Biodiv Sci ›› 2022, Vol. 30 ›› Issue (12): 22353. DOI: 10.17520/biods.2022353
Special Issue: 土壤生物与土壤健康
• Reviews • Previous Articles Next Articles
Baomin Yao1,2, Qing Zeng1,2, Limei Zhang1,2,*()
Received:
2022-06-28
Accepted:
2022-08-30
Online:
2022-12-20
Published:
2022-11-11
Contact:
*E-mail: zhanglm@rcees.ac.cn
Baomin Yao, Qing Zeng, Limei Zhang. Research progress on the biodiversity and ecological function of soil protists[J]. Biodiv Sci, 2022, 30(12): 22353.
分类 Classification | 主要类群 Main groups | 主要类群特征 Main groups characteristics |
---|---|---|
异养型原生生物 Heterotrophy protists | ||
异养吞噬型原生生物 Heterotrophic phagotrophic protists | | 变形虫: 大多单细胞; 无永久运动器, 靠伪足运动。 Amoeba: Mostly unicellular; without permanent motile organelles, and rely on pseudopodia for movement. |
| 纤毛虫: 单细胞, 具有双核; 靠纤毛运动器运动。 Ciliophora: Unicellular, dual-nucleated; moved by cilia. | |
| 鞭毛虫: 单细胞; 鞭毛既是运动器也是感应器, 一般1-4个, 大多2个。 Flagellate: Unicellular; flagella are both motor organs and sensing organs, generally 1-4, mostly 2. | |
异养寄生型原生生物 Heterotrophic parasitic protists | | 簇虫: 寄生于各类无脊椎动物, 包括节肢动物和环节动物的消化道内。 Gregarine: Parasitic in the digestive tract of various invertebrates, including arthropods and annelids. |
| 孢子虫: 单细胞; 不移动; 孢子的顶端包含一个复杂的细胞器复合体。 Apicomplexa: Unicellular; don’t move; the apex of the spore contains a complex organelle complex. | |
异养腐生型 Heterotrophic saprophytic protists | | 卵菌: 能有限运动, 多为植物专性腐生菌, 有菌丝体, 既可进行有性生殖也可以无性生殖。 Oomycetes: Capable of limited movement, most of them are plant obligate saprophytes with mycelium, which can reproduce both sexually and asexually. |
| 黏菌: 能有限运动, 沿着多核原生质团流动, 运动摄食方式类似变形虫。 Eumycetozoa: It has limited movement, flows along multinucleated protoplasm, and feeds in a similar way to amoeba. | |
自养型原生生物 Photoautotrophy protist | ||
光合自养型原生生物 Photoautotrophy protists | | 硅藻: 单细胞; 特有的二氧化硅双层外壳, 含叶绿素a和c。 Diatom: Unicellular; characteristic silica double-layered shell, contains chlorophyll a and c. |
| 海藻: 多细胞; 含叶绿素a和c。 Trebouxiophyceae: Multicellular; containing chlorophyll a and c. | |
| 绿藻: 单细胞或多细胞; 含叶绿素a和b。 Green algae: Unicellular or multicellular; containing chlorophyll a and b. |
Table 1 The main groups of soil protists and their characteristics (modified from Geisen et al, 2018)
分类 Classification | 主要类群 Main groups | 主要类群特征 Main groups characteristics |
---|---|---|
异养型原生生物 Heterotrophy protists | ||
异养吞噬型原生生物 Heterotrophic phagotrophic protists | | 变形虫: 大多单细胞; 无永久运动器, 靠伪足运动。 Amoeba: Mostly unicellular; without permanent motile organelles, and rely on pseudopodia for movement. |
| 纤毛虫: 单细胞, 具有双核; 靠纤毛运动器运动。 Ciliophora: Unicellular, dual-nucleated; moved by cilia. | |
| 鞭毛虫: 单细胞; 鞭毛既是运动器也是感应器, 一般1-4个, 大多2个。 Flagellate: Unicellular; flagella are both motor organs and sensing organs, generally 1-4, mostly 2. | |
异养寄生型原生生物 Heterotrophic parasitic protists | | 簇虫: 寄生于各类无脊椎动物, 包括节肢动物和环节动物的消化道内。 Gregarine: Parasitic in the digestive tract of various invertebrates, including arthropods and annelids. |
| 孢子虫: 单细胞; 不移动; 孢子的顶端包含一个复杂的细胞器复合体。 Apicomplexa: Unicellular; don’t move; the apex of the spore contains a complex organelle complex. | |
异养腐生型 Heterotrophic saprophytic protists | | 卵菌: 能有限运动, 多为植物专性腐生菌, 有菌丝体, 既可进行有性生殖也可以无性生殖。 Oomycetes: Capable of limited movement, most of them are plant obligate saprophytes with mycelium, which can reproduce both sexually and asexually. |
| 黏菌: 能有限运动, 沿着多核原生质团流动, 运动摄食方式类似变形虫。 Eumycetozoa: It has limited movement, flows along multinucleated protoplasm, and feeds in a similar way to amoeba. | |
自养型原生生物 Photoautotrophy protist | ||
光合自养型原生生物 Photoautotrophy protists | | 硅藻: 单细胞; 特有的二氧化硅双层外壳, 含叶绿素a和c。 Diatom: Unicellular; characteristic silica double-layered shell, contains chlorophyll a and c. |
| 海藻: 多细胞; 含叶绿素a和c。 Trebouxiophyceae: Multicellular; containing chlorophyll a and c. | |
| 绿藻: 单细胞或多细胞; 含叶绿素a和b。 Green algae: Unicellular or multicellular; containing chlorophyll a and b. |
[1] |
Acosta-Mercado D, Lynn DH (2004) Soil ciliate species richness and abundance associated with the rhizosphere of different subtropical plant species. The Journal of Eukaryotic Microbiology, 51, 582-588.
DOI URL |
[2] |
Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James TY, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. The Journal of Eukaryotic Microbiology, 52, 399-451.
DOI URL |
[3] | Amaroli A (2015) The effects of temperature variation on the sensitivity to pesticides: A study on the slime mould Dictyostelium discoideum (Protozoa). Microbial Ecology, 70, 244-254. |
[4] |
Antonelli M, Wetzel CE, Ector L, Teuling AJ, Pfister L (2017) On the potential for terrestrial diatom communities and diatom indices to identify anthropic disturbance in soils. Ecological Indicators, 75, 73-81.
DOI URL |
[5] |
Bamforth SS (1980) Terrestrial protozoa. The Journal of Protozoology, 27, 33-36.
DOI URL |
[6] |
Bates ST, Clemente JC, Flores GE, Walters WA, Parfrey LW, Knight R, Fierer N (2013) Global biogeography of highly diverse protistan communities in soil. The ISME Journal, 7, 652-659.
DOI URL |
[7] |
Beaver JR, Crisman TL (1989) The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology, 17, 111-136.
DOI PMID |
[8] | Bernasconi SM, Bauder A, Bourdon B, Brunner I, Bünemann E, Chris I, Derungs N, Edwards P, Farinotti D, Frey B, Frossard E, Furrer G, Gierga M, Göransson H, Gülland K, Hagedorn F, Hajdas I, Hindshaw R, Ivy-Ochs S, Jansa J, Jonas T, Kiczka M, Kretzschmar R, Lemarchand E, Luster J, Magnusson J, Mitchell EAD, Venterink HO, Plötze M, Reynolds B, Smittenberg RH, Stähli M, Tamburini F, Tipper ET, Wacker L, Welc M, Wiederhold JG, Zeyer J, Zimmermann S, Zumsteg A (2011) Chemical and biological gradients along the damma glacier soil chronosequence, Switzerland. Vadose Zone Journal, 10, 867-883. |
[9] | Bonkowski M, Brandt F (2002) Do soil protozoa enhance plant growth by hormonal effects? Soil Biology and Biochemistry, 34, 1709-1715. |
[10] |
Brazelton JN, Pfeufer EE, Sweat TA, Gardener BBM, Coenen C (2008) 2,4-Diacetylphloroglucinol alters plant root development. Molecular Plant-Microbe Interactions, 21, 1349-1358.
DOI PMID |
[11] |
Campbell CD, Warren A, Cameron CM, Hope SJ (1997) Direct toxicity assessment of two soils amended with sewage sludge contaminated with heavy metals using a protozoan (Colpoda steinii) bioassay. Chemosphere, 34, 501-514.
DOI URL |
[12] |
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ (2017) Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nature Reviews Microbiology, 15, 6-20.
DOI PMID |
[13] |
Cavender JC, Landolt JC, Romeralo M, Perrigo A, Vadell EM, Stephenson SL (2016) New species of Polysphondylium from Madagascar. Mycologia, 108, 80-109.
DOI PMID |
[14] |
Chakraborty S, Waecup JH (1984) Populations of mycophagous and other amoebae in take-all suppressive and non-suppressive soils. Soil Biology and Biochemistry, 16, 197-199.
DOI URL |
[15] | Chen SF, Xu RL (2003) Advances of the studies on the soil protozoa. Acta Scientiarum Naturalium Universitatis Sunyatseni, 42(z1), 187-194. (in Chinese with English abstract) |
[ 陈素芬, 徐润林 (2003) 土壤原生生物的研究进展. 中山大学学报(自然科学版), 42(z1), 187-194.] | |
[16] |
Corsaro D, Walochnik J, Venditti D, Steinmann J, Müller KD, Michel R (2014) Microsporidia-like parasites of amoebae belong to the early fungal lineage Rozellomycota. Parasitology Research, 113, 1909-1918.
DOI PMID |
[17] |
Delgado-Baquerizo M, Oliverio AM, Brewer TE, Benavent-González A, Eldridge DJ, Bardgett RD, Maestre FT, Singh BK, Fierer N (2018) A global atlas of the dominant bacteria found in soil. Science, 359, 320-325.
DOI PMID |
[18] |
Díaz S, Martín-González A,Carlos Gutiérrez J (2006) Evaluation of heavy metal acute toxicity and bioaccumulation in soil ciliated protozoa. Environment International, 32, 711-717.
PMID |
[19] |
Dunthorn M, Lipps JH, Dolan JR, Saab MAA, Aescht E, Bachy C, De Cao MSB, Berger H, Bourland WA, Choi JK, Clamp J, Doherty M, Gao F, Gentekaki E, Gong J, Hu X, Huang J, Kamiyama T, Johnson MD, Kammerlander B, Kim SY, Kim YO, La Terza A, Laval-Peuto M, Lipscomb D, Lobban CS, Long hongan, Luporini P, Lynn DH, Macek M, Mansergh RI, Martín-Cereceda M, McManus GG, Montagnes DJS, Ong’ondo GO, Patterson DJ, Pérez-Uz B, Quintela-Alonso P, Safi LSL, Santoferrara LF, Sonntag B, Song WB, Stoeck T, Stoecker DK, Strüder-Kypke MC, Trautmann I, Utz LRP, Vallesi A, Vd’ačný P, Warren A, Weisse T, Wickham SA, Yi ZZ, Zhang WC, Zhan ZF, Zufall R, Agatha S (2015) Ciliates—Protists with complex morphologies and ambiguous early fossil record. Marine Micropaleontology, 119, 1-6.
DOI URL |
[20] |
Dupont AÖC, Griffiths RI, Bell T, Bass D (2016) Differences in soil micro-eukaryotic communities over soil pH gradients are strongly driven by parasites and saprotrophs. Environmental Microbiology, 18, 2010-2024.
DOI PMID |
[21] |
Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S (2018) Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell, 175, 973-983.
DOI URL |
[22] |
Falkowski PG (2002) The ocean’s invisible forest. Scientific American, 287, 54-61.
PMID |
[23] |
Fenchel T, Finaly BJ (1990) Anaerobic free-living protozoa: Growth efficiencies and the structure of anaeorobic communities. FEMS Microbiology Letters, 74, 269-275.
DOI URL |
[24] | Feng WS, Yang J, Ye ZH, Miao W, Yu YH, Huang MH, Shen YF (2004) Soil protozoa in wetland treatment system of Pb-Zn mine in Fankou. Chinese Journal of Zoology, 39, 2-11. (in Chinese with English abstract) |
[ 冯伟松, 杨军, 叶志鸿, 缪炜, 余育和, 黄铭洪, 沈韫芬 (2004) 凡口铅锌矿湿地处理系统的土壤原生动物. 动物学杂志, 39, 2-11.] | |
[25] |
Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A (2015) When the lights go out: The evolutionary fate of free-living colorless green algae. New Phytologist, 206, 972-982.
PMID |
[26] |
Foissner W (1998) An updated compilation of world soil ciliates (Protozoa, Ciliophora), with ecological notes, new records, and descriptions of new species. European Journal of Protistology, 34, 195-235.
DOI URL |
[27] | Gao YC, Zhu WS, Chen WX (2000) Structure of the protozoan community in soil and its ecological functions. Chinese Journal of Ecology, 19, 59-65. (in Chinese with English abstract) |
[ 高云超, 朱文珊, 陈文新 (2000) 土壤原生动物群落及其生态功能. 生态学杂志, 19, 59-65.] | |
[28] |
Gao Z, Karlsson I, Geisen S, Kowalchuk G, Jousset A (2019) Protists: Puppet masters of the rhizosphere microbiome. Trends in Plant Science, 24, 165-176.
DOI PMID |
[29] |
Geisen S, Cornelia BJR (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia, 57, 205-213.
DOI URL |
[30] | Geisen S, Lara E, Mitchell EAD, Völcker E, Krashevska V (2020) Soil protist life matters! Soil Organisms, 9, 189-196. |
[31] |
Geisen S, Mitchell EAD, Adl S, Bonkowski M, Dunthorn M, Ekelund F, Fernández LD, Jousset A, Krashevska V, Singer D, Spiegel FW, Walochnik J, Lara E (2018) Soil protists: A fertile frontier in soil biology research. FEMS Microbiology Reviews, 42, 293-323.
DOI PMID |
[32] |
Geisen S, Mitchell EAD, Wilkinson DM, Adl S, Bonkowski M, Brown MW, Fiore-Donno AM, Heger TJ, Jassey VEJ, Krashevska V, Lahr DJG, Marcisz K, Mulot M, Payne R, Singer D, Anderson OR, Charman DJ, Ekelund F, Griffiths BS, Rønn R, Smirnov A, Bass D, Belbahri L, Berney C, Blandenier Q, Chatzinotas A, Clarholm M, Dunthorn M, Feest A, Fernández LD, Foissner W, Fournier B, Gentekaki E, Hájek M, Helder J, Jousset A, Koller R, Kumar S, La Terza A, Lamentowicz M, Mazei YR, Santos SS, Seppey CVW, Spiegel FW, Walochnik J, Winding A, Lara E (2017) Soil protistology rebooted: 30 fundamental questions to start with. Soil Biology and Biochemistry, 111, 94-103.
DOI URL |
[33] |
Hu H, Li SJ, Wang R, Wu X, Li YJ, Zhao JN, Li G, Xiu WM (2022) Effects of nitrogen fertilization combined with straw incorporation on soil protist community. Acta Pedologica Sinica, doi: 10.11766/trxb202111090520. (in Chinese with English abstract)
DOI |
[ 胡菏, 李胜君, 王蕊, 吴宪, 李玉洁, 赵建宁, 李刚, 修伟明 (2022) 氮肥配施秸秆对土壤原生生物群落影响. 土壤学报, doi: 10.11766/trxb202111090520.]
DOI |
|
[34] |
Jassey VEJ, Lamentowicz Ł, Robroek BJM, Gąbka M, Rusińska A, Lamentowicz M (2014) Plant functional diversity drives niche-size-structure of dominant microbial consumers along a poor to extremely rich fen gradient. Journal of Ecology, 102, 1150-1162.
DOI URL |
[35] |
Kemmitt S, Wright D, Goulding K, Jones D (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38, 898-911.
DOI URL |
[36] |
Krashevska V, Sandmann D, Maraun M, Scheu S (2014) Moderate changes in nutrient input alter tropical microbial and protist communities and belowground linkages. The ISME Journal, 8, 1126-1134.
DOI URL |
[37] |
Krome K, Rosenberg K, Dickler C, Kreuzer K, Ludwig-Müller J, Ullrich-Eberius C, Scheu S, Bonkowski M (2010) Soil bacteria and protozoa affect root branching via effects on the auxin and cytokinin balance in plants. Plant and Soil, 328, 191-201.
DOI URL |
[38] |
Kuikman PJ,Van Veen JA (1989) The impact of protozoa on the availability of bacterial nitrogen to plants. Biology and Fertility of Soils, 8, 13-18.
DOI URL |
[39] |
Lara E, Roussel-Delif L, Fournier B, Wilkinson DM, Mitchell EAD (2016) Soil microorganisms behave like macroscopic organisms: Patterns in the global distribution of soil euglyphid testate amoebae. Journal of Biogeography, 43, 520-532.
DOI URL |
[40] |
Ledeganck P (2003) Plant functional group diversity promotes soil protist diversity. Protist, 154, 239-249.
PMID |
[41] | Mitchell DR (2007) The evolution of eukaryotic cilia and flagella as motile and sensory organelles. In: Eukaryotic Membranes and Cytoskeleton: Origins and Evolution (ed. Jékely G), pp.130-140. Springer, New York. |
[42] |
Mitchell EAD (2004) Response of testate amoebae (protozoa) to N and P fertilization in an Arctic wet sedge tundra. Arctic, Antarctic, and Alpine Research, 36, 78-83.
DOI URL |
[43] |
Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature, 409, 607-610.
DOI URL |
[44] |
Neuhauser S, Kirchmair M, Bulman S, Bass D (2014) Cross-kingdom host shifts of phytomyxid parasites. BMC Evolutionary Biology, 14, 33.
DOI PMID |
[45] | Ning YZ, Shen YF (1998) Soil protozoa in typical regions of China. II. Ecological study. Acta Zoologica Sinica, 31, 24-29. (in Chinese with English abstract) |
[ 宁应之, 沈韫芬 (1998) 中国典型地带土壤原生动物. II. 生态学研究. 动物学报, 31, 24-29.] | |
[46] | Not F, Del Campo J, Balagué V, De Vargas C, Massana R (2009) New insights into the diversity of marine picoeukaryotes. PLoS ONE, 4, e7143. |
[47] | Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N (2020) The global-scale distributions of soil protists and their contributions to belowground systems. Science Advances, 6, eaax8787. |
[48] |
Opperman MH, Wood M, Harris PJ (1989) Changes in microbial populations following the application of cattle slurry to soil at two temperatures. Soil Biology and Biochemistry, 21, 263-268.
DOI URL |
[49] |
Peng JJ, Oladele O, Song XT, Ju XT, Jia ZJ, Hu HW, Liu XJ, Bei SK, Ge AH, Zhang LM, Gui ZL (2022) Opportunities and approaches for manipulating soil-plant microbiomes for effective crop nitrogen use in agroecosystems. Frontiers of Agricultural Science and Engineering, 9, 333-343.
DOI |
[50] |
Saleem M, Fetzer I, Dormann CF, Harms H, Chatzinotas A (2012) Predator richness increases the effect of prey diversity on prey yield. Nature Communications, 3, 1305.
DOI PMID |
[51] |
Scherber C, Eisenhauer N, Weisser WW, Schmid B, Voigt W, Fischer M, Schulze ED, Roscher C, Weigelt A, Allan E, Beßler H, Bonkowski M, Buchmann N, Buscot F, Clement LW, Ebeling A, Engels C, Halle S, Kertscher I, Klein AM, Koller R, König S, Kowalski E, Kummer V, Kuu A, Lange M, Lauterbach D, Middelhoff C, Migunova VD, Milcu A, Müller R, Partsch S, Petermann JS, Renker C, Rottstock T, Sabais A, Scheu S, Schumacher J, Temperton VM, Tscharntke T (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature, 468, 553-556.
DOI URL |
[52] |
Schwarz MVJ, Frenzel P (2003) Population dynamics and ecology of ciliates (Protozoa, Ciliophora) in an anoxic rice field soil. Biology and Fertility of Soils, 38, 245-252.
DOI URL |
[53] |
Seppey CVW, Singer D, Dumack K, Fournier B, Belbahri L, Mitchell EAD, Lara E (2017) Distribution patterns of soil microbial eukaryotes suggests widespread algivory by phagotrophic protists as an alternative pathway for nutrient cycling. Soil Biology and Biochemistry, 112, 68-76.
DOI URL |
[54] |
Singh BN (1949) The effect of artificial fertilizers and dung on the members of amoebae in Rothamsted soils. Journal of General Microbiology, 3, 204-210.
PMID |
[55] |
Smirnov AV, Chao E, Nassonova ES, Cavalier-Smith T (2011) A revised classification of naked lobose amoebae (Amoebozoa: Lobosa). Protist, 162, 545-570.
DOI PMID |
[56] | Song WB (2007) Protobiology. Qingdao Ocean University Press, Qingdao. (in Chinese) |
[ 宋微波 (2007) 原生生物学. 青岛海洋大学出版社, 青岛.] | |
[57] |
Stapleton LM, Crout NMJ, Säwström C, Marshall WA, Poulton PR, Tye AM, Laybourn-Parry J (2005) Microbial carbon dynamics in nitrogen amended Arctic tundra soil: Measurement and model testing. Soil Biology and Biochemistry, 37, 2088-2098.
DOI URL |
[58] |
Stefan G, Cornelia B, Jörg R, Michael B (2014) Soil water availability strongly alters the community composition of soil protists. Pedobiologia, 57, 205-213.
DOI URL |
[59] | Stefanowicz A (2006) The biolog plates technique as a tool in ecological studies of microbial communities. Polish Journal of Environmental Studies, 15, 669-676. |
[60] | Sun X, Li Q, Yao HF, Liu MQ, Wu DH, Zhu D, Zhu YG (2021) Soil fauna and soil health. Acta Pedologica Sinica, 58, 1073-1083. (in Chinese with English abstract) |
[ 孙新, 李琪, 姚海凤, 刘满强, 吴东辉, 朱冬, 朱永官 (2021) 土壤动物与土壤健康. 土壤学报, 58, 1073-1083.] | |
[61] | Sun YX, Lin QM, Zhao XR, Xing LJ, Wang YS (2003) Distribution of four protozoan genera in rhizosphere and non-rhizosphere soil of corn. Chinese Agricultural Sciences, 36, 1399-1402. (in Chinese with English abstract) |
[ 孙焱鑫, 林启美, 赵小蓉, 邢礼军, 王幼珊 (2003) 玉米根际与非根际土壤中4种原生动物分布特征. 中国农业科学, 36, 1399-1402.] | |
[62] | Tian JY (2012) Inpact factor of growth and distribution of protozoa. Natural Sciences Journal of Harbin Normal University, 28(4), 61-63, 70. (in Chinese with English abstract) |
[ 田佳玉 (2012) 原生动物生长和分布的影响因子. 哈尔滨师范大学自然科学学报, 28(4), 61-63, 70.] | |
[63] | Wei Z, Song YQ, Xiong W, Xu YC, Shen QR (2021) Soil protozoa: Research methods and roles in the biocontrol of soil-borne diseases. Acta Pedologica Sinica, 58, 14-22. (in Chinese with English abstract) |
[ 韦中, 宋宇琦, 熊武, 徐阳春, 沈其荣 (2021) 土壤原生动物——研究方法及其在土传病害防控中的作用. 土壤学报, 58, 14-22.] | |
[64] |
Woods LE, Cole CV, Elliott RV, Anderson, Coleman DC (1982) Nitrogen transformations in soil as affected by bacterial-microfaunal interactions. Soil Biology and Biochemistry, 14, 93-98.
DOI URL |
[65] |
Wu LW, Zhang Y, Guo X, Ning DL, Zhou XS, Feng JJ, Yuan MM, Liu S, Guo JJ, Gao ZP, Ma J, Kuang JL, Jian SY, Han S, Yang ZF, Ouyang Y, Fu Y, Xiao NJ, Liu XD, Wu LY, Zhou AF, Yang YF, Tiedje JM, Zhou JZ (2022) Reduction of microbial diversity in grassland soil is driven by long- term climate warming. Nature Microbiology, 7, 1054-1062.
DOI URL |
[66] |
Xiong W, Song Y, Yang K, Gu Y, Wei Z, Kowalchuk GA, Xu Y, Jousset A, Shen Q, Geisen S (2020) Rhizosphere protists are key determinants of plant health. Microbiome, 8, 27.
DOI PMID |
[67] |
Yang YH, Yao J, Hu S, Qi Y (2000) Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: A study with RAPD marker. Microbial Ecology, 39, 72-79.
PMID |
[68] | Yang ZC, Wang ZH, Zhang ZH (2010) Monitoring of heavy metal pollution by moss-dwelling protozoa communities in a Hg-Tl mineralized area. Acta Scientiae Circumstantiae, 30, 1486-1491. (in Chinese with English abstract) |
[ 杨再超, 王智慧, 张朝晖 (2010) 藓类附生原生动物群落对汞铊矿重金属污染的监测. 环境科学学报, 30, 1486-1491.] | |
[69] |
Zancan S, Trevisan R, Paoletti MG (2006) Soil algae composition under different agro-ecosystems in North-Eastern Italy. Agriculture, Ecosystems & Environment, 112, 1-12.
DOI URL |
[70] |
Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: A review. Biology and Fertility of Soils, 29, 111-129.
DOI URL |
[71] |
Zhao ZB, He JZ, Geisen S, Han LL, Wang JT, Shen JP, Wei WX, Fang YT, Li PP, Zhang LM (2019) Protist communities are more sensitive to nitrogen fertilization than other microorganisms in diverse agricultural soils. Microbiome, 7, 33.
DOI URL |
[72] | Zhou KX, Xu MQ, Cao H, Ning YZ (2003) Soil protozoa as monitors of the environment. Chinese Journal of Zoology, 38, 80-84. (in Chinese with English abstract) |
[ 周可新, 许木启, 曹宏, 宁应之 (2003) 土壤原生动物在环境监测中的应用. 动物学杂志, 38, 80-84.] | |
[73] | Zhu YG, Peng JJ, Wei Z, Shen QR, Zhang FS (2021) Linking the soil microbiome to soil health. Scientia Sinica Vitae, 51, 1-11. (in Chinese with English abstract) |
[ 朱永官, 彭静静, 韦中, 沈其荣, 张福锁 (2021) 土壤微生物组与土壤健康. 中国科学: 生命科学, 51, 1-11.] | |
[74] | Zhu YG, Chen BD, Fu W (2022) Research frontiers in soil ecology. Science & Technology Review, 40, 25-31. (in Chinese with English abstract) |
[ 朱永官, 陈保冬, 付伟 (2022) 土壤生态学研究前沿. 科技导报, 40, 25-31.] |
[1] | Yongjie Niu, Quanhui Ma, Yu Zhu, Hairong Liu, Jiale Lü, Yuanchun Zou, Ming Jiang. Research progress on the impact of nitrogen deposition on grassland insect diversity [J]. Biodiv Sci, 2023, 31(9): 23130-. |
[2] | Haifeng Yao, Saichao Zhang, Huayuan Shangguan, Zhipeng Li, Xin Sun. Effects of urbanization on soil fauna community structure and diversity [J]. Biodiv Sci, 2022, 30(12): 22547-. |
[3] | Huiling Hu, Zhiyuan Yao, Shibin Gao, Bo Zhu. Nematode response to long-term fertilization in purple soil [J]. Biodiv Sci, 2022, 30(12): 22189-. |
[4] | Wenjia Wu, Ye Yuan, Jing Zhang, Lixia Zhou, Jun Wang, Hai Ren, Zhanfeng Liu. Dynamics of soil nematode community during the succession of forests in southern subtropical China [J]. Biodiv Sci, 2022, 30(12): 22205-. |
[5] | Bo Song,Linlin Chen,Lang Yan,Shaoyu Jiang,Chunyun Liu,Bingjun Li,Baoquan Li. Food web characteristics of seagrass beds in intertidal of Dongying and Yantai, Shandong Province [J]. Biodiv Sci, 2019, 27(9): 984-992. |
[6] | Guanghua Xu,Xiaoyu Li,Chunhua Shi. The complexity-stability relationship: Progress in mathematical models [J]. Biodiv Sci, 2019, 27(12): 1364-1378. |
[7] | Jingqi Sun, Quan Chen, Hangyu Li, Yanfen Chang, Hede Gong, Liang Song, Huazheng Lu. Progress on the clonality of epiphytic ferns [J]. Biodiv Sci, 2019, 27(11): 1184-1195. |
[8] | Jiliang Liu, Fengrui Li. Effects of oasis expansion regimes on ecosystem function and dominant functional groups of soil biota in arid regions [J]. Biodiv Sci, 2018, 26(10): 1116-1126. |
[9] | Mengru Wang, Shenglei Fu, Haixiang Xu, Meina Wang, Leilei Shi. Ecological functions of millipedes in the terrestrial ecosystem [J]. Biodiv Sci, 2018, 26(10): 1051-1059. |
[10] | Jianji Liao, Xinqing Zheng, Jianguo Du*, Bin Chen, Zhiyuan Ma, Wenjia Hu. Biodiversity and trophic level characteristics of fishes captured by set nets in Tong’an Bay, Xiamen [J]. Biodiv Sci, 2014, 22(5): 624-629. |
[11] | Jianguo Du, Guanqiong Ye, Bin Chen, Xinqing Zheng. Changes in the marine trophic index of Chinese marine area [J]. Biodiv Sci, 2014, 22(4): 532-538. |
[12] | Sikai Wang,Qiang Sheng,Tianjiang Chu,Bo Li,Jiakuan Chen,Jihua Wu. Impact of invasive plants on food webs and pathways [J]. Biodiv Sci, 2013, 21(3): 249-259. |
[13] | Lixia Zhou, Mingmao Ding. Soil microbial characteristics as bioindicators of soil health [J]. Biodiv Sci, 2007, 15(2): 162-171. |
[14] | Yuanhu Shao, Shenglei Fu. The diversity and functions of soil nematodes [J]. Biodiv Sci, 2007, 15(2): 116-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn