Biodiv Sci ›› 2021, Vol. 29 ›› Issue (6): 712-721. DOI: 10.17520/biods.2021056
Special Issue: 传粉生物学
• Original Papers: Plant Diversity • Previous Articles Next Articles
Zhengyan Hu1,2, Quanjing Zheng1,2, Qiyong Mu1,2, Zhiqiang Du1,2, Lin Liu3, Yaowu Xing1,*(), Ting-Shen Han1,*()
Received:
2021-02-09
Accepted:
2021-04-08
Online:
2021-06-20
Published:
2021-06-11
Contact:
Yaowu Xing,Ting-Shen Han
Zhengyan Hu, Quanjing Zheng, Qiyong Mu, Zhiqiang Du, Lin Liu, Yaowu Xing, Ting-Shen Han. The mating system and reproductive assurance of Rorippa elata (Brassicaceae) across latitude[J]. Biodiv Sci, 2021, 29(6): 712-721.
Fig. 1 Sample sites of Rorippa elata natural populations and the common garden. A, Sampled R. elata populations (blue dots) and the location of common garden (purple star); B, Photo for the natural population of R. elata; C, Common garden and transplanted seedlings of R. elata.
Fig. 5 Mating system type of Rorippa elata. Different letters indicate significant differences among seed setting rate of different experimental treatments (P < 0.05).
Fig. 6 Pollen limitation of different types mating system. Different letters indicate significant differences among mating system types of different pollen limitation (P < 0.05).
[1] |
Ashman TL, Knight TM, Steets JA, Amarasekare P, Burd M, Campbell DR, Dudash MR, Johnston MO, Mazer SJ, Mitchell RJ, Morgan MT, Wilson WG (2004) Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology, 85,2408-2421.
DOI URL |
[2] | Barrett SCH (2014) Evolution of mating systems:Outcrossing versus selfing. In: The Princeton Guide to Evolution (eds Losos JB, Baum DA, Futuyma DJ, Hoekstra EH, Lenski RE, Moore AJ, Peichel GL, Schluter D, Whitlock MC), pp. 356-362. Princeton University Press, PrincetonThe Princeton Guide to Evolution (eds Losos JB,356-362. Princeton University Press, Princeton. |
[3] |
Barrett SCH, Harder LD (2017) The ecology of mating and its evolutionary consequences in seed plants. Annual Review of Ecology, Evolution, and Systematics, 48,135-157.
DOI URL |
[4] |
Bengtsson BO, Ceplitis A (2000) The balance between sexual and asexual reproduction in plants living in variable environments. Journal of Evolutionary Biology, 13,415-422.
DOI URL |
[5] |
Brys R, van Cauwenberghe J, Jacquemyn H (2016) The importance of autonomous selfing in preventing hybridization in three closely related plant species. Journal of Ecology, 104,601-610.
DOI URL |
[6] |
Busch JW, Delph LF (2012) The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Annals of Botany, 109,553-562.
DOI URL |
[7] |
Charlesworth D, Willis JH (2009) The genetics of inbreeding depression. Nature Reviews Genetics, 10,783-796.
DOI URL |
[8] |
Devaux C, Lande R, Porcher E (2014) Pollination ecology and inbreeding depression control individual flowering phenologies and mixed mating. Evolution, 68,3051-3065.
DOI URL |
[9] |
de Villemereuil P, Gaggiotti OE, Mouterde M, Till-Bottraud I (2016) Common garden experiments in the genomic era: New perspectives and opportunities. Heredity, 116,249-254.
DOI PMID |
[10] |
Ding WN, Ree RH, Spicer RA, Xing YW (2020) Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science, 369,578-581.
DOI URL |
[11] |
Elle E, Carney R (2003) Reproductive assurance varies with flower size in Collinsia parviflora (Scrophulariaceae). American Journal of Botany, 90,888-896.
DOI URL |
[12] | Foxe JP, Slotte T, Stahl EA, Neuffer B, Hurka H, Wright SI (2009) Recent speciation associated with the evolution of selfing in Capsella. Proceedings of the National Academy of Sciences, USA, 106,5241-5245. |
[13] |
Friedman J (2020) The evolution of annual and perennial plant life histories: Ecological correlates and genetic mechanisms. Annual Review of Ecology, Evolution, and Systematics, 51,461-481.
DOI URL |
[14] |
Goodwillie C, Weber JJ (2018) The best of both worlds? A review of delayed selfing in flowering plants. American Journal of Botany, 105,641-655.
DOI PMID |
[15] |
Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: Occurrence, theoretical explanations, and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 36,47-79.
DOI URL |
[16] |
Goodwillie C, Sargent RD, Eckert CG, Elle E, Geber MA, Johnston MO, Kalisz S, Moeller DA, Ree RH, Vallejo-Marin M, Winn AA (2010) Correlated evolution of mating system and floral display traits in flowering plants and its implications for the distribution of mating system variation. New Phytologist, 185,311-321.
DOI URL |
[17] |
Guo H, Weiner J, Mazer SJ, Zhao ZG, Du GZ, Li B (2012) Reproductive allometry in Pedicularis species changes with elevation . Journal of Ecology, 100,452-458.
DOI URL |
[18] | Hao N, Su X, Wu Q, Chang LB, Zhang SH, Sun K (2016) Size-dependent of Qinghai-Tibetan Plateau Viola tuberifera (Violaceae) bulbs allocation . Guihaia, 36,674-678. (in Chinese with English abstract) |
郝楠, 苏雪, 吴琼, 常立博, 张世虎, 孙坤 (2016) 青藏高原东缘块茎堇菜鳞茎分配的个体大小依赖性. 广西植物, 36,674-678.] | |
[19] |
Herlihy CR, Eckert CG (2002) Genetic cost of reproductive assurance in a self-fertilizing plant. Nature, 416,320-323.
DOI URL |
[20] |
Kalisz S, Vogler DW, Hanley KM (2004) Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature, 430,884-887.
PMID |
[21] | Körner C (2003) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin. |
[22] | Körner C (2020) Plant adaptations to alpine environments. In: Encyclopedia of the World's Biomes (eds Goldstein MI, DellaSala DA), pp. 355-361. Elsevier, Amsterdam, |
[23] |
Layman NC, Fernando MTR, Herlihy CR, Busch JW (2017) Costs of selfing prevent the spread of a self-compatibility mutation that causes reproductive assurance. Evolution, 71,884-897.
DOI URL |
[24] | Lundgren MR, Des Marais DL (2020) Life history variation as a model for understanding trade-offs in plant-environment interactions. Current Biology, 30,R180-R189. |
[25] |
Miller GR, Geddes C (2004) Seed-setting by alpine gentian ( Gentiana nivalis L.) . Botanical Journal of Scotland, 56,85-91.
DOI URL |
[26] |
Moeller DA, Briscoe Runquist RD, Moe AM, Geber MA, Goodwillie C, Cheptou PO, Eckert CG, Elle E, Johnston MO, Kalisz S, Ree RH, Sargent RD, Vallejo-Marin M, Winn AA (2017) Global biogeography of mating system variation in seed plants. Ecology Letters, 20,375-384.
DOI PMID |
[27] |
Munoz F, Violle C, Cheptou PO (2016) CSR ecological strategies and plant mating systems: Outcrossing increases with competitiveness but stress-tolerance is related to mixed mating. Oikos, 125,1296-1303.
DOI URL |
[28] | Nasrallah JB (2017) Plant mating systems: Self-incompatibility and evolutionary transitions to self-fertility in the mustard family. Current Opinion in Genetics & Development, 47,54-60. |
[29] |
Peng DL, Zhang ZQ, Niu Y, Yang Y, Song B, Sun H, Li ZM (2012) Advances in the studies of reproductive strategies of alpine plants. Biodiversity Science, 20,286-299. (in Chinese with English abstract)
DOI URL |
彭德力, 张志强, 牛洋, 杨扬, 宋波, 孙航, 李志敏 (2012) 高山植物繁殖策略的研究进展. 生物多样性, 20,286-299.]
DOI |
|
[30] |
Peng DL, Zhang ZQ, Xu B, Li ZM, Sun H (2012) Patterns of flower morphology and sexual systems in the subnival belt of the Hengduan Mountains, SW China. Alpine Botany, 122,65-73.
DOI URL |
[31] |
Peng DL, Ou XK, Xu B, Zhang ZQ, Niu Y, Li ZM, Sun H (2014) Plant sexual systems correlated with morphological traits: Reflecting reproductive strategies of alpine plants. Journal of Systematics and Evolution, 52,368-377.
DOI URL |
[32] | R Core Team (2019) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. |
[33] |
Sun H, Niu Y, Chen YS, Song B, Liu CQ, Peng DL, Chen JG, Yang Y (2014) Survival and reproduction of plant species in the Qinghai-Tibet Plateau. Journal of Systematics and Evolution, 52,378-396.
DOI URL |
[34] |
Sun H, Zhang JW, Deng T, Boufford DE (2017) Origins and evolution of plant diversity in the Hengduan Mountains, China. Plant Diversity, 39,161-166.
DOI URL |
[35] |
Sun SG, Guo YH, Gituru RW, Huang SQ (2005) Corolla wilting facilitates delayed autonomous self-pollination in Pedicularis dunniana (Orobanchaceae). Plant Systematics and Evolution, 251,229-237.
DOI URL |
[36] |
Testolin R, Attorre F, Jiménez-Alfaro B (2020) Global distribution and bioclimatic characterization of alpine biomes. Ecography, 43,779-788.
DOI URL |
[37] |
Tong ZY, Wu LY, Huang SQ (2020) Reproductive strategies of animal-pollinated plants on high mountains: A review of studies from the “Third Pole”. Journal of Systematics and Evolution,doi:10.1111/jse.12680.
DOI |
[38] |
Wadgymar SM, Daws SC, Anderson JT (2017) Integrating viability and fecundity selection to illuminate the adaptive nature of genetic clines. Evolution Letters, 1,26-39.
DOI PMID |
[39] |
Wang T, Zhao YT, Xu CY, Ciais P, Liu D, Yang H, Piao SL, Yao TD (2021) Atmospheric dynamic constraints on Tibetan Plateau freshwater under Paris climate targets. Nature Climate Change, 11,219-225.
DOI URL |
[40] |
Wang XJ, Barrett SCH, Zhong L, Wu ZK, Li DZ, Wang H, Zhou W (2021) The genomic selfing syndrome accompanies the evolutionary breakdown of heterostyly. Molecular Biology and Evolution, 38,168-180.
DOI URL |
[41] |
Weiner J (2004) Allocation, plasticity and allometry in plants. Perspectives in Plant Ecology, Evolution and Systematics, 6,207-215.
DOI URL |
[42] |
Wenk EH, Falster DS (2015) Quantifying and understanding reproductive allocation schedules in plants. Ecology and Evolution, 5,5521-5538.
DOI URL |
[43] |
Whitehead MR, Lanfear R, Mitchell RJ, Karron JD (2018) Plant mating systems often vary widely among populations. Frontiers in Ecology and Evolution, 6, doi:10.3389/fevo.2018.00038.
DOI |
[44] | Xiong YZ, Fang Q, Huang SQ (2013) Pollinator scarcity drives the shift to delayed selfing in Himalayan mayapple Podophyllum hexandrum (Berberidaceae). AoB Plants, 5, plt037. |
[45] | Yu Q, Zhang YW, Guo YH (2008) Translation and elucidation of common terms in pollination biology. Journal of Systematics and Evolution, 46,96-102. (in Chinese with English abstract) |
予茜, 张彦文, 郭友好 (2008) 传粉生物学常用术语释译. 植物分类学报, 46,96-102.] | |
[46] |
Zhang C, An YM, Jäschke Y, Wang LL, Zhou ZL, Wang LP, Yang YP, Duan YW (2020) Processes on reproductive ecology of plant species in the Qinghai-Xizang Plateau and adjacent highlands. Chinese Journal of Plant Ecology, 44,1-21. (in Chinese with English abstract)
DOI URL |
张婵, 安宇梦, Jäschke Y, 王林林, 周知里, 王力平, 杨永平, 段元文 (2020) 青藏高原及周边高山地区的植物繁殖生态学研究进展. 植物生态学报, 44,1-21.]
DOI |
[1] | Cao Hao, Donghui Wu, Lingzi Mo, Guoliang Xu. A review on gut microbial diversity and function of overwintering animals [J]. Biodiv Sci, 2024, 32(3): 23407-. |
[2] | Lulu Wei, Tingting Xu, Yuanyuan Li, Zhe Ai, Fei Ma. The common garden environment and genetic differentiation jointly influence the diversity and community structure of nitrogen-fixing bacteria in the rhizosphere soil of three Caragana species [J]. Biodiv Sci, 2023, 31(4): 22477-. |
[3] | Wenwen Shao, Guozhen Fan, Zhizhou He, Zhiping Song. Phenotypic plasticity and local adaptation of Oryza rufipogon revealed by common garden trials [J]. Biodiv Sci, 2023, 31(3): 22311-. |
[4] | Rui Luo, Ya Chen, Hanma Zhang. Research progress on whole-genome resequencing in Brassica [J]. Biodiv Sci, 2023, 31(10): 23237-. |
[5] | Ruiliang Zhu, Xiaoying Ma, Chang Cao, Ziyin Cao. Advances in research on bryophyte diversity in China [J]. Biodiv Sci, 2022, 30(7): 22378-. |
[6] | Yu Xiao, Xi Wang, Zihan He, Lingling Li, Xinsheng Hu. Advances in speciation theories and their verifications based on the biological species concept [J]. Biodiv Sci, 2022, 30(5): 21480-. |
[7] | Yongjiang Huang, Tao Su, Hai Zhu, Linbo Jia, Jinjin Hu, Yunheng Ji, Zhekun Zhou. Vegetation diversity and distribution in the Pliocene of the southern Hengduan Mountains region [J]. Biodiv Sci, 2022, 30(11): 22295-. |
[8] | Sheng Li, William J. McShea, Dajun Wang, Xiaoli Shen, Hongliang Bu, Tianpei Guan, Fang Wang, Xiaodong Gu, Xiaofeng Zhang, Haohong Liao. Construction progress of the Camera-trapping Network for the Mountains of Southwest China [J]. Biodiv Sci, 2020, 28(9): 1049-1058. |
[9] | Hao Tian,Wanjin Liao. Consequences of clonal growth on pollinator visitation in flowering plants [J]. Biodiv Sci, 2018, 26(5): 468-475. |
[10] | Xixi Hu, Weichao Zheng, Jiaqi Li, Sheng Li, Han Yang, Xing Chen, Tianpei Guan. Preliminary survey on mammal and bird diversity at Siguniang Mountains National Nature Reserve, Sichuan, China [J]. Biodiv Sci, 2018, 26(12): 1325-1331. |
[11] | Chi Li, Daode Yang, Yuming Zhang, Yucheng Song, Pengfei Li, Zhigang Jiang. Seasonal variation in nocturnal bed-site selection by Milu (Elaphurus davidianus) in Hubei Shishou Milu National Nature Reserve, China [J]. Biodiv Sci, 2016, 24(9): 1031-1038. |
[12] | Yingzhuo Chen, Zhihuan Huang. A minireview on adaption of young leaf redness [J]. Biodiv Sci, 2016, 24(9): 1062-1067. |
[13] | Li Liu, Jiangping Shu, Hongjin Wei, Rui Zhang, Hui Shen, Yuehong Yan. De novo transcriptome analysis of the rare fern Monachosorum maximowiczii (Dennstaedtiaceae) endemic to East Asia [J]. Biodiv Sci, 2016, 24(12): 1325-1334. |
[14] | Xueping Wei, Xianchun Zhang. Distributional patterns of the monolete and trilete ferns in China [J]. Biodiv Sci, 2016, 24(10): 1129-1134. |
[15] | Dexing Zhang. Unorthodox reflections on molecular ecology research in China [J]. Biodiv Sci, 2015, 23(5): 559-569. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn