应性. 生物多样性, 18,346-354.] | |
[47] | Yuan SF, Tang HP, Zhang HF (2015) On the relationships between intra-annual variation of ephemeral synusia and hydrothermal conditions. Arid Zone Research, 32,941-946. (in Chinese with English abstract) |
[ 袁素芬, 唐海萍, 张宏锋 (2015) 短命植物层群落年内变化与水热条件的关系. 干旱区研究, 32,941-946.] | |
[48] | Zeng Y, Liu T, Zhou XB, Sun QM, Han ZQ, Liu K (2016) Effects of climate change on plant composition and diversity in the Gurbantünggüt Desert of northwestern China. Ecological Research, 31,427-439. |
[1] | Bo Wei, Linshan Liu, Changjun Gu, Haibin Yu, Yili Zhang, Binghua Zhang, Bohao Cui, Dianqing Gong, Yanli Tu. The climate niche is stable and the distribution area of Ageratina adenophora is predicted to expand in China [J]. Biodiv Sci, 2022, 30(8): 21443-. |
[2] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[3] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[4] | Jiman Li, Nan Jin, Maogang Xu, Jusong Huo, Xiaoyun Chen, Feng Hu, Manqiang Liu. Effects of earthworm on tomato resistance under different drought levels [J]. Biodiv Sci, 2022, 30(7): 21488-. |
[5] | Ke Yang, Chengzhi Ding, Xiaoyong Chen, Liuyong Ding, Minrui Huang, Jinnan Chen, Juan Tao. Fish diversity and spatial distribution pattern in the Nujiang River Basin [J]. Biodiv Sci, 2022, 30(7): 21334-. |
[6] | Lujia Tian, Xiaobo Yang, Donghai Li, Long Li, Lin Chen, Caiqun Liang, Peichun Zhang, Chendi Li. Species diversity and nestedness of bird assemblages in the forest fragments of Haikou and Sanya cities [J]. Biodiv Sci, 2022, 30(6): 21424-. |
[7] | Kuiling Zu, Zhiheng Wang. Research progress on the elevational distribution of mountain species in response to climate change [J]. Biodiv Sci, 2022, 30(5): 21451-. |
[8] | Lan Xiao, Biao Dong, Linting Zhang, Chuanyuan Deng, Xia Li, Jianhui Liu, Duancong Wu. Distribution pattern of plant species richness of uninhabited islands in the Bohai Sea area [J]. Biodiv Sci, 2022, 30(4): 21231-. |
[9] | Yongjiang Huang, Tao Su, Hai Zhu, Linbo Jia, Jinjin Hu, Yunheng Ji, Zhekun Zhou. Vegetation diversity and distribution in the Pliocene of the southern Hengduan Mountains region [J]. Biodiv Sci, 2022, 30(11): 22295-. |
[10] | Xin Jing, Shengjing Jiang, Huiying Liu, Yu Li, Jin-Sheng He. Complex relationships and feedback mechanisms between climate change and biodiversity [J]. Biodiv Sci, 2022, 30(10): 22462-. |
[11] | Huijie Qiao, Junhua Hu. Reconstructing community assembly using a numerical simulation model [J]. Biodiv Sci, 2022, 30(10): 22456-. |
[12] | Wenyu Song, Xueyou Li, Hongjiao Wang, Zhongzheng Chen, Shuiwang He, Xuelong Jiang. Multi-dimensional evaluation of small mammal diversity in tree line habitats across the Three Parallel Rivers of Yunnan Protected Areas: Implications for conservation [J]. Biodiv Sci, 2021, 29(9): 1215-1228. |
[13] | Zuchang Xu, Yahuang Luo, Shengyuan Qin, Guangfu Zhu, Dezhu Li. Current status of herbarium specimens and geographical distribution of bamboos (Gramineae: Bambsusoideae) in China [J]. Biodiv Sci, 2021, 29(7): 897-909. |
[14] | Run Zhou, Xiuqin Ci, Jianhua Xiao, Guanlong Cao, Jie Li. Effects and conservation assessment of climate change on the dominant group—The genusCinnamomum of subtropical evergreen broad-leaved forests [J]. Biodiv Sci, 2021, 29(6): 697-711. |
[15] | Yuhan Shi, Zongxin Ren, Weijia Wang, Xin Xu, Jie Liu, Yanhui Zhao, Hong Wang. Predicting the spatial distribution of three Astragalusspecies and their pollinating bumblebees in the Sino-Himalayas [J]. Biodiv Sci, 2021, 29(6): 759-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn