Biodiv Sci ›› 2009, Vol. 17 ›› Issue (1): 51-61. DOI: 10.3724/SP.J.1003.2009.08169
• Paper • Previous Articles Next Articles
Ye Tao1, Dan Wang1, Tong Liu1,*(), Chengguo Jiang1, Wei Zhai1, Yongguan Li1, Cheng Tang2
Received:
2008-07-21
Accepted:
2008-12-31
Online:
2009-01-20
Published:
2009-01-20
Contact:
Tong Liu
Ye Tao, Dan Wang, Tong Liu, Chengguo Jiang, Wei Zhai, Yongguan Li, Cheng Tang. Community characteristics of Arabidopsis thaliana natural populations in the northern Tianshan Mountains along with relevant environmental factors[J]. Biodiv Sci, 2009, 17(1): 51-61.
分布区类型 Areal-type | 属数 (百分比) No. of genera (%) | 种数 (百分比) No. of species (%) |
---|---|---|
1 世界分布 Cosmopolitan | 13 | 20 |
2 泛热带分布 Pantropic | 2 (3.92) | 2 (3.51) |
8 北温带分布及其变型 North temperate | 22 (39.21) | 25 (43.86) |
8-4 北温带和南温带(全温带)间断 North temperate and South temperate disjuncted | 8 (15.68) | 10 (17.55) |
10 旧世界温带分布及其变型 Old World temperate | 1 (1.96) | 1 (1.75) |
10-3 欧亚和南非洲(有时也在大洋州)间断 Eurasia and South Africa (sometimes Australasia also) disjuncted | 1 (1.96) | 1 (1.75) |
11 温带亚洲分布 Temperate Asia | 3 (5.88) | 3 (5.26) |
12 地中海、西亚至中亚分布及其变型 Mediterranean, West Asia to Central Asia | 11 (21.57) | 12 (21.06) |
13 中亚分布及其变型 Central Asia | 2 (3.92) | 2 (3.51) |
13-3 西亚至喜马拉雅和西藏 West Asia to Himalayas and Tibet | 1 (1.96) | 1 (1.75) |
Table 2 Areal-type of genera and species in each A. thaliana community in the study area
分布区类型 Areal-type | 属数 (百分比) No. of genera (%) | 种数 (百分比) No. of species (%) |
---|---|---|
1 世界分布 Cosmopolitan | 13 | 20 |
2 泛热带分布 Pantropic | 2 (3.92) | 2 (3.51) |
8 北温带分布及其变型 North temperate | 22 (39.21) | 25 (43.86) |
8-4 北温带和南温带(全温带)间断 North temperate and South temperate disjuncted | 8 (15.68) | 10 (17.55) |
10 旧世界温带分布及其变型 Old World temperate | 1 (1.96) | 1 (1.75) |
10-3 欧亚和南非洲(有时也在大洋州)间断 Eurasia and South Africa (sometimes Australasia also) disjuncted | 1 (1.96) | 1 (1.75) |
11 温带亚洲分布 Temperate Asia | 3 (5.88) | 3 (5.26) |
12 地中海、西亚至中亚分布及其变型 Mediterranean, West Asia to Central Asia | 11 (21.57) | 12 (21.06) |
13 中亚分布及其变型 Central Asia | 2 (3.92) | 2 (3.51) |
13-3 西亚至喜马拉雅和西藏 West Asia to Himalayas and Tibet | 1 (1.96) | 1 (1.75) |
排序轴 Axis | 特征值 Eigenvalues | 梯度的长度 Lengths of gradient | 物种累积解释量/ % Cumulative percentage variance of species | 物种-环境关系累积解释量 Cumulative percentage variance of species-environment relation (%) |
---|---|---|---|---|
第一轴 Axis1 | 0.649 | 3.403 | 28.5 | 27.8 |
第二轴 Axis2 | 0.260 | 1.823 | 39.9 | 38.5 |
第三轴 Axis3 | 0.074 | 1.126 | 43.1 | 41.5 |
第四轴 Axis4 | 0.031 | 1.150 | 44.5 | 42.8 |
Table 3 Eigenvalues, lengths of gradient, cumulative variances of species and of species-environment relationship of DCCA ordination
排序轴 Axis | 特征值 Eigenvalues | 梯度的长度 Lengths of gradient | 物种累积解释量/ % Cumulative percentage variance of species | 物种-环境关系累积解释量 Cumulative percentage variance of species-environment relation (%) |
---|---|---|---|---|
第一轴 Axis1 | 0.649 | 3.403 | 28.5 | 27.8 |
第二轴 Axis2 | 0.260 | 1.823 | 39.9 | 38.5 |
第三轴 Axis3 | 0.074 | 1.126 | 43.1 | 41.5 |
第四轴 Axis4 | 0.031 | 1.150 | 44.5 | 42.8 |
第一轴 Axis1 | 海拔 Elevation | 纬度 Latitude | 经度 Longitude | 坡向 Aspect | 坡度 Slope | 坡位 Slope position | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
第一轴 Axis1 | 1.000 | 0.506 | 0.445 | -0.717** | 0.815** | 0.676* | 0.140 | ||||||
第二轴 Axis2 | 0.141 | 0.670* | 0.047 | -0.294 | 0.434 | -0.040 | 0.624* | ||||||
有机质 Organic matter | 全氮 Total N | 电导率 Conductivity | pH | 有效磷 Available P | 有效钾 Available K | ||||||||
第一轴 Axis1 | 0.876** | 0.559 | -0.651* | -0.798** | -0.031 | -0.622* | |||||||
第二轴 Axis2 | 0.018 | 0.095 | -0.287 | -0.071 | -0.388 | -0.508 |
Table 4 Correlation coefficient between environmental factors and the first two axes of DCCA ordination
第一轴 Axis1 | 海拔 Elevation | 纬度 Latitude | 经度 Longitude | 坡向 Aspect | 坡度 Slope | 坡位 Slope position | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
第一轴 Axis1 | 1.000 | 0.506 | 0.445 | -0.717** | 0.815** | 0.676* | 0.140 | ||||||
第二轴 Axis2 | 0.141 | 0.670* | 0.047 | -0.294 | 0.434 | -0.040 | 0.624* | ||||||
有机质 Organic matter | 全氮 Total N | 电导率 Conductivity | pH | 有效磷 Available P | 有效钾 Available K | ||||||||
第一轴 Axis1 | 0.876** | 0.559 | -0.651* | -0.798** | -0.031 | -0.622* | |||||||
第二轴 Axis2 | 0.018 | 0.095 | -0.287 | -0.071 | -0.388 | -0.508 |
[1] | Agricultural Chemistry Committee of Soil Science Society of China (中国土壤学会农业化学专业委员会) (1983) Coventional Methods for the Agricultural Chemical Analysis of Soil (土壤农业化学常规分析方法). Science Press, Beijing. (in Chinese) |
[2] | Bakker EG, Stahl EA, Toomajian C, Nordborg M, Kreitman M, Bergelson J (2006) Distribution of genetic variation within and among local populations of Arabidopsis thaliana over its species range. Molecular Ecology, 15, 1405-1418. |
[3] | Brooker RW, Meastre FT, Callaway RM, Lortie CL, Cavieres LA, Kimstler G, Liancourt P, Tielbörger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R (2008) Facilitation in plant communities: the past, the present, and the future. Journal of Ecology, 96, 18-34. |
[4] | Clauss MJ, Koch MA (2006) Poorly known relatives of Arabidopsis thaliana. Trends in Plant Science, 11, 449-459. |
[5] | Hill MO, Šmilauer P (2005) TWINSPAN for Windows version 2.3. Centre for Ecology and Hydrology and University of South Bohemia, Huntingdon and Ceske Budejovice. |
[6] | Hoffmann MH (2002) Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). Journal of Biogeography, 29, 125-134. |
[7] | Hoffmann MH (2005) Evolution of the realized climatic niche in the genus Arabidopsis (Brassicaceae) Evolution, 59, 1425-1436. |
[8] | Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecology Letters, 7, 1225-1241. |
[9] | Koch MA, Matschinger M (2007) Evolution and genetic differentiation among relatives of Arabidopsis thaliana. Proceedings of the National Academy of Sciences, USA, 104, 6272-6277. |
[10] | Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring genetic variation in Arabidopsis thaliana. Annual Review of Plant Biology, 55, 141-172. |
[11] | Liu T (刘彤), Zhao XJ (赵新俊), Cui YH (崔运河) Liu LC (刘龙昌), Jia YM (贾亚敏), Luo C (骆郴), Wei P (魏鹏), Zhang YH (张元杭) (2008) Spatial associations and patterns of Arabidopsis thaliana and its adjacent species in the middle part of northern Tianshan Mountain. Acta Ecologica Sinica (生态学报), 28, 1842-1849. (in Chinese with English abstract) |
[12] | Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proceedings of the National Academy of Sciences, USA, 103, 5224-5229. |
[13] | Mao ZM (毛祖美), Zhang DM (张佃民) (1994) The conspectus of ephemeral flora in northern Xinjiang. Arid Zone Research (干旱区研究), 11, 1-26. (in Chinese with English abstract) |
[14] | Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature, 441, 947-952. |
[15] | Pan XL (潘晓玲) (1997) Floristic analysis of seed plant families in Xinjiang. Bulletin of Botanical Research (植物研究), 17, 397-402. (in Chinese with English abstract) |
[16] | Pan XL (潘晓玲), Ma YJ (马映军), Gao W (高炜), Qi JG (齐家国), Shi QD (师庆东), Lu HY (陆海燕) (2004) Eco-environmental evolution in arid area of west China. Journal of Desert Research (中国沙漠), 24, 663-673. (in Chinese with English abstract) |
[17] | Pigliucci M (1998a) Ecological and evolutionary genetics of Arabidopsis. Trends in Plant Science, 3, 485-489. |
[18] | Pigliucci M, Byrd N (1998b) Genetics and evolution of phenotypic plasticity to nutrient stress in Arabidopsis: drift, constraints or selection? Biological Journal of the Linnean Society, 64, 17-40. |
[19] | Price RA, Palmer JD, Al-Shehbaz IA (1994) Systematic relationships of Arabidopsis: a molecular and morphological perspective. In: Arabidopsis (eds Meyerowitz EM, Someville CR), pp. 7-19. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. |
[20] | Qiu Y (邱扬), Zhang JT (张金屯) (2000) The ordination axes clustering based on detrended canonical correspondence analysis ordination and its application to the analysis of the ecological gradients of plant communities. Acta Ecologica Sinica (生态学报), 20, 199-206. (in Chinese with English abstract) |
[21] | Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Molecular Ecology, 9, 2109-2118. |
[22] | Shen ZH (沈泽昊), Zhang XS (张新时) Jin YX (金义兴) (2000) Spatial pattern analysis and topographical interpretation of species diversity in the forests of Dalaoling in the region of the Three Gorges. Acta Botanica Sinica (植物学报), 42, 620-627. (in Chinese with English abstract) |
[23] | Shindo C, Bernasconi G, Hardtke CS (2007) Natural genetic variation in Arabidopsis: tools, traits and prospects for evolutionary ecology. Annals of Botany, 99, 1043-1054. |
[24] | Stenøien HK, Fenster CB, Tonteri A, Savolainen O (2005) Genetic variability in natural populations of Arabidopsis thaliana in northern Europe. Molecular Ecology, 14, 137-148. |
[25] | ter Braak CJF (1997) Update Notes: CANOCO, Version 4.8. Agricultural Mathematics Group, Wageningen. |
[26] | Thompson L (1994) The spatiotemporal effects of nitrogen and litter on the population dynamics of Arabidopsis thaliana. Journal of Ecology, 82, 63-68. |
[27] | Tonsor SJ, Alonso-Blanco C, Koornneef M (2005) Gene function beyond the single trait: natural variation, gene effects, and evolutionary ecology in Arabidopsis thaliana. Plant, Cell and Environment, 28, 2-20. |
[28] | Wang BS (王伯荪), Peng SL (彭少麟) (1985) Studies on the measuring techniques of interspecific association of the lower subtropical evengreen broadleaved forest. I. The exploration and the revision on the measuring formulas of interspecific association. Acta Phytoecologica et Geobotanica Sinica (植物生态学与地植物学丛刊), 9, 274-285. (in Chinese with English abstract) |
[29] | Wang Y (王永), Zhou GL (周桂玲), Meng HM (孟红梅) (2006) Analysis on geographical elements of Brassicaceae area of Xinjiang. Journal of Xinjiang Agricultural University (新疆农业大学学报), 29, 5-9. (in Chinese with English abstract) |
[30] | Wu ZY (吴征镒) (1991) The area-types of Chinese genera of seed plants. Acta Botanica Yunnanica (云南植物研究), 13(Suppl. IV), 1-139. (in Chinese with English abstract) |
[31] | Xing SH (邢韶华), Zhao B (赵勃), Cui GF (崔国发), Wang JZ (王九中), Zheng WJ (郑万建) (2007) Inter-specific association of dominant species in Baihua Mountain meadow of Beijing. Journal of Beijing Forestry University (北京林业大学学报), 29, 46-51. (in Chinese with English abstract) |
[32] | Ye W (叶玮) (2000) The climatic characteristics and environmental patterns during Holocene in north Xinjiang. Journal of Desert Research (中国沙漠), 20, 185-191. (in Chinese with English abstract) |
[33] | Zhang WH (张文辉), Lu T (卢涛), Ma KM (马克明), Zhou JY (周建云), Liu SL (刘世梁) (2004) Analysis on the environmental and spatial factors for plant community distribution in the arid valley in the upper reach of Minjiang River. Acta Ecologica Sinica (生态学报), 24, 552-559. (in Chinese with English abstract) |
[34] | Zhang XJ (张学杰), Fan SJ (樊守金), Sun ZY (孙稚颖), Li FZ (李法曾) (2003) A summary on phytogenetic classification of Brassicaceae from China. Journal of Wuhan Botanical Research (武汉植物学研究), 21, 267-272. (in Chinese with English abstract) |
[35] | Zhang ZY (张志勇), Tao DD (陶德定), Li DZ (李德铢) (2003) An analysis of interspecific associations of Pinus squamata with other dominant woody species in community succession. Biodiversity Science (生物多样性), 11, 125-131. (in Chinese with English abstract) |
[36] | Zhu SC (朱圣潮) (2006) Community characteristics and interspecific association of the Songyang population of Isoetes sinensis. Biodiversity Science (生物多样性), 14, 258-264. (in Chinese with English abstract) |
[1] | Churan Zhang, Shengfa Li, Fengchang Li, Zhizhong Tang, Huiyan Liu, Lihong Wang, Rong Gu, Yun Deng, Zhiming Zhang, Luxiang Lin. Habitat association and community classification of woody plants in the 20 ha forest dynamics plot of subtropical semi-humid evergreen broad-leaved forest in the Jizu Mountains, Yunnan [J]. Biodiv Sci, 2024, 32(1): 23393-. |
[2] | Yun Han, Xiaofeng Chi, Jingya Yu, Xujie Ding, Shilong Chen, Faqi Zhang. A checklist of wild vascular plants in Qinghai, China [J]. Biodiv Sci, 2023, 31(9): 23280-. |
[3] | Minghui Wang, Zhaoquan Chen, Shuaifeng Li, Xiaobo Huang, Xuedong Lang, Zihan Hu, Ruiguang Shang, Wande Liu. Spatial pattern of dominant species with different seed dispersal modes in a monsoon evergreen broad-leaved forest in Pu’er, Yunnan Province [J]. Biodiv Sci, 2023, 31(9): 23147-. |
[4] | Yufei Huang, Chunyan Lu, Mingming Jia, Zili Wang, Yue Su, Yanlin Su. Plant species classification of coastal wetlands based on UAV images and object- oriented deep learning [J]. Biodiv Sci, 2023, 31(3): 22411-. |
[5] | Tao Yang, Zehao Shen, Xiaofeng Wang, Jiesheng Rao, Wencong Liu, Xi Tian, Xi Chen, Qiuyu Zhang, Qian Liu, Hengjun Qian, Yuyang Xie, Qiming Liu, Yanxiao Xu, Mengling Tu, Ziming Shan, Yukun Zhang, Bo Hou, Jianbin Li, Xiaokun Ou. Characteristics of plant community diversity in a subtropical semi-humid evergreen broad-leaved forest in the Central Yunnan Plateau [J]. Biodiv Sci, 2023, 31(11): 23238-. |
[6] | Chaodan Guo, Caiyun Zhao, Feifei Li, Junsheng Li. Comparative study of invasive and native herbs in natural forests and plantation forests: With Nonggang National Nature Reserve as an example [J]. Biodiv Sci, 2022, 30(4): 21356-. |
[7] | Shengxian Chen, Xiting Zhang, Danqi She, Zhonghua Zhang, Zhiqiang Zhou, Huimei Wang, Wenjie Wang. Effects of plant species diversity, dominant species importance, and soil properties on glomalin-related soil protein [J]. Biodiv Sci, 2022, 30(2): 21115-. |
[8] | Jiantan Zhang, Yanpeng Li, Ruyun Zhang, Yunlong Ni, Wenying Zhou, Juyu Lian, Wanhui Ye. Height-diameter models based on branch wood density classification for the south subtropical evergreen broad-leaved forest of Dinghushan [J]. Biodiv Sci, 2021, 29(4): 456-466. |
[9] | Wenjia Hu, Qiulin Zhou, Bin Chen, Shengyun Yang, Jiamei Xiao, Jianguo Du, Hao Huang, Weiwei Yu, Zhiyuan Ma. Progress in marine habitat mapping: Concept, methods, and applications [J]. Biodiv Sci, 2021, 29(4): 531-544. |
[10] | Shuaifeng Li, Xuedong Lang, Xiaobo Huang, Wande Liu, Jianrong Su, Chonghua Xu, Zhihong Li, Fandi Xu. Interspecific association of woody plant species and community stability in the Eleutharrhena macrocarpa habitat [J]. Biodiv Sci, 2020, 28(3): 350-357. |
[11] | Rui Yang,Qinyi Peng,Yue Cao,Le Zhong,Shuyu Hou,Zhicong Zhao,Cheng Huang. Transformative changes and paths toward biodiversity conservation in China [J]. Biodiv Sci, 2019, 27(9): 1032-1040. |
[12] | Kong Jiaxin, Zhang Zhaochen, Zhang Jian. Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect [J]. Biodiv Sci, 2019, 27(7): 796-812. |
[13] | Jiang Huan,Zhang Hui,Long Wenxing,Fang Yanshan,Fu Mingqi,Zhu Kongxin. Interspecific associations and niche characteristics of communities invaded by Decalobanthus boisianus [J]. Biodiv Sci, 2019, 27(4): 388-399. |
[14] | Tu Weifeng,Zhang Yang,Tang Jie,Tu Yuqin,Xin Jiajia,Ji Hongli,Zhang Nanfeng,Zhang Tao. Comparison of taxonomic morphological characteristics between Rorippa indica and R. dubia [J]. Biodiv Sci, 2019, 27(2): 168-176. |
[15] | Zhiyuan Chen, Jun Liu, Xingpeng Yang, Meng Liu, Ya Wang, Zhibin Zhang, Du Zhu. Community composition and diversity of cultivable endophytic bacteria isolated from Dongxiang wild rice [J]. Biodiv Sci, 2019, 27(12): 1320-1329. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn