Biodiv Sci ›› 2020, Vol. 28 ›› Issue (3): 376-384. DOI: 10.17520/biods.2019116
Special Issue: 物种形成与系统进化
• Reviews • Previous Articles Next Articles
Jinyuan Su1,Yu Yan1,Chong Li2,Dan Li2,Fang K. Du1,*
Received:
2019-04-03
Accepted:
2019-08-08
Online:
2020-03-20
Published:
2019-12-27
Contact:
Fang K. Du
Jinyuan Su, Yu Yan, Chong Li, Dan Li, Fang K. Du. Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms[J]. Biodiv Sci, 2020, 28(3): 376-384.
物种 Species | 研究方法 Methods | 主要结论 Main results | 文献 Reference |
---|---|---|---|
杉科 Taxodiaceae | |||
水杉属 Metasequoia | |||
水杉 M. glyptostroboides | RAPD | 恢复种群依然未保留足够的遗传多样性, 建议未来迁地保护 Restored populations are lack of sufficient genetic diversity, requiring future ex situ conservation | Li et al, 2005 |
松科 Pinaceae | |||
银杉属 Cathaya | |||
银杉 C. argyrophylla | nDNA, mtDNA | 野生种群遗传多样性极低, 建议迁地保护及人工授粉 Low genetic diversity of wild populations, suggesting ex situ conservation and artificial pollination | Wang & Ge, 2006 |
冷杉属 Abies | |||
资源冷杉 A. ziyuanensis | cpDNA, mtDNA | 种群内遗传多样性低, 种群间遗传分化高, 建议就地保护成年树及幼苗 Low genetic diversity within populations and high genetic differentiation among populations, suggesting in situ protection of adult trees and seedlings | Peng et al, 2012 |
百山祖冷杉 A. beshanzuensis | |||
元宝山冷杉 A. yuanbaoshanensis | |||
梵净山冷杉 A. fanjingshanensis | |||
紫果冷杉 A. recurvata | |||
巴山冷杉 A. fargesii | |||
红豆杉科 Taxaceae | |||
穗花杉属 Amentotaxus | |||
穗花杉 A. argotaenia | cpDNA, mtDNA, nSSRs | 历史生境破碎化和近期生境退化降低了遗传多样性, 建议加强生境修复 Historical fragmentation and recent habitat degradation reduced genetic diversity, suggesting habitat restoration | Ge et al, 2015 |
台湾穗花杉 A. formosana | |||
云南穗花杉 A. yunnanensis | |||
A. poilanei | |||
红豆杉属 Taxus | |||
密叶红豆杉 T. contorta | cpDNA, nSSRs | 第四纪气候震荡导致低遗传多样性, 建议就地和迁地综合保护 Quaternary climatic oscillations resulted in low genetic diversity of species, suggesting in situ and ex situ conservation | Poudel et al, 2014 |
喜马拉雅红豆杉 T. wallichiana | |||
南方红豆杉 T. mairei | |||
东北红豆杉 T. cuspidata | cpDNA, mtDNA | 自然和移栽种群皆具高遗传多样性、无明显遗传结构和丰富基因流, 说明是 近期的致濒, 建议就地保护 High genetic diversity, lack of genetic structure, and extensive gene flow were detected in both natural and transplanted populations, indicating recently decrease of the species and suggesting in situ conservation | Su et al, 2018 |
麻黄科 Ephedraceae | |||
麻黄属 Ephedra | |||
草麻黄 E. sinica | cpDNA | 种群内遗传多样性高, 遗传分化显著, 建议保护物种遗传多样性 High genetic diversity within populations and significant genetic differentiation, suggesting gene conservation of species | Yin et al, 2016 |
中麻黄 E. intermedia | |||
苏铁科 Cycadaceae | |||
苏铁属 Cycas | |||
攀枝花苏铁 C. panzhihuaensis | AFLP | 野生和栽培种群遗传多样性高和遗传分化低, 建议加强迁地保护 High genetic diversity and low genetic differentiation within both wild and cultivated populations, requiring ex situ conservation | Yang et al, 2015 |
银杏科 Ginkgoaceae | |||
银杏属 Ginkgo | |||
银杏 G. biloba | cpDNA | 种群内遗传多样性高, 种群间基因交流频繁, 建议就地保护 High genetic diversity within populations and continual gene flow among populations, suggesting in situ conservation | Gong et al, 2008 |
罗汉松科 Podocarpaceae | |||
陆均松属 Dacrydium | |||
陆均松 D. pectinatum | ISSR | 岛屿种群遗传多样性高, 遗传分化低和基因流丰富, 建议就地保护 High genetic diversity, low genetic differentiation and high gene flow on island populations, suggesting in situ conservation | Su et al, 2010 |
Table 1 Summary of research on genetic diversity of Wild Plant with Extremely Small Populations (WPESP)
物种 Species | 研究方法 Methods | 主要结论 Main results | 文献 Reference |
---|---|---|---|
杉科 Taxodiaceae | |||
水杉属 Metasequoia | |||
水杉 M. glyptostroboides | RAPD | 恢复种群依然未保留足够的遗传多样性, 建议未来迁地保护 Restored populations are lack of sufficient genetic diversity, requiring future ex situ conservation | Li et al, 2005 |
松科 Pinaceae | |||
银杉属 Cathaya | |||
银杉 C. argyrophylla | nDNA, mtDNA | 野生种群遗传多样性极低, 建议迁地保护及人工授粉 Low genetic diversity of wild populations, suggesting ex situ conservation and artificial pollination | Wang & Ge, 2006 |
冷杉属 Abies | |||
资源冷杉 A. ziyuanensis | cpDNA, mtDNA | 种群内遗传多样性低, 种群间遗传分化高, 建议就地保护成年树及幼苗 Low genetic diversity within populations and high genetic differentiation among populations, suggesting in situ protection of adult trees and seedlings | Peng et al, 2012 |
百山祖冷杉 A. beshanzuensis | |||
元宝山冷杉 A. yuanbaoshanensis | |||
梵净山冷杉 A. fanjingshanensis | |||
紫果冷杉 A. recurvata | |||
巴山冷杉 A. fargesii | |||
红豆杉科 Taxaceae | |||
穗花杉属 Amentotaxus | |||
穗花杉 A. argotaenia | cpDNA, mtDNA, nSSRs | 历史生境破碎化和近期生境退化降低了遗传多样性, 建议加强生境修复 Historical fragmentation and recent habitat degradation reduced genetic diversity, suggesting habitat restoration | Ge et al, 2015 |
台湾穗花杉 A. formosana | |||
云南穗花杉 A. yunnanensis | |||
A. poilanei | |||
红豆杉属 Taxus | |||
密叶红豆杉 T. contorta | cpDNA, nSSRs | 第四纪气候震荡导致低遗传多样性, 建议就地和迁地综合保护 Quaternary climatic oscillations resulted in low genetic diversity of species, suggesting in situ and ex situ conservation | Poudel et al, 2014 |
喜马拉雅红豆杉 T. wallichiana | |||
南方红豆杉 T. mairei | |||
东北红豆杉 T. cuspidata | cpDNA, mtDNA | 自然和移栽种群皆具高遗传多样性、无明显遗传结构和丰富基因流, 说明是 近期的致濒, 建议就地保护 High genetic diversity, lack of genetic structure, and extensive gene flow were detected in both natural and transplanted populations, indicating recently decrease of the species and suggesting in situ conservation | Su et al, 2018 |
麻黄科 Ephedraceae | |||
麻黄属 Ephedra | |||
草麻黄 E. sinica | cpDNA | 种群内遗传多样性高, 遗传分化显著, 建议保护物种遗传多样性 High genetic diversity within populations and significant genetic differentiation, suggesting gene conservation of species | Yin et al, 2016 |
中麻黄 E. intermedia | |||
苏铁科 Cycadaceae | |||
苏铁属 Cycas | |||
攀枝花苏铁 C. panzhihuaensis | AFLP | 野生和栽培种群遗传多样性高和遗传分化低, 建议加强迁地保护 High genetic diversity and low genetic differentiation within both wild and cultivated populations, requiring ex situ conservation | Yang et al, 2015 |
银杏科 Ginkgoaceae | |||
银杏属 Ginkgo | |||
银杏 G. biloba | cpDNA | 种群内遗传多样性高, 种群间基因交流频繁, 建议就地保护 High genetic diversity within populations and continual gene flow among populations, suggesting in situ conservation | Gong et al, 2008 |
罗汉松科 Podocarpaceae | |||
陆均松属 Dacrydium | |||
陆均松 D. pectinatum | ISSR | 岛屿种群遗传多样性高, 遗传分化低和基因流丰富, 建议就地保护 High genetic diversity, low genetic differentiation and high gene flow on island populations, suggesting in situ conservation | Su et al, 2010 |
1 |
Aguilar R, Quesada M, Ashworth L, Herrera’s-Diego Y, Lobo J ( 2008) Genetic consequences of habitat fragmentation in plant populations: Susceptible signals in plant traits and methodological approaches. Molecular Ecology, 17, 5177-5188.
DOI URL PMID |
2 |
Arnqvist G, Wooster D ( 1995) Meta-analysis: Synthesizing research findings in ecology and evolution. Trends in Ecology and Evolution, 10, 236-240.
DOI URL PMID |
3 |
Bacles CF, Burczyk J, Lowe AJ, Ennos RA ( 2005) Historical and contemporary mating patterns in remnant populations of the forest tree Fraxinus excelsior L. Evolution, 59, 979-990.
URL PMID |
4 |
Bacles CF, Jump AS ( 2011) Taking a tree’s perspective on forest fragmentation genetics. Trends in Plant Science, 16, 13-18.
DOI URL PMID |
5 |
Bai WN, Liao WJ, Zhang DY ( 2010) Nuclear and chloroplast DNA phylogeography reveal two refuge areas with asymmetrical gene flow in a temperate walnut tree from East Asia. New Phytologist, 188, 892-901.
DOI URL PMID |
6 |
Borrell JS, Wang N, Nichols RA, Buggs RJA ( 2018) Genetic diversity maintained among fragmented populations of a tree undergoing range contraction. Heredity, 121, 304-318.
DOI URL PMID |
7 |
Browne L, Karubian J ( 2018) Habitat loss and fragmentation reduce effective gene flow by disrupting seed dispersal in a neotropical palm. Molecular Ecology, 27, 3055-3069.
DOI URL PMID |
8 |
Cavers S, Navarro C, Lowe AJ ( 2004) Targeting genetic resource conservation in widespread species: A case study of Cedrela odorata L. Forest Ecology and Management, 197, 285-294.
DOI URL |
9 |
Del Tredici P, Ling H, Yang G ( 1992) The Ginkgos of Tian Mu Shan. Conservation Biology, 6, 202-209.
DOI URL |
10 |
Ellstrand NC, Elam DR ( 1993) Population genetic consequences of small population size: Implications for plant conservation. Annual Review of Ecology and Systematics, 24, 217-242.
DOI URL |
11 |
Frankham R ( 1995) Effective population-size/adult-population size ratios in wildlife: A review. Genetics Research, 66, 95-107.
DOI URL |
12 |
Fu LK, Cheng SZ ( 1981) The discovery and naming of Cathaya argyrophylla Chun et Kuang. Plants, 4, 44-45.
DOI URL PMID |
(in Chinese) [ 傅立国, 程树志 ( 1981) 银杉的发现及命名. 植物杂志, 4, 44-45.]
DOI URL PMID |
|
13 | Fu LK, Li N, Mill RR ( 1999) Taxaceae. In: Flora of China (eds Wu ZY, Raven PH), vol. 4, pp. 89-96. Science Press, Beijing & Missouri Botanical Garden Press, Missouri. |
14 |
Gao LM, Möller M, Zhang XM, Hollingsworth ML, Liu J, Mill RR, Gibby R, Li DZ ( 2007) High variation and strong phylogeographic pattern among cpDNA haplotypes in Taxus wallichiana (Taxaceae) in China and North Vietnam. Molecular Ecology, 16, 4684-4698.
DOI URL PMID |
15 |
Ge XJ, Hung KH, Ko YZ, Hsu TW, Gong X, Chiang TY, Chiang YC ( 2015) Genetic divergence and biogeographical patterns in Amentotaxus argotaenia species complex. Plant Molecular Biology Reporter, 33, 264-280.
DOI URL |
16 | Gillespie JH ( 2004) Population Genetics: A Concise Guide. Johns Hopkins University Press, Baltimore, Maryland. |
17 |
Gong W, Zeng Z, Chen YY, Chen C, Qiu YX, Fu CX ( 2008) Glacial refugia of Ginkgo biloba and human impact on its genetic diversity: Evidence from chloroplast DNA. Journal of Integrative Plant Biology, 50, 368-374.
DOI URL |
18 | Gurevitch J, Hedges LV ( 2001) Meta-analysis: Combining the results of independent experiments. In: Design and Analysis of Ecological Experiments, 2nd edn (eds Scheiner SM, Gurevitch J), pp. 378-398. Oxford University Press, New York. |
19 |
Hamrick JL, Linhart YB, Mitton JB ( 1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annual Review of Ecology and Systematics, 10, 173-200.
DOI URL |
20 |
Hao Q, De Lafontaine G, Guo D, Gu H, Hu FS, Han Y, Song Z, Liu H ( 2018) The critical role of local refugia in postglacial colonization of Chinese pine: Joint inferences from DNA analyses, pollen records, and species distribution modeling. Ecography, 41, 592-606.
DOI URL |
21 |
Harris TM ( 1976) Two neglected aspects of fossil conifers. American Journal of Botany, 63, 902-910.
DOI URL |
22 |
Hewitt GM ( 2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359, 183-195.
DOI URL PMID |
23 |
Hu LJ, Uchiyama K, Shen HL, Saito Y, Tsuda Y, Ide Y ( 2008) Nuclear DNA microsatellites reveal genetic variation but a lack of phylogeographical structure in an endangered species, Fraxinus mandshurica, across North-east China. Annals of Botany, 102, 195-205.
DOI URL PMID |
24 |
Kramer AT, Ison JL, Ashley MV, Howe HF ( 2008) The paradox of forest fragmentation genetics. Conservation Biology, 22, 878-885.
DOI URL PMID |
25 |
Ledig FT ( 1988) The conservation of diversity in forest trees: Why and how should genes be conserved? BioScience, 38, 471-479.
DOI URL |
26 |
Ledig FT, Millar CI, Riggs LA ( 1990) Conservation of diversity in forest ecosystems. Forest Ecology and Management, 35, 1-4.
DOI URL |
27 |
Lefèvre F, Koskela J, Hubert J, Kraigher H, Longauer P, Olrik DC, Schüler S, Bozzano M, Alizoti P, Bakys R, Baldwin C, Ballian D, Black-Samuelsson S, Bednarova D, Bordäcs S, Collin E, De Cuyper B, De Vries SMG, Eysteinsson T, Frýdl J, Haverkamp M, Ivankovic M, Konrad H, Koziol C, Maaten T, Paino EN, Öztürk H, Pandeva ID, Parnuta G, Pilipovič A, Postolache D, Ryan C, Steffenrem A, Varela MC, Vessella F, Volosyanchuk RT, Westergren M, Wolter F, Yrjänä L, Zariŋa I ( 2013) Dynamic conservation of forest genetic resources in 33 European countries. Conservation Biology, 27, 373-384.
DOI URL |
28 |
Leimu R, Mutikainen PIA, Koricheva J, Fischer M ( 2006) How general are positive relationships between plant population size, fitness and genetic variation? Journal of Ecology, 94, 942-952.
DOI URL PMID |
29 | Li JW, Liu QL, Chen YD ( 1964) Research on the natural regeneration of clear felling in Pinus koraiensis forest. Scientia Silvae Sinicae, 9, 97-113. |
(in Chinese) [ 李景文, 刘庆良, 陈运大 ( 1964) 红松林皆伐迹地天然更新的研究. 林业科学, 9, 97-113.] | |
30 |
Li YY, Chen XY, Zhang X, Wu TY, Lu HP, Cai YW ( 2005) Genetic differences between wild and artificial populations of Metasequoia glyptostroboides: Implications for species recovery. Conservation Biology, 19, 224-231.
DOI URL |
31 |
Li YY, Tsang EPK, Cui MY, Chen XY ( 2012) Too early to call it success: An evaluation of the natural regeneration of the endangered Metasequoia glyptostroboides. Biological Conservation, 150, 1-4.
DOI URL PMID |
32 |
Litkowiec M, Lewandowski A, Wachowiak W ( 2018) Genetic variation in Taxus baccata L.: A case study supporting Poland’s protection and restoration program. Forest Ecology and Management, 409, 148-160.
DOI URL |
33 |
Liu J, Möller M, Provan J, Gao LM, Poudel RC, Li DZ ( 2013) Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist, 199, 1093-1108.
DOI URL PMID |
34 |
Liu J, Milne RI, Möller M, Zhu GF, Ye LJ, Luo YH, Yang JB, Wambulwa MC, Wang CN, Li DZ, Gao LM ( 2018) Integrating a comprehensive DNA barcode reference library with a global map of yews (Taxus L.) for forensic identification. Molecular Ecology Resources, 18, 1115-1131.
DOI URL PMID |
35 |
Liu JQ, Sun YS, Ge XJ, Gao LM, Qiu YX ( 2012) Phylogeographic studies of plants in China: Advances in the past and directions in the future. Journal of Systematics and Evolution, 50, 267-275.
DOI URL |
36 |
Llorens TM, Ayre DJ, Whelan RJ ( 2018) Anthropogenic fragmentation may not alter pre-existing patterns of genetic diversity and differentiation in perennial shrubs. Molecular Ecology, 27, 1541-1555.
DOI URL PMID |
37 |
Lowe AJ, Cavers S, Boshier D, Breed MF, Hollingsworth PM ( 2015) The resilience of forest fragmentation genetics—no longer a paradox—we were just looking in the wrong place. Heredity, 115, 97-99.
DOI URL PMID |
38 |
Maunder M ( 1992) Plant reintroduction: An overview. Biodiversity and Conservation, 1, 51-61.
DOI URL |
39 |
Maxwell SL, Fuller RA, Brooks TM, Watson JE ( 2016) Biodiversity: The ravages of guns, nets and bulldozers. Nature, 536, 143-145.
DOI URL PMID |
40 |
Neale DB, Kremer A ( 2011) Forest tree genomics: Growing resources and applications. Nature Reviews Genetics, 12, 111-122.
DOI URL PMID |
41 |
Nei M, Maruyama T, Chakraborty R ( 1975) The bottleneck effect and genetic variability in populations. Evolution, 29, 1-10.
DOI URL PMID |
42 |
Pant S, Samant S ( 2008) Population ecology of the endangered Himalayan Yew in Khokhan Wildlife Sanctuary of north western Himalaya for conservation management. Journal of Mountain Science, 5, 257-264.
DOI URL |
43 |
Peng Y, Yin S, Wang J, Tian B, Ren G, Guo Q, Liu J ( 2012) Phylogeographic analysis of the fir species in southern China suggests complex origin and genetic admixture. Annals of Forest Science, 69, 409-416.
DOI URL |
44 |
Petit RJ, El Mousadik A, Pons O ( 1998) Identifying populations for conservation on the basis of genetic markers. Conservation Biology, 12, 844-855.
DOI URL |
45 |
Poudel RC, Möller M, Liu J, Gao LM, Baral SR, Li DZ ( 2014) Low genetic diversity and high inbreeding of the endangered yews in Central Himalaya: Implications for conservation of their highly fragmented populations. Diversity and Distributions, 20, 1270-1284.
DOI URL |
46 |
Qian H, Ricklefs RE ( 2000) Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407, 180-182.
DOI URL PMID |
47 |
Qin HN, Zhao LN ( 2017) Evaluating the threat status of higher plants in China. Biodiversity Science, 25, 689-695. (in Chinese with English abstract)
DOI URL |
[ 覃海宁, 赵莉娜 ( 2017) 中国高等植物濒危状况评估. 生物多样性, 25, 689-695.]
DOI URL |
|
48 |
Qiu YX, Fu CX, Comes HP ( 2011) Plant molecular phylogeography in China and adjacent regions: Tracing the genetic imprints of Quaternary climate and environmental change in the world’s most diverse temperate flora. Molecular Phylogenetics and Evolution, 59, 225-244.
DOI URL |
49 |
Rajora OP, Mosseler A ( 2001) Challenges and opportunities for conservation of forest genetic resources. Euphytica, 118, 197-212.
DOI URL |
50 |
Su JY, Yan Y, Song J, Li JQ, Mao JF, Wang N, Wang WT, Du FK ( 2018) Recent fragmentation may not alter genetic patterns in endangered long-lived species: Evidence from Taxus cuspidata. Frontiers in Plant Science, 9, 1571-1583.
DOI URL PMID |
51 |
Su YJ, Wang T, Deng F ( 2010) Population genetic variation, differentiation and bottlenecks of Dacrydium pectinatum (Podocarpaceae) in Hainan Island, China: Implications for its conservation. Australian Journal of Botany, 58, 318-326.
DOI URL |
52 | Sun WB, Yang WZ ( 2013) Conserving Plant Species with Extremely Small Populations (PSESP) in Yunnan. Yunnan Science and Technology Press, Kunming. |
(in Chinese) [ 孙卫邦, 杨文忠 ( 2013) 云南省极小种群野生植物保护实践与探索. 云南科技出版社, 昆明.] | |
53 |
Vranckx GUY, Jacquemyn H, Muys B, Honnay O ( 2012) Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation. Conservation Biology, 26, 228-237.
DOI URL |
54 |
Wade EM, Nadarajan J, Yang X, Ballesteros D, Sun WB, Pritchard HW ( 2016) Plant species with extremely small populations (PSESP) in China: A seed and spore biology perspective. Plant Diversity, 38, 209-220.
DOI URL PMID |
55 | Wang BSP, Charest PJ, Downie B ( 1993) Ex situ Storage of Seeds, Pollen, and in vitro Cultures of Perennial Woody Plant Species. Food and Agriculture Organization of the United Nations. |
56 |
Wang HW, Ge S ( 2006) Phylogeography of the endangered Cathaya argyrophylla (Pinaceae) inferred from sequence variation of mitochondrial and nuclear DNA. Molecular Ecology, 15, 4109-4122.
DOI URL PMID |
57 | Wright S ( 1931) Evolution in Mendelian populations. Genetics, 16, 97-159. |
58 |
Yang Y, Liu B, Njenga DM ( 2017) Red list assessment and conservation status of gymnosperms from China. Biodiversity Science, 25, 758-764. (in Chinese with English abstract)
DOI URL |
[ 杨永, 刘冰 , Njenga DM ( 2017) 中国裸子植物物种濒危和保育现状. 生物多样性, 25, 758-764.]
DOI URL |
|
59 |
Yang YQ, Huang BH, Yu ZX, Liao PC ( 2015) Inferences of demographic history and fine-scale landscape genetics in Cycas panzhihuaensis and implications for its conservation. Tree Genetics and Genomes, 11, 78.
DOI URL |
60 |
Ye JW, Yuan YG, Cai L, Wang XJ ( 2017) Research progress of phylogeographic studies of plant species in temperate coniferous and broadleaf mixed forests in Northeastern China. Biodiversity Science, 25, 1339-1349. (in Chinese with English abstract)
DOI URL |
[ 叶俊伟, 袁永革, 蔡荔, 王晓娟 ( 2017) 中国东北温带针阔混交林植物物种的谱系地理研究进展. 生物多样性, 25, 1339-1349.]
DOI URL |
|
61 |
Yin HX, Yan X, Zhang W, Shi Y, Qian CJ, Yin CL, Tian F, Wang XQ, Ma XF ( 2016) Geographical or ecological divergence between the parapatric species Ephedra sinica and E. intermedia? Plant Systematics and Evolution, 302, 1157-1170.
DOI URL |
62 | Ying JS ( 1984) The discovery of Metasequoia glyptostroboides. Bulletin of Biology, ( 2), 28. |
(in Chinese) [ 应俊生 ( 1984) 水杉发现的经过. 生物学通报, ( 2), 28.] | |
63 |
Young A, Boyle T, Brown T ( 1996) The population genetic consequences of habitat fragmentation for plants. Trends in Ecology and Evolution, 11, 413-418.
DOI URL |
64 | Zang RG, Dong M, Li JQ, Chen XY, Zeng SJ, Jiang MX, Li ZQ, Huang JH ( 2016) Conservation and restoration for typical critically endangered wild plants with extremely small population. Acta Ecologica Sinica, 36, 7130-7135. (in Chinese with English abstract) |
[ 臧润国, 董鸣, 李俊清, 陈小勇, 曾宋君, 江明喜, 李镇清, 黄继红 ( 2016) 典型极小种群野生植物保护与恢复技术研究. 生态学报, 36, 7130-7135.] | |
65 | Zhang BY ( 2000) The “Living Fossil” Metasequoia glyptostroboides Hu et W. C. Cheng. China Forestry Publishing House, Beijing. |
(in Chinese) [ 张卜阳 ( 2000) 活化石水杉. 中国林业出版社, 北京.] | |
66 |
Zhang JJ, Ye QG, Gao PX, Yao XH ( 2012) Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae): Implications for conservation. Botanical Journal of the Linnean Society, 170, 232-242.
DOI URL |
67 | Zheng Z ( 1991) Distribution of Dacrydium in South China during the Late Quaternary. Acta Botanica Sinica, 33, 130-139. (in Chinese with English abstract) |
[ 郑卓 ( 1991) 晚第四纪陆均松属在中国南方的分布. 植物学报, 33, 130-139.] |
[1] | Kexin Cao, Jingwen Wang, Guo Zheng, Pengfeng Wu, Yingbin Li, Shuyan Cui. Effects of precipitation regime change and nitrogen deposition on soil nematode diversity in the grassland of northern China [J]. Biodiv Sci, 2024, 32(3): 23491-. |
[2] | Qingduo Li, Dongmei Li. Analysis for the prevalence of global bat-borne Bartonella [J]. Biodiv Sci, 2023, 31(9): 23166-. |
[3] | Chen Feng, Jie Zhang, Hongwen Huang. Parallel situ conservation: A new plant conservation strategy to integrate in situ and ex situ conservation of plants [J]. Biodiv Sci, 2023, 31(9): 23184-. |
[4] | Hailing Qi, Pengzhen Fan, Yuehua Wang, Jie Liu. Genetic diversity and population structure of Juglans regia from six provinces in northern China [J]. Biodiv Sci, 2023, 31(8): 23120-. |
[5] | Fei Xiong, Hongyan Liu, Dongdong Zhai, Xinbin Duan, Huiwu Tian, Daqing Chen. Population genetic structure of Pelteobagrus vachelli in the upper Yangtze River based on genome re-sequencing [J]. Biodiv Sci, 2023, 31(4): 22391-. |
[6] | Yuanyuan Xiao, Wei Feng, Yangui Qiao, Yuqing Zhang, Shugao Qin. Effects of soil microbial community characteristics on soil multifunctionality in sand-fixation shrublands [J]. Biodiv Sci, 2023, 31(4): 22585-. |
[7] | Yiyue He, Yuying Liu, Fubin Zhang, Qiang Qin, Yu Zeng, Zhenyu Lü, Kun Yang. Genetic diversity and population structure of Saurogobio dabryi under cascade water conservancy projects in the Jialing River [J]. Biodiv Sci, 2023, 31(11): 23160-. |
[8] | Weiyue Sun, Jiangping Shu, Yufeng Gu, Morigengaowa, Xiajin Du, Baodong Liu, Yuehong Yan. Conservation genomics analysis revealed the endangered mechanism of Adiantum nelumboides [J]. Biodiv Sci, 2022, 30(7): 21508-. |
[9] | Shumei Zhang, Wei Li, Dingnan Li. Inventory of species diversity of Liaoning higher plants [J]. Biodiv Sci, 2022, 30(6): 22038-. |
[10] | Xiaoyan Jiang, Shengjie Gao, Yan Jiang, Yun Tian, Xin Jia, Tianshan Zha. Species diversity, functional diversity, and phylogenetic diversity in plant communities at different phases of vegetation restoration in the Mu Us sandy grassland [J]. Biodiv Sci, 2022, 30(5): 21387-. |
[11] | Togtokh Mongke, Dongyi Bai, Tugeqin Bao, Ruoyang Zhao, Tana An, Aertengqimike Tiemuqier, Baoyindeligeer Mongkejargal, Has Soyoltiin, Manglai Dugarjaviin, Haige Han. Assessment of SNPs-based genomic diversity in different populations of Eastern Asian landrace horses [J]. Biodiv Sci, 2022, 30(5): 21031-. |
[12] | Jing Cui, Mingfang Xu, Qun Zhang, Yao Li, Xiaoshu Zeng, Sha Li. Differences in genetic diversity of Pleuronichthys cornutus in the coastal water of China and Japan based on three mitochondrial markers [J]. Biodiv Sci, 2022, 30(5): 21485-. |
[13] | Xinyu Cai, Xiaowei Mao, Yiqiang Zhao. Methods and research progress on the origin of animal domestication [J]. Biodiv Sci, 2022, 30(4): 21457-. |
[14] | Jun Sun, Yuyao Song, Yifeng Shi, Jian Zhai, Wenzhuo Yan. Progress of marine biodiversity studies in China seas in the past decade [J]. Biodiv Sci, 2022, 30(10): 22526-. |
[15] | Dongmei Li, Weihong Yang, Qingduo Li, Xi Han, Xiuping Song, Hong Pan, Yun Feng. High prevalence and genetic variation of Bartonella species inhabiting the bats in southwestern Yunnan [J]. Biodiv Sci, 2021, 29(9): 1245-1255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn