Biodiv Sci ›› 2024, Vol. 32 ›› Issue (6): 23484. DOI: 10.17520/biods.2023484 cstr: 32101.14.biods.2023484
• Special Feature: Reproductive Biology • Previous Articles Next Articles
Qiaoxia Li*(), Youlong Li, Jigang Li, Chenlong Chen, Kun Sun
Received:
2023-12-23
Accepted:
2024-03-30
Online:
2024-06-20
Published:
2024-04-15
Contact:
* E-mail: liqiaoxia8024@nwnu.edu.cnQiaoxia Li, Youlong Li, Jigang Li, Chenlong Chen, Kun Sun. Effects of photoperiods on the development of chasmogamous and cleistogamous flowers in Viola monbeigii and V. dissecta[J]. Biodiv Sci, 2024, 32(6): 23484.
Fig. 1 The phenotype variation of chasmogamous (CH) and cleistogamous (CL) flowers in Viola monbeigii and V. dissecta. A‒G, V. monbeigii; A, CH flower; B, The stamens of CH flower; C, The pistil of CH flower; D, inCL flower; E, Completely CL flower; F, The stamens of CL flower; G, The pistil of CL flower. H‒N, V. dissecta; H, CH flower; I, The stamens of CH flower; J, The pistil of CH flower; K, inCL flower; L, CL flower; M, The stamens of CL flower; N, The pistil of CL flower. an, Anther; ca, Carpel; fi, Filament; pe, Petal; se, Sepal; st, Stamen; sg, Stigma; ng, Nectar gland; sc, Stamen cap; sp, Spur. Bar = 500 μm.
Fig. 2 Effects of photoperiods on flower development in Viola monbeigii and V. dissecta. Effects of photoperiods on flowering time of V. monbeigii (A) and V. dissecta (B); Effects of photoperiods on flower bud induction and CH-CL flower development of V. monbeigii (C) and V. dissecta (D). CH, Chasmogamous flower; CL, Cleistogamous flower; inCL, Intermediate cleistogamous flower. Different lower-case letters indicate significant differences (P < 0.05).
Fig. 3 The growth of Viola monbeigii and V. dissecta under different photoperiods. The growth of V. monbeigii (A) and V. dissecta (B) under 10 h and 12 h daylight. The growth of V. monbeigii (C) and V. dissecta (D) under 16 h daylight (D). Red arrows indicate CL flowers.
Fig. 4 Five development stages of CH-CL flower in Viola monbeigii. A‒J, Five development stages of CH flower; A, C, E, G, I, External morphology of 5 development stages of CH flower; B, D, F, H, J, Anatomical structure of 5 development stages of CH flower. K‒T, Five development stages of CL flower; K, M, O, Q, S, External morphology of five development stages of CL flower; L, N, P, R, T, Anatomical structure of 5 development stages of CL flower. se, Sepal; pe, Petal; sp, Spur; st, Stamen; fi, Filament; ng, Nectar gland; ca, Carpel. Bar = 500 μm.
Fig. 5 Five development stages of CH and CL flowers in Viola dissecta. A‒J, Five development stages of CH flower; A, C, E, G, I, External morphology of 5 development stages of CH flower; B, D, F, H, J, Anatomical structure of 5 development stages of CH flower. K‒T, Five development stages of CL flower; K, M, O, Q, S, External morphology of five development stages of CL flower; L, N, P, R, T, Anatomical structure of 5 development stages of CL flower. Ba, Bract; se, Sepal; pe, Petal; sp, Spur; st, Stamen; fi, Filament; ng, Nectar gland; ca, Carpel. Bar = 500 μm.
[1] |
Ansaldi BH, Weber JJ, Goodwillie C, Franks SJ (2019) Low levels of inbreeding depression and enhanced fitness in cleistogamous progeny in the annual plant Triodanis perfoliata. Botany, 97, 405-415.
DOI |
[2] | Cao DL, Zhang XJ, Xie SQ, Fan SJ, Qu XJ (2022) Application of chloroplast genome in the identifcation of Traditional Chinese Medicine Viola philippica. BMC Genomics, 23, 540. |
[3] | Culley TM (2002) Reproductive biology and delayed selfing in Viola pubescens (Violaceae), an understory herb with chasmogamous and cleistogamous flowers. International Journal of Plant Products, 163, 113-122. |
[4] | Culley TM, Klooster MR (2007) The cleistogamous breeding system: A review of its frequency, evolution, and ecology in angiosperms. Botany Review, 73, 1-30. |
[5] |
Furukawa T, Itagaki T, Murakoshi N, Sakai S (2020) Inherited dimorphism in cleistogamous flower production in Portulaca oleracea: A comparison of 16 populations growing under different environmental conditions. Annals of Botany, 125, 423-431.
DOI PMID |
[6] | Ginwal HS (2010) Inbreeding depression in Eucalyptus tereticornis Sm. due to cleistogamous flowering. New Forest, 40, 205-212. |
[7] | Koontz SM, Weekley CW, Crate SJH, Menges ES (2017) Patterns of chasmogamy and cleistogamy, a mixed-mating strategy in an endangered perennial. AoB Plants, 9, plx059. |
[8] | Kuhn M (1867) Einige Bermerkungen über Vandellia und den Blüten Dimorphismus. Botanical Zeitung, 25, 65-67. |
[9] | Le Corff J (1993) Effects of light and nutrient availability on chasmogamy and cleistogamy in an understory tropical herb, Calathea micans (Marantaceae). American Journal of Botany, 80, 1392-1399. |
[10] | Li QX, Huo QD, Wang J, Zhao J, Sun K, He CY (2016) Expression of B-class MADS-box genes in response to variations in photoperiod is associated with chasmogamous and cleistogamous flower development in Viola philippica. BMC Plant Biology, 6, 151. |
[11] | Li QX, Li JG, Zhang L, Pan CC, Yang N, Sun K, He CY (2021) Gibberellins are required for dimorphic flower development in Viola philippica. Plant Science, 303, 110749. |
[12] | Li QX, Li KP, Zhang ZR, Li JG, Wang B, Zhang ZM, Zhu YY, Pan CC, Sun K, He CY (2022) Transcriptomic comparison sheds new light on regulatory networks for dimorphic flower development in response to photoperiod in Viola prionantha. BMC Plant Biology, 22, 336. |
[13] |
Marcussen T, Blaxland K, Windham MD, Haskins KE, Armstrong F (2011) Establishing the phylogenetic origin, history, and age of the narrow endemic Viola guadalupensis (Violaceae). American Journal of Botany, 98, 1978-1988.
DOI PMID |
[14] | Masuda M, Yahara T, Maki M (2004) Evolution of floral dimorphism in a cleistogamous annual, Impatiens noli-tangere L. occurring under different environmental conditions. Ecological Research, 19, 571-580. |
[15] | Mayers AM, Lord EM (1983) Comparative flower development in the cleistogamous species Viola odorata. I. A growth rate study. American Journal of Botany, 70, 1548-1555. |
[16] |
Parra-Tabla V, Munguía-Rosas M, Campos-Navarrete MJ, Ramos-Zapata JA (2015) Effects of flower dimorphism and light environment on arbuscular mycorrhizal colonisation in a cleistogamous herb. Plant Biology, 17, 163-168.
DOI PMID |
[17] | Seguí J, Lázaro A, Traveset A, Salgado-Luarte C, Gianoli E (2018) Phenotypic and reproductive responses of an Andean violet to environmental variation across an elevational gradient. Alpine Botany, 128, 59-69. |
[18] |
Sternberger AL, Bowman MJ, Kruse CPS, Childs KL, Ballard HE, Wyatt SE (2019) Transcriptomics identifies modules of differentially expressed genes and novel cyclotides in Viola pubescens. Frontiers in Plant Science, 10, 156.
DOI PMID |
[19] | Sternberger AL, Ruhil AVS, Rosenthal DM, Ballard HE, Wyatt SE (2020) Environmental impact on the temporal production of chasmogamous and cleistogamous flowers in the mixed breeding system of Viola pubescens. PLoS ONE, 15, e0229726. |
[20] | Sun K, Yang YL, Wang QR, Xing H (1999) Study on wild ornamental resources of Viola from Gansu Province in early spring. Journal of Northwest Normal University (Natural Science), 35, 83-86. (in Chinese with English abstract) |
[孙坤, 杨永利, 王庆瑞, 幸华 (1999) 甘肃堇菜属野生早春观赏植物资源及其开发利用. 西北师范大学学报(自然科学版), 35, 83-86.] | |
[21] | Uphof JCT (1938) Cleistogamic flowers. Botanical Review, 4, 21-49. |
[22] | Wang Y, Ballard HE, McNally RR, Wyatt SE (2013) Gibberellins are involved but not sufficient to trigger a shift between chasmogamous-cleistogamous flower types in Viola pubescens. Journal of the Torrey Botanical Society, 140, 1-8. |
[23] | Zhang LH, Sun Q, Zhao JM, Zhang YW (2018) Plasticity in the reproductive strategy of a clonal cleistogamous species, Pseudostellaria heterophylla. Plant Ecology, 219, 1493-1502. |
[24] | Zhang J, Wu F, Yan Q, John UP, Cao M, Xu P, Zhang Z, Ma T, Zong X, Li J, Liu R, Zhang Y, Zhao Y, Kanzana G, Lv Y, Nan Z, Spangenberg G, Wang Y (2021) The genome of Cleistogenes songorica provides a blueprint for functional dissection of dimorphic flower differentiation and drought adaptability. Plant Biotechnology Journal, 19, 532-547. |
[25] | Zhu M, Wang Z, Yang Y, Wang Z, Mu W, Liu J (2023) Multi-omics reveal differentiation and maintenance of dimorphic flowers in an alpine plant on the Qinghai-Tibet Plateau. Molecular Ecology, 32, 1411-1424. |
[1] | Xiaofeng Yang, Xiaomeng Li, Wanjin Liao. Advances in the genetic regulating pathways of plant flowering time [J]. Biodiv Sci, 2021, 29(6): 825-842. |
[2] | Hui Zhang, Qian Liu, Xiaolei Huang. Mechanisms regulating caste and behavior differentiation in social insects [J]. Biodiv Sci, 2021, 29(4): 507-516. |
[3] | Zhihua Zhou, Xiaohua Jin. Analysis and suggestions on policies and regulations on conservation and management of wild plants in China [J]. Biodiv Sci, 2021, 29(12): 1583-1590. |
[4] | Xiangcheng Mi, Jing Guo, Zhanqing Hao, Zongqiang Xie, Ke Guo, Keping Ma. Chinese forest biodiversity monitoring: scientific foundations and strategic planning [J]. Biodiv Sci, 2016, 24(11): 1203-1219. |
[5] | Daqing Zhou, Chunfa Zhou, Wenhong Deng. Influence of potential cavity resources on secondary cavity-nesters and breeding bird community composition [J]. Biodiv Sci, 2009, 17(5): 448-457. |
[6] | SANG Wei-Guo, MA Ke-Ping, WEI Wei. Management mechanism of biotechnology safety in China and abroad [J]. Biodiv Sci, 2000, 08(4): 413-421. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn