Biodiv Sci ›› 2018, Vol. 26 ›› Issue (8): 789-806. DOI: 10.17520/biods.2018054
Previous Articles Next Articles
Qinghua Guo1,2,*(), Tianyu Hu1,2, Yuanxi Jiang3, Shichao Jin1,2, Rui Wang1, Hongcan Guan1,2, Qiuli Yang4, Yumei Li1,2, Fangfang Wu1,2, Qiuping Zhai1,2, Jin Liu1,2, Yanjun Su1,2
Received:
2018-07-22
Accepted:
2018-07-24
Online:
2018-08-20
Published:
2018-09-27
Contact:
Guo Qinghua
About author:
# Co-first authors
Qinghua Guo, Tianyu Hu, Yuanxi Jiang, Shichao Jin, Rui Wang, Hongcan Guan, Qiuli Yang, Yumei Li, Fangfang Wu, Qiuping Zhai, Jin Liu, Yanjun Su. Advances in remote sensing application for biodiversity research[J]. Biodiv Sci, 2018, 26(8): 789-806.
卫星 Satellite | 传感器 Sensor | 传感器类型 Type of sensor | 波段数 Bands | 空间分辨率 Spatial resolution | 重返时间 Repeat interval | 发射时间 Launch date | |
---|---|---|---|---|---|---|---|
LandSat 5 | TM | 多光谱 Multispectral | 7 | Band 1-5, 7: 30 m Band 6: 120 m | 16 d | 1984 (2013宣布失效) (Deactivated in 2013) | |
LandSat 7 | ETM+ | 全色/多光谱 Panchromatic/ multispectral | 8 | Band 8: 15 m Band 1-5, 7: 30 m Band 6: 60 m | 16 d | 1999 (2003.05设备故障,影像出现条带状) (SLC-off in 2003.05) | |
LandSat 8 | OLI | 全色/多光谱 Panchromatic/ multispectral | 9 | Band 8: 15 m Band 1-7, 9: 30 m | 16 d | 2013 | |
TRS | 热红外 Thermal infrared | 2 | 100 m | ||||
QucikBird-2 | CCD相机 CCD camera | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 0.61 m Panchromatic 多光谱: 2.44 m Multispectral | 1-6 d | 2001 (2015宣布失效) (Deactivated in 2015) | |
IKONOS | CCD相机 CCD camera | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 1 m Panchromatic 多光谱: 4 m Multispectral | 3 d | 1999 (2015年宣布退役) (Deactivated in 2015) | |
SPOT 5 | HRG | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 2.5 m Panchromatic Band 1-3: 10 m Band 4: 20 m | 26 d | 2002 | |
SPOT 7 | NAOMI | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 1.5 m Panchromatic 多光谱: 6 m Multispectral | 26 d | 2014 | |
GeoEye-1 | CCD相机 | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 0.41 m Panchromatic 多光谱: 1.65 m Multispectral | 2-3 d | 2008 | |
WorldView-3 | CCD相机 | 全色/多光谱/短波红外/CAVIS Panchromatic/ multispectral/ Short wavelength infrared/CAVIS | 29 | 全色: 0.31 m Panchromatic 多光谱: 1.24 m Multispectral 短波红外: 3.7 m Short wavelength infrared CAVIS 30 m | 小于1 d | 2014 | |
卫星 Satellite | 传感器 Sensor | 传感器类型 Type of sensor | 波段数 Bands | 空间分辨率 Spatial resolution | 重返时间 Repeat interval | 发射时间 Launch date | |
WorldView-4 | CCD相机 | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 0.31 m Panchromatic 多光谱: 1.24 m Multispectral | 1或4.5 d | 2016 | |
Terra | ASTER | 近红外/短波红外/ 热红外 Near Infrared/Short Wavelength Infrared/ Thermal Infrared | 15 | 近红外: 15 m Near Infrared 短波红外: 30 m Short wavelength infrared 热红外: 90 m Thermal infrared | 16 d | 1999 | |
MODIS | 多光谱 Multispectral | 36 | Band 1, 2: 250 m Band 3-7: 500 m Band 8-36: 1,000 m | ||||
AQUA | MODIS | 多光谱 Multispectral | 36 | Band 1, 2: 250 m Band 3-7: 500 m Band 8-36: 1,000 m | 16 d | 2002 | |
Sentinel-1A | C波段合成孔径雷达 SAR (synthetic aperture radar) with C band | SAR | - | 条带模式:5*5 m Strip map mode 干涉宽幅模式: 5*20 m Interferometric wide swath mode 超宽幅模式: 20*40 m Extra wide swath mode | 6 d | 2014 | |
Sentinel-2A | 多光谱成像仪 Multispectral scanner | 多光谱 Multispectral | 13 | Band 2-4, 8: 10 m Band 5-7, 8A, 11, 12: 20 m Band 1, 9, 10: 60 m | 10 d | 2015 | |
GF-1 | 全色多光谱相机 Panchromatic multispectral scanner | 全色/多光谱 Panchromatic/ multispectral | 5 | Band 1: 2 m Band 2-5: 8 m | 4 d | 2013 | |
多光谱相机 Multispectral scanner | 多光谱 Multispectral | 4 | 16 m | ||||
GF-2 | 全色多光谱相机 Panchromatic multispectral scanner | 全色/多光谱 Panchromatic/ multispectral | 5 | Band 1: 1 m Band 2-5: 4 m | 5 d | 2014 | |
GF-3 | C波段合成孔径雷达 SAR with C band | SAR | - | 因成像模式而定 (1, 3, 5, 8, 10, 25, 50, 100, 500 m) Resolution depend on the scan mode | - | 2016 | |
GF-4 | 面阵凝视相机 Staring array camera | 可见光/近红外/ 中波红外 Visible/Near infrared/ Middle infrared | 6 | 可见光近红外: 50 m Visible/near infrared 中波红外: 400 m Middle infrared | 20 s | 2015 | |
ZY-1 02C | 全色多光谱相机 Panchromatic multispectral scanner | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 5m Panchromatic 多光谱: 10 m Multispectral | 3 d | 2011 | |
全色高分辨率相机 Panchromatic high-resolution scanner | 全色 Panchromatic | - | 2.36 m | ||||
ZY-3 | 正视全色TDI CCD相机 Ortho-panchromatic TDI CCD camera | 全色 Panchromatic | - | 2.1 m | 5 d | 2012 | |
前视、后视TDI CCD相机 fore sigh and back sight TDI CCD camera | 全色 Panchromatic | - | 3.5 m | ||||
正视多光谱相机 Multispectral ortho-imager | 多光谱 Multispectral | 4 | 6 m | ||||
卫星 Satellite | 传感器 Sensor | 传感器类型 Type of sensor | 波段数 Bands | 空间分辨率 Spatial resolution | 重返时间 Repeat interval | 发射时间 Launch date | |
HJ-1A | CCD相机 CCD camera | 多光谱 Multispectral | 4 | 30 m | 4 d | 2008 | |
高光谱成像仪 Hyperspectral scanner | 高光谱 Hyperspectral | 110-128 | 100 m | ||||
HJ-1B | CCD相机 CCD camera | 多光谱 Multispectral | 4 | 30 m | 4 d | 2008 | |
红外多光谱相机 Infrared multispectral scanner | 红外 Infrared | 4 | 150 m | ||||
HJ-1C | 合成孔径雷达 SAR | SAR | - | 单视模式: 5 m Single mode 距离向四视模式: 20 m Four sights at range direction | 4 d | 2012 |
Table 1 the parameters list of Chinese and international popular remote sensing satellites
卫星 Satellite | 传感器 Sensor | 传感器类型 Type of sensor | 波段数 Bands | 空间分辨率 Spatial resolution | 重返时间 Repeat interval | 发射时间 Launch date | |
---|---|---|---|---|---|---|---|
LandSat 5 | TM | 多光谱 Multispectral | 7 | Band 1-5, 7: 30 m Band 6: 120 m | 16 d | 1984 (2013宣布失效) (Deactivated in 2013) | |
LandSat 7 | ETM+ | 全色/多光谱 Panchromatic/ multispectral | 8 | Band 8: 15 m Band 1-5, 7: 30 m Band 6: 60 m | 16 d | 1999 (2003.05设备故障,影像出现条带状) (SLC-off in 2003.05) | |
LandSat 8 | OLI | 全色/多光谱 Panchromatic/ multispectral | 9 | Band 8: 15 m Band 1-7, 9: 30 m | 16 d | 2013 | |
TRS | 热红外 Thermal infrared | 2 | 100 m | ||||
QucikBird-2 | CCD相机 CCD camera | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 0.61 m Panchromatic 多光谱: 2.44 m Multispectral | 1-6 d | 2001 (2015宣布失效) (Deactivated in 2015) | |
IKONOS | CCD相机 CCD camera | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 1 m Panchromatic 多光谱: 4 m Multispectral | 3 d | 1999 (2015年宣布退役) (Deactivated in 2015) | |
SPOT 5 | HRG | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 2.5 m Panchromatic Band 1-3: 10 m Band 4: 20 m | 26 d | 2002 | |
SPOT 7 | NAOMI | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 1.5 m Panchromatic 多光谱: 6 m Multispectral | 26 d | 2014 | |
GeoEye-1 | CCD相机 | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 0.41 m Panchromatic 多光谱: 1.65 m Multispectral | 2-3 d | 2008 | |
WorldView-3 | CCD相机 | 全色/多光谱/短波红外/CAVIS Panchromatic/ multispectral/ Short wavelength infrared/CAVIS | 29 | 全色: 0.31 m Panchromatic 多光谱: 1.24 m Multispectral 短波红外: 3.7 m Short wavelength infrared CAVIS 30 m | 小于1 d | 2014 | |
卫星 Satellite | 传感器 Sensor | 传感器类型 Type of sensor | 波段数 Bands | 空间分辨率 Spatial resolution | 重返时间 Repeat interval | 发射时间 Launch date | |
WorldView-4 | CCD相机 | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 0.31 m Panchromatic 多光谱: 1.24 m Multispectral | 1或4.5 d | 2016 | |
Terra | ASTER | 近红外/短波红外/ 热红外 Near Infrared/Short Wavelength Infrared/ Thermal Infrared | 15 | 近红外: 15 m Near Infrared 短波红外: 30 m Short wavelength infrared 热红外: 90 m Thermal infrared | 16 d | 1999 | |
MODIS | 多光谱 Multispectral | 36 | Band 1, 2: 250 m Band 3-7: 500 m Band 8-36: 1,000 m | ||||
AQUA | MODIS | 多光谱 Multispectral | 36 | Band 1, 2: 250 m Band 3-7: 500 m Band 8-36: 1,000 m | 16 d | 2002 | |
Sentinel-1A | C波段合成孔径雷达 SAR (synthetic aperture radar) with C band | SAR | - | 条带模式:5*5 m Strip map mode 干涉宽幅模式: 5*20 m Interferometric wide swath mode 超宽幅模式: 20*40 m Extra wide swath mode | 6 d | 2014 | |
Sentinel-2A | 多光谱成像仪 Multispectral scanner | 多光谱 Multispectral | 13 | Band 2-4, 8: 10 m Band 5-7, 8A, 11, 12: 20 m Band 1, 9, 10: 60 m | 10 d | 2015 | |
GF-1 | 全色多光谱相机 Panchromatic multispectral scanner | 全色/多光谱 Panchromatic/ multispectral | 5 | Band 1: 2 m Band 2-5: 8 m | 4 d | 2013 | |
多光谱相机 Multispectral scanner | 多光谱 Multispectral | 4 | 16 m | ||||
GF-2 | 全色多光谱相机 Panchromatic multispectral scanner | 全色/多光谱 Panchromatic/ multispectral | 5 | Band 1: 1 m Band 2-5: 4 m | 5 d | 2014 | |
GF-3 | C波段合成孔径雷达 SAR with C band | SAR | - | 因成像模式而定 (1, 3, 5, 8, 10, 25, 50, 100, 500 m) Resolution depend on the scan mode | - | 2016 | |
GF-4 | 面阵凝视相机 Staring array camera | 可见光/近红外/ 中波红外 Visible/Near infrared/ Middle infrared | 6 | 可见光近红外: 50 m Visible/near infrared 中波红外: 400 m Middle infrared | 20 s | 2015 | |
ZY-1 02C | 全色多光谱相机 Panchromatic multispectral scanner | 全色/多光谱 Panchromatic/ multispectral | 4 | 全色: 5m Panchromatic 多光谱: 10 m Multispectral | 3 d | 2011 | |
全色高分辨率相机 Panchromatic high-resolution scanner | 全色 Panchromatic | - | 2.36 m | ||||
ZY-3 | 正视全色TDI CCD相机 Ortho-panchromatic TDI CCD camera | 全色 Panchromatic | - | 2.1 m | 5 d | 2012 | |
前视、后视TDI CCD相机 fore sigh and back sight TDI CCD camera | 全色 Panchromatic | - | 3.5 m | ||||
正视多光谱相机 Multispectral ortho-imager | 多光谱 Multispectral | 4 | 6 m | ||||
卫星 Satellite | 传感器 Sensor | 传感器类型 Type of sensor | 波段数 Bands | 空间分辨率 Spatial resolution | 重返时间 Repeat interval | 发射时间 Launch date | |
HJ-1A | CCD相机 CCD camera | 多光谱 Multispectral | 4 | 30 m | 4 d | 2008 | |
高光谱成像仪 Hyperspectral scanner | 高光谱 Hyperspectral | 110-128 | 100 m | ||||
HJ-1B | CCD相机 CCD camera | 多光谱 Multispectral | 4 | 30 m | 4 d | 2008 | |
红外多光谱相机 Infrared multispectral scanner | 红外 Infrared | 4 | 150 m | ||||
HJ-1C | 合成孔径雷达 SAR | SAR | - | 单视模式: 5 m Single mode 距离向四视模式: 20 m Four sights at range direction | 4 d | 2012 |
生物多样性核心指标 Essential biodiversity variables | 卫星遥感能获取的指标 Indicators obtained from satellite remote sensing |
---|---|
物种数量 Species populations | 物种分布 Species distribution ( |
物种性状 Species traits | 叶面积指数 LAI ( |
群落组成 Community composition | 物种密度 Species density ( |
生态系统功能 Ecosystem function | 植被绿度 Greenness ( |
生态系统结构 Ecosystem structure | 景观破碎化和异质性 Landscape fragmentation and heterogeneity ( |
Table 2 Biodiversity indicators that can be derived from satellite remote sensing
生物多样性核心指标 Essential biodiversity variables | 卫星遥感能获取的指标 Indicators obtained from satellite remote sensing |
---|---|
物种数量 Species populations | 物种分布 Species distribution ( |
物种性状 Species traits | 叶面积指数 LAI ( |
群落组成 Community composition | 物种密度 Species density ( |
生态系统功能 Ecosystem function | 植被绿度 Greenness ( |
生态系统结构 Ecosystem structure | 景观破碎化和异质性 Landscape fragmentation and heterogeneity ( |
Fig. 5 Cloud profile of different forest point clouds obtained by unmanned aerial vehicle lidar. (a) Conifer and broad-leaved mixed forest in Changbai Mountain, Jilin; (b) Evergreen broad-leaved forest in Gutian Mountain, Zhejiang; (c) Tropical rain forest in Xishuangbanna, Yunnan; (d) Mangrove forest in Leizhou, Guangdong.
空间幅度与观测平台 Scale & Observation platform | 指标 Indicators | 参数 Parameters | |||
---|---|---|---|---|---|
全球/洲际/国家 Global/continental/national 卫星平台 Satellite borne | 生境类型 Habitat type | 土地覆盖类型/植被类型/二者结合 Landcover/vegetation type/both | |||
立地条件 Stand condition | 陆面温度 Land surface temperature 大气降水 Precipitation 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 植被冠层高度 Canopy height | ||||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率 FPAR | ||||
区域/省际 Regional/province-scale 机载平台 Airborne | 生境类型 Habitat type | 土地覆盖类型/植被类型/二者结合 Landcover/vegetation type/both | |||
立地条件 Stand condition | 陆面温度 Land surface temperature 大气降水 Precipitation 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 植被冠层高度 Canopy height | ||||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率 FPAR | ||||
景观 Landscape 无人机平台 UAV borne | 生境类型 Habitat type | 植被类型 Vegetation type 景观多样性指数 Landscape diversity index | |||
立地条件 Stand condition | 陆面温度 Land surface temperature 大气降水 Precipitation 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position 土壤含水量 Soil water content | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 植被冠层高度 Canopy height 植被密度 Vegetation density 斑块大小、形状、丰富度 Size, shape and richness of patches | ||||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率 FPAR 景观聚集度指数 Landscape aggregation metrics 景观连通性指数 Landscape connectivity metrics 景观破碎化程度 Landscape fragmentation index | ||||
局地/样地 Local/plot 地基移动/固定平台 Terrestrial or mobile platform | 生境类型 Habitat type | 植被类型 Vegetation type 物种多样性指数 Biodiversity index | |||
立地条件 Stand condition | 土壤含水量 Soil water content 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 冠层高度 Canopy height 植被密度 Vegetation density 单木树高 Individual tree height 枝下高 Crown base height 植被冠层高度剖面 Vegetation height profile 冠幅 Crown size | ||||
空间幅度与观测平台 Scale & Observation platform | 指标 Indicators | 参数 Parameters | |||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率FPAR 景观聚集度指数 Landscape aggregation metrics 景观连通性指数 Landscape connectivity metrics |
Table 3 Biodiversity monitoring indicators based on remote sensing at different spatial scales
空间幅度与观测平台 Scale & Observation platform | 指标 Indicators | 参数 Parameters | |||
---|---|---|---|---|---|
全球/洲际/国家 Global/continental/national 卫星平台 Satellite borne | 生境类型 Habitat type | 土地覆盖类型/植被类型/二者结合 Landcover/vegetation type/both | |||
立地条件 Stand condition | 陆面温度 Land surface temperature 大气降水 Precipitation 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 植被冠层高度 Canopy height | ||||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率 FPAR | ||||
区域/省际 Regional/province-scale 机载平台 Airborne | 生境类型 Habitat type | 土地覆盖类型/植被类型/二者结合 Landcover/vegetation type/both | |||
立地条件 Stand condition | 陆面温度 Land surface temperature 大气降水 Precipitation 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 植被冠层高度 Canopy height | ||||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率 FPAR | ||||
景观 Landscape 无人机平台 UAV borne | 生境类型 Habitat type | 植被类型 Vegetation type 景观多样性指数 Landscape diversity index | |||
立地条件 Stand condition | 陆面温度 Land surface temperature 大气降水 Precipitation 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position 土壤含水量 Soil water content | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 植被冠层高度 Canopy height 植被密度 Vegetation density 斑块大小、形状、丰富度 Size, shape and richness of patches | ||||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率 FPAR 景观聚集度指数 Landscape aggregation metrics 景观连通性指数 Landscape connectivity metrics 景观破碎化程度 Landscape fragmentation index | ||||
局地/样地 Local/plot 地基移动/固定平台 Terrestrial or mobile platform | 生境类型 Habitat type | 植被类型 Vegetation type 物种多样性指数 Biodiversity index | |||
立地条件 Stand condition | 土壤含水量 Soil water content 高程、坡度、坡向、坡位 Elevation, slope, aspect, slope position | ||||
生境结构 Habitat structure | 植被覆盖度 Canopy cover 冠层高度 Canopy height 植被密度 Vegetation density 单木树高 Individual tree height 枝下高 Crown base height 植被冠层高度剖面 Vegetation height profile 冠幅 Crown size | ||||
空间幅度与观测平台 Scale & Observation platform | 指标 Indicators | 参数 Parameters | |||
生境质量 Habitat quality | 植被指数 NDVI/EVI/SAVI 叶面积指数 LAI 地上生物量 Aboveground biomass 绿度 Greenness 光合有效辐射吸收比率FPAR 景观聚集度指数 Landscape aggregation metrics 景观连通性指数 Landscape connectivity metrics |
[1] | Adame K, Pardo MA, Salvadeo C, Beier E, Elorriaga- Verplancken FR (2017) Detectability and categorization of California sea lions using an unmanned aerial vehicle. Marine Mammal Science, 33, 913-925. |
[2] | Asner G, Martin R, Knapp D, Tupayachi R, Anderson C, Sinca F, Vaughn N, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385-389. |
[3] | Asner GP, Martin RE (2008) Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 3958-3970. |
[4] | Austin GE, Thomas CJ, Houston DC, Thompson DB (1996) Predicting the spatial distribution of buzzard Buteo buteo nesting areas using a geographical information system and remote sensing. Journal of Applied Ecology, 33, 1541-1550. |
[5] | Azmy SN, Sah SAM, Shafie NJ, Ariffin A, Majid Z, Ismail MNA, Shamsir MS (2012) Counting in the dark: Non-intrusive laser scanning for population counting and identifying roosting bats. Scientific Reports, 2, 524. |
[6] | Brisson-Curadeau E, Bird D, Burke C, Fifield DA, Pace P, Sherley RB, Elliott KH (2017) Seabird species vary in behavioural response to drone census. Scientific Reports, 7, 17884. |
[7] | Carleer A, Wolff E (2004) Exploitation of very high resolution satellite data for tree species identification. Photogrammetric Engineering & Remote Sensing, 70, 135-140. |
[8] | Carlson KM, Asner GP, Hughes RF, Ostertag R, Martin RE (2007) Hyperspectral remote sensing of canopy biodiversity in Hawaiian lowland rainforests. Ecosystems, 10, 536-549. |
[9] | Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances, 1, e1400253. |
[10] | Clawges R, Vierling K, Vierling L, Rowell E (2008) The use of airborne lidar to assess avian species diversity, density, and occurrence in a pine/aspen forest. Remote Sensing of Environment, 112, 2064-2073. |
[11] | Clerici N, Weissteiner CJ, Gerard F (2012) Exploring the use of MODIS NDVI-based phenology indicators for classifying forest general habitat categories. Remote Sensing, 4, 1781-1803. |
[12] | Coops NC, Tompaski P, Nijland W, Rickbeil GJ, Nielsen SE, Bater CW, Stadt JJ (2016) A forest structure habitat index based on airborne laser scanning data. Ecological Indicators, 67, 346-357. |
[13] | Coops NC, Wulder MA, Duro DC, Han T, Berry S (2008) The development of a Canadian dynamic habitat index using multi-temporal satellite estimates of canopy light absorbance. Ecological Indicators, 8, 754-766. |
[14] | Dassot M, Constant T, Fournier M (2011) The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Annals of Forest Science, 68, 959-974. |
[15] | Davies AB, Asner GP (2014) Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends in Ecology & Evolution, 29, 681-691. |
[16] | Duffy JP, Pettorelli N (2012) Exploring the relationship between NDVI and African elephant population density in protected areas. African Journal of Ecology, 50, 455-463. |
[17] | Duro DC, Coops NC, Wulder MA, Han T (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography: Earth and Environment, 31, 235-260. |
[18] | Evans LJ, Jones TH, Pang K, Evans MN, Saimin S, Goossens B (2015) Use of drone technology as a tool for behavioral research: A case study of crocodilian nesting. Herpetological Conservation and Biology, 10, 90-98. |
[19] | Farashi A, Parvian N, Najafabadi MS (2016) Land use and land cover change in protected areas: Using remote sensing to survey suitable habitats of brown bear Ursus arctos. Polish Journal of Ecology, 64, 420-430. |
[20] | Franklin KA, Lyons K, Nagler PL, Lampkin D, Glenn EP, Molina-Freaner F, Markow T, Huete AR (2006) Buffelgrass (Pennisetum ciliare) land conversion and productivity in the plains of Sonora, Mexico. Biological Conservation, 127, 62-71. |
[21] | Fuentes S, Palmer AR, Taylor D, Zeppel M, Whitley R, Eamus D (2008) An automated procedure for estimating the leaf area index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application to an examination of the relationship between remotely sensed and field measurements of LAI. Functional Plant Biology, 35, 1070-1079. |
[22] | Ganguly S, Friedl MA, Tan B, Zhang X, Verma M (2010) Land surface phenology from MODIS: Characterization of the Collection 5 global land cover dynamics product. Remote Sensing of Environment, 114, 1805-1816. |
[23] | Getzin S, Wiegand K, Schoening I (2012) Assessing biodiversity in forests using very high-resolution images and unmanned aerial vehicles. Methods in Ecology and Evolution, 3, 397-404. |
[24] | Gillespie TW, Foody GM, Rocchini D, Giorgi AP, Saatchi S (2008) Measuring and modelling biodiversity from space. Progress in Physical Geography, 32, 203-221. |
[25] | Godinho S, Gil A, Guiomar N, Neves N, Pinto-Correia T (2016) A remote sensing-based approach to estimating montado canopy density using the FCD model: A contribution to identifying HNV farmlands in southern Portugal. Agroforestry Systems, 90, 23-34. |
[26] | Goetz S, Sun M, Zolkos S, Hansen A, Dubayah R (2014) The relative importance of climate and vegetation properties on patterns of North American breeding bird species richness. Environmental Research Letters, 9, 034013. |
[27] | Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, Dubayah R, Hofton M (2010) Lidar remote sensing variables predict breeding habitat of a Neotropical migrant bird. Ecology, 91, 1569-1576. |
[28] | Gould W (2000) Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecological Applications, 10, 1861-1870. |
[29] | Guo QH, Liu J, Li YM, Zhai QP, Wang YC, Wu FF, Hu TY, Wan HW, Liu HM, Shen WM (2016a) A near-surface remote sensing platform for biodiversity monitoring: Perspectives and prospects. Biodiversity Science, 24, 1249-1266. (in Chinese with English abstract) |
[郭庆华, 刘瑾, 李玉美, 翟秋萍, 王永财, 吴芳芳, 胡天宇, 万华伟, 刘慧明, 申文明 (2016a) 生物多样性近地面遥感监测: 应用现状与前景展望. 生物多样性, 24, 1249-1266.] | |
[30] | Guo QH, Wu FF, Hu TY, Chen LM, Liu J, Zhao XQ, Gao S, Pang SX (2016b) Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodiversity Science, 24, 1267-1278. (in Chinese with English abstract) |
[郭庆华, 吴芳芳, 胡天宇, 陈琳海, 刘瑾, 赵晓倩, 高上, 庞树鑫 (2016b) 无人机在生物多样性遥感监测中的应用现状与展望. 生物多样性, 24, 1267-1278.] | |
[31] | Handcock RN, Swain DL, Bishop-Hurley GJ, Patison KP, Wark T, Valencia P, Corke P, O’Neill CJ (2009) Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors, 9, 3586-3603. |
[32] | Hernández-Stefanoni JL, Dupuy JM (2007) Mapping species density of trees, shrubs and vines in a tropical forest, using field measurements, satellite multiespectral imagery and spatial interpolation. Biodiversity and Conservation, 16, 3817-3833. |
[33] | Hodgson A, Kelly N, Peel D (2013) Unmanned aerial vehicles (UAVs) for surveying marine fauna: A Dugong case study. PLoS ONE, 8, e79556. |
[34] | Hu JB, Zhang J (2018) Unmanned aerial vehicle remote sensing in ecology: Advances and prospects. Acta Ecologica Sinica, 38, 20-30. (in Chinese with English abstract) |
[胡健波, 张健 (2018) 无人机遥感在生态学中的应用进展. 生态学报, 38, 20-30.] | |
[35] | Hu T, Su Y, Xue B, Liu J, Zhao X, Fang J, Guo Q (2016) Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sensing, 8, 565. |
[36] | Hutchinson J, Jacquin A, Hutchinson S, Verbesselt J (2015) Monitoring vegetation change and dynamics on US Army training lands using satellite image time series analysis. Journal of Environmental Management, 150, 355-366. |
[37] | Jordan YC, Ghulam A, Herrmann RB (2012) Floodplain ecosystem response to climate variability and land-cover and land-use change in Lower Missouri River basin. Landscape Ecology, 27, 843-857. |
[38] | Kalacska M, Arroyo-Mora JP, de Gea J, Snirer E, Herzog C, Moore TR (2013) Videographic analysis of Eriophorum vaginatum spatial coverage in an ombotrophic bog. Remote Sensing, 5, 6501-6512. |
[39] | Kerr JT, Ostrovsky M (2003) From space to species: Ecological applications for remote sensing. Trends in Ecology & Evolution, 18, 299-305. |
[40] | Kerr JT, Southwood T, Cihlar J (2001) Remotely sensed habitat diversity predicts butterfly species richness and community similarity in Canada. Proceedings of the National Academy of Sciences,USA, 98, 11365-11370. |
[41] | Kiszka JJ, Mourier J, Gastrich K, Heithaus MR (2016) Using unmanned aerial vehicles (UAVs) to investigate shark and ray densities in a shallow coral lagoon. Marine Ecology Progress Series, 560, 237-242. |
[42] | Knudby A, LeDrew E, Brenning A (2010) Predictive mapping of reef fish species richness, diversity and biomass in Zanzibar using IKONOS imagery and machine-learning techniques. Remote Sensing of Environment, 114, 1230-1241. |
[43] | Krause DJ, Hinke JT, Perryman WL, Goebel ME, LeRoi DJ (2017) An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE, 12, e0187465. |
[44] | Lausch A, Bannehr L, Beckmann M, Boehm C, Feilhauer H, Hacker JM, Heurichr M, Jung A, Klenke R, Neumann C, Pause M, Rocchini D, Schaepman ME, Schmidtlein S, Schulz K, Selsam P, Settele J, Skidmore AK, Cord AF (2016) Linking Earth Observation and taxonomic, structural and functional biodiversity: Local to ecosystem perspectives. Ecological Indicators, 70, 317-339. |
[45] | Leyequien E, Verrelst J, Slot M, Schaepman-Strub G, Heitkönig IM, Skidmore A (2007) Capturing the fugitive: Applying remote sensing to terrestrial animal distribution and diversity. International Journal of Applied Earth Observation and Geoinformation, 9, 1-20. |
[46] | Li S, Wang DJ, Xiao ZS, Li XH, Wang TM, Feng LM, Wang Y (2014) Camera-trapping in wildlife research and conservation in China: Review and outlook. Biodiversity Science, 22, 685-695. (in Chinese with English abstract) |
[李晟, 王大军, 肖治术, 李欣海, 王天明, 冯利民, 王云 (2014) 红外相机技术在我国野生动物研究与保护中的应用与前景. 生物多样性, 22, 685-695.] | |
[47] | Li SQ, Wang GH, Shi ZP, Li XK, Xiao ZS, Zhou QH (2016) Infrared camera traps for monitoring mammal and bird diversity and activity pattern in limestone habitats. Acta Theriologica Sinica, 36, 272-281. (in Chinese with English abstract) |
[李生强, 汪国海, 施泽攀, 李先琨, 肖治术, 周岐海 (2016) 红外相机技术监测喀斯特生境兽类和鸟类多样性及活动节律. 兽类学报, 36, 272-281.] | |
[48] | Li Y, Guo Q, Su Y, Tao S, Zhao K, Xu G (2017) Retrieving the gap fraction, element clumping index, and leaf area index of individual trees using single-scan data from a terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 130, 308-316. |
[49] | Li Y, Guo Q, Tao S, Zheng G, Zhao K, Xue B, Su Y (2016) Derivation, validation, and sensitivity analysis of terrestrial laser scanning-based leaf area index. Canadian Journal of Remote Sensing, 42, 719-729. |
[50] | Loh J, Green RE, Ricketts T, Lamoreux J, Jenkins M, Kapos V, Randers J (2005) The living planet index: Using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 289-295. |
[51] | Löffler E, Margules C (1980) Wombats detected from space. Remote Sensing of Environment, 9, 47-56. |
[52] | Lucas KL, Raber GT, Carter GA (2010) Estimating vascular plant species richness on Horn Island, Mississippi using small-footprint airborne LiDAR. Journal of Applied Remote Sensing, 4, 043545. |
[53] | Luschi P, Hays G, Del Seppia C, Marsh R, Papi F (1998) The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. Proceedings of the Royal Society of London B: Biological Sciences, 265, 2279-2284. |
[54] | Ma KP (1993) On the concept of biodiversity. Chinese Biodiversity, 1, 20-22. (in Chinese) |
[马克平 (1993) 试论生物多样性的概念. 生物多样性, 1, 20-22.] | |
[55] | Martin M, Newman S, Aber J, Congalton R (1998) Determining forest species composition using high spectral resolution remote sensing data. Remote Sensing of Environment, 65, 249-254. |
[56] | Mishra NB, Chaudhuri G (2015) Spatio-temporal analysis of trends in seasonal vegetation productivity across Uttarakhand, Indian Himalayas, 2000-2014. Applied Geography, 56, 29-41. |
[57] | Mulero-Pazmany M, Jenni-Eiermann S, Strebel N, Sattler T, Jose Negro J, Tablado Z (2017) Unmanned aircraft systems as a new source of disturbance for wildlife: A systematic review. PLoS ONE, 12, e0178448. |
[58] | Mulero-Pazmany M, Stolper R, van Essen LD, Negro JJ, Sassen T (2014) Remotely piloted aircraft systems as a rhinoceros anti-poaching tool in Africa. PLoS ONE, 9, e83873. |
[59] | Müller J, Brandl R (2009) Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. Journal of Applied Ecology, 46, 897-905. |
[60] | Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858. |
[61] | Nicholson E, Mace GM, Armsworth PR, Atkinson G, Buckle S, Clements T, Ewers RM, Fa JE, Gardner TA, Gibbons J, Grenyer R, Metcalfe R, Mourato S, Muuls M, Osborn D, Reuman DC, Watson C, Milner-Gulland EJ (2009) Priority research areas for ecosystem services in a changing world. Journal of Applied Ecology, 46, 1139-1144 |
[62] | Ojoyi MM, Mutanga O, Odindi J, Kahinda JMM, Abdel-Rahman EM (2017) Implications of land use transitions on soil nitrogen in dynamic landscapes in Tanzania. Land Use Policy, 64, 95-100. |
[63] | Paganini M, Leidner AK, Geller G, Turner W, Wegmann M (2016) The role of space agencies in remotely sensed essential biodiversity variables. Remote Sensing in Ecology and Conservation, 2, 132-140. |
[64] | Pereira HM, Ferrier S, Walters M, Geller GN, Jongman R, Scholes RJ, Bruford MW, Brummitt N, Butchart S, Cardoso A (2013) Essential biodiversity variables. Science, 339, 277-278. |
[65] | Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philosophical Transactions of the Royal Society of London, 369, 20130190. |
[66] | Purkis SJ, Graham N, Riegl B (2008) Predictability of reef fish diversity and abundance using remote sensing data in Diego Garcia (Chagos Archipelago). Coral Reefs, 27, 167-178. |
[67] | Ramankutty N, Foley JA (1999) Estimating historical changes in land cover: North American croplands from 1850 to 1992. Global Ecology and Biogeography, 8, 381-396. |
[68] | Rocchini D, Ricotta C, Chiarucci A (2007) Using satellite imagery to assess plant species richness: The role of multispectral systems. Applied Vegetation Science, 10, 325-331. |
[69] | Roughgarden J, Running SW, Matson PA (1991) What does remote sensing do for ecology? Ecology, 72, 1918-1922. |
[70] | Saatchi S, Agosti D, Alger K, Delabie J, Musinsky J (2001) Examining fragmentation and loss of primary forest in the southern Bahian Atlantic forest of Brazil with radar imagery. Conservation Biology, 15, 867-875. |
[71] | Saatchi S, Buermann W, Ter Steege H, Mori S, Smith TB (2008) Modeling distribution of Amazonian tree species and diversity using remote sensing measurements. Remote Sensing of Environment, 112, 2000-2017. |
[72] | Sasaki T, Imanishi J, Ioki K, Morimoto Y, Kitada K (2012) Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data. Landscape and Ecological Engineering, 8, 157-171. |
[73] | Sarda-Palomera F, Bota G, Vinolo C, Pallares O, Sazatornil V, Brotons L, Gomariz S, Sarda F (2012) Fine-scale bird monitoring from light unmanned aircraft systems. Ibis, 154, 177-183. |
[74] | Saveraid EH, Debinski DM, Kindscher K, Jakubauskas ME (2001) A comparison of satellite data and landscape variables in predicting bird species occurrences in the Greater Yellowstone Ecosystem, USA. Landscape Ecology, 16, 71-83. |
[75] | Schofield G, Katselidis KA, Lilley MKS, Reina RD, Hays GC (2017) Detecting elusive aspects of wildlife ecology using drones: New insights on the mating dynamics and operational sex ratios of sea turtles. Functional Ecology, 31, 2310-2319. |
[76] | Sequeira AM, Mellin C, Fordham DA, Meekan MG, Bradshaw CJ (2014) Predicting current and future global distributions of whale sharks. Global Change Biology, 20, 778-789. |
[77] | Shazali N, Chew TH, Shamsir MS, Tingga RCT, Mohd-Ridwan AR, Khan FAA (2017) Assessing bat roosts using the LiDAR system at Wind Cave Nature Reserve in Sarawak, Malaysian Borneo. Acta Chiropterologica, 19, 199-210. |
[78] | Shirley S, Yang Z, Hutchinson R, Alexander J, McGarigal K, Betts M (2013) Species distribution modelling for the people: Unclassified landsat TM imagery predicts bird occurrence at fine resolutions. Diversity and Distributions, 19, 855-866. |
[79] | Simonson WD, Allen HD, Coomes DA (2012) Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests. Conservation Biology, 26, 840-850. |
[80] | Skidmore AK, Pettorelli N (2015) Agree on biodiversity metrics to track from space: Ecologists and space agencies must forge a global monitoring strategy. Nature, 523, 403-406. |
[81] | Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science, 260, 1905-1910. |
[82] | Su YJ, Guo QH, Xue BL, Hu TY, Alvarez O, Tao SL, Fang JY (2016a) Spatial distribution of forest aboveground biomass in China: Estimation through combination of spaceborne Lidar, optical imagery, and forest inventory data. Remote Sensing of Environment, 173, 187-199. |
[83] | Su YJ, Guo Q, Fry DL, Collins BM, Kelly M, Flanagan JP, Battles JJ (2016b) A vegetation mapping strategy for conifer forests by combining airborne LiDAR data and aerial imagery. Canadian Journal of Remote Sensing, 42, 1-15. |
[84] | Su YJ, Ma Q, Guo Q (2017) Fine-resolution forest tree height estimation across the Sierra Nevada through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. International Journal of Digital Earth, 10, 307-323. |
[85] | Szantoi Z, Smith SE, Strona G, Koh LP, Wich SA (2017) Mapping orangutan habitat and agricultural areas using Landsat OLI imagery augmented with unmanned aircraft system aerial photography. International Journal of Remote Sensing, 38, 2231-2245. |
[86] | Tempel DJ, Gutiérrez RJ, Battles JJ, Fry DL, Su Y, Guo Q, Reetz MJ, Whitmore SA, Jones GM, Collins BM, Stephens SL, Kelly M, Berigan WJ, Peery MZ (2015) Evaluating short- and long-term impacts of fuels treatments and simulated wildfire on an old-forest species. Ecosphere, 6, 1-18. |
[87] | Tuanmu MN, Jetz W (2015) A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecology and Biogeography, 24, 1329-1339. |
[88] | Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314. |
[89] | Vermeulen C, Lejeune P, Lisein J, Sawadogo P, Bouche P (2013) Unmanned aerial survey of elephants. PLoS ONE, 8, e54700. |
[90] | Vihervaara P, Mononen L, Auvinen A-P, Virkkala R, Lü Y, Pippuri I, Packalen P, Valbuena R, Valkama J (2015) How to integrate remotely sensed data and biodiversity for ecosystem assessments at landscape scale. Landscape Ecology, 30, 501-516. |
[91] | Wang Y, Moskovits DK (2001) Tracking fragmentation of natural communities and changes in land cover: Applications of Landsat data for conservation in an urban landscape (Chicago Wilderness). Conservation Biology, 15, 835-843. |
[92] | Weil G, Lensky IM, Levin N (2017) Using ground observations of a digital camera in the VIS-NIR range for quantifying the phenology of Mediterranean woody species. International Journal of Applied Earth Observation and Geoinformation, 62, 88-101. |
[93] | Wilson BT, Lister AJ, Riemann RI (2012) A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. Forest Ecology and Management, 271, 182-198. |
[94] | Yang X, Schaaf C, Strahler A, Kunz T, Fuller N, Betke M, Wu Z, Wang Z, Theriault D, Culvenor D, Jupp D, Newnham G, Lovell J (2013) Study of bat flight behavior by combining thermal image analysis with a LiDAR forest reconstruction. Canadian Journal of Remote Sensing, 39, S112-S125. |
[95] | Zhang J, Hu J, Lian J, Fan Z, Ouyang X, Ye W (2016) Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biological Conservation, 198, 60-69. |
[96] | Zhao F, Sweitzer RA, Guo Q, Kelly M (2012) Characterizing habitats associated with fisher den structures in the Southern Sierra Nevada, California using discrete return lidar. Forest Ecology and Management, 280, 112-119. |
[97] | Zhao Y, Feng D, Yu L, Wang X, Chen Y, Bai Y, Hernández H J, Galleguillos M, Estades C, Biging GS (2016) Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment, 183, 170-185. |
[98] | Zhao Y, Zeng Y, Zheng Z, Dong W, Zhao D, Wu B, Zhao Q (2018) Forest species diversity mapping using airborne LiDAR and hyperspectral data in a subtropical forest in China. Remote Sensing of Environment, 213, 104-114. |
[99] | Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature, 509, 86-90. |
[100] | Zhu C, Fang Y, Zhou KX, Mu SJ, Jiang JL (2015) IUCN red list of ecosystems: a new tool for biodiversity conservation. Acta Ecologica Sinica, 35, 2826-2836. (in Chinese with English abstract) |
[朱超, 方颖, 周可新, 穆少杰, 蒋金亮 (2015) IUCN生态系统红色名录——一种新的生物多样性保护工具. 生态学报, 35, 2826-2836. ] |
[1] | Fengming Wan, Huawei Wan, Zhiru Zhang, Jixi Gao, Chenxi Sun, Yongcai Wang. The application potential of unmanned aerial vehicle surveys in grassland plant diversity [J]. Biodiv Sci, 2024, 32(3): 23381-. |
[2] | Xin Yang, Zhiliang Yao, Bin Wang, Handong Wen, Yun Deng, Min Cao, Zhiming Zhang, Zhenghong Tan, Luxiang Lin. Driving effects of forest stand structure of a subtropical evergreen broad-leaved forest on species composition variation: From local to regional scales [J]. Biodiv Sci, 2023, 31(2): 22139-. |
[3] | Jiesheng Rao, Tao Yang, Xi Tian, Wencong Liu, Xiaofeng Wang, Hengjun Qian, Zehao Shen. Vertical structural characteristics of a semi-humid evergreen broad-leaved forest and common tree species based on a portable backpack LiDAR [J]. Biodiv Sci, 2023, 31(11): 23216-. |
[4] | Zhaochen Zhang, Jianbo Hu, Qingsong Yang, Juyu Lian, Buhang Li, Xihua Wang, Wanhui Ye, Jian Zhang. An unmanned aerial vehicle visible light remote sensing image dataset of four forest dynamic plots in subtropical China [J]. Biodiv Sci, 2021, 29(9): 1181-1185. |
[5] | Yan Xu, Congling Zhang, Ruijiao Jiang, Zifei Wang, Mengchen Zhu, Guochun Shen. UAV-based hyperspectral images and monitoring of canopy tree diversity [J]. Biodiv Sci, 2021, 29(5): 647-660. |
[6] | Li Qiang, Wang Bin, Deng Yun, Lin Luxiang, Dawa Zhaxi, Zhang Zhiming. Correlation between spatial distribution of forest canopy gaps and plant diversity indices in Xishuangbanna tropical forests [J]. Biodiv Sci, 2019, 27(3): 273-285. |
[7] | Li Jie, Li Weiyue, Fu Jing, Gao Jun, Yang Lei, He Weihang. Using low-altitude UAV remote sensing to identify national park functional zoning boundary: A case study in Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 42-50. |
[8] | Liu Fangzheng, Du Jinhong, Zhou Yue, Huang Zhipang, Li Yanpeng, Wang Wei, Xiao Wen. Monitoring technology and practice on protected area biodiversity by integrating unmanned aerial vehicle (UAV) and ground approaches [J]. Biodiv Sci, 2018, 26(8): 905-917. |
[9] | Zhongyi Zhou, Ran Liu, Shuna Shi, Yanjun Su, Wenkai Li, Qinghua Guo. Ecological niche modeling with LiDAR data: A case study of modeling the distribution of fisher in the southern Sierra Nevada Mountains, California [J]. Biodiv Sci, 2018, 26(8): 878-891. |
[10] | Qian Lei, Jinya Li, Keming Ma. Applications of remote sensing technology in avian ecology [J]. Biodiv Sci, 2018, 26(8): 862-877. |
[11] | Qinghua Guo, Fangfang Wu, Tianyu Hu, Linhai Chen, Jin Liu, Xiaoqian Zhao, Shang Gao, Shuxin Pang. Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity [J]. Biodiv Sci, 2016, 24(11): 1267-1278. |
[12] | Qinghua Guo, Jin Liu, Yumei Li, Qiuping Zhai, Yongcai Wang, Fangfang Wu, Tianyu Hu, Huawei Wan, Huiming Liu, Wenming Shen. A near-surface remote sensing platform for biodiversity monitoring: perspectives and prospects [J]. Biodiv Sci, 2016, 24(11): 1249-1266. |
[13] | TangYa, Chen Jianzhong. An investigation on the probable causes for the endangerment of Plagiopteron suaveolens Griffith [J]. Biodiv Sci, 1995, 03(2): 74-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Biodiversity Science
Editorial Office of Biodiversity Science, 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn