生物多样性 ›› 2022, Vol. 30 ›› Issue (11): 22219. DOI: 10.17520/biods.2022219
收稿日期:
2022-04-24
接受日期:
2022-07-06
出版日期:
2022-11-20
发布日期:
2022-08-17
通讯作者:
刘阳
作者简介:
E-mail: liuy353@mail.sysu.edu.cn基金资助:
Received:
2022-04-24
Accepted:
2022-07-06
Online:
2022-11-20
Published:
2022-08-17
Contact:
Yang Liu
摘要:
长期以来, 学者普遍认为大多数鸟类的嗅觉能力较弱或丧失。早期实验未能得到统一而清晰的结果, 进一步扩大了这一认知误区。随着研究手段和技术的发展, 解剖学、电生理学、分子生物学和行为生态学等学科提供了鸟类嗅觉存在的证据。目前, 相关研究在鸟类14目33科中发现了嗅觉通讯的证据。与视觉和听觉一样, 这一感觉通路可能在鸟类的觅食、导航、防御、隐蔽、警戒和交流等社会行为中发挥着重要作用。本文着重于嗅觉通讯在鸟类社会行为中的功能, 通过回顾近十年的相关研究, 综述鸟类嗅觉在物种和个体识别、繁殖行为、亲缘识别、配偶选择与竞争等方面发挥的作用。我们也指出: 研究手段的创新将揭示更多鸟类物种在社会行为中对于嗅觉通讯的运用。此外, 当前研究多聚焦于少数物种和单一层面(如生理、生态和环境等), 使用分子生物学、解剖与生理学、行为学和神经生物学手段的整合研究较为缺乏; 而后者更有可能全面地揭示鸟类嗅觉通讯的复杂机理及其在社会行为中发挥的多种功能。
曾晨, 刘阳 (2022) 鸟类社会行为中的嗅觉通讯研究进展. 生物多样性, 30, 22219. DOI: 10.17520/biods.2022219.
Chen Zeng, Yang Liu (2022) Research progress on olfactory communication in the social behaviours of birds. Biodiversity Science, 30, 22219. DOI: 10.17520/biods.2022219.
图1 鸟类科级别的系统进化树。标注为蓝色的部分为目前研究中存在嗅觉通讯相关证据的物种所在的14目33科。建树采用国际鸟盟(BirdLife International)的分类(11,009个物种, 243个科)作为骨架, 绘图在R语言4.1.3中使用程序包ggplot2和ggtree完成。
Fig. 1 The phylogenetic tree for all bird families. Species in 14 orders and 33 families with evidence of olfactory communication in current studies are marked in blue. The tree was built under the taxonomy of BirdLife International (11,009 species in 243 families), and the mapping was done in R 4.1.3 using the packages ggplot2 and ggtree.
图2 鸟类嗅觉通讯的研究框架。通路中的文字和箭头代表嗅觉相关因子及其传递方向(虚线代表未有确切证据的潜在关联); 5个方框代表本文提出的5个层面划分。
Fig. 2 The research framework of olfactory communication in birds. The black text and arrows represent olfactory-related factors and their transmission directions (dashed lines represent potential associations for which there is no conclusive evidence); the five boxes represent the five levels of division proposed in this review.
[1] | Abankwah V, Deeming DC, Pike TW (2020) Avian olfaction: A review of the recent literature. Comparative Cognition & Behavior Reviews, 15, 149-161. |
[2] | Amo L, Avilés JM, Parejo D, Peña A, Rodríguez J, Tomás G (2012a) Sex recognition by odour and variation in the uropygial gland secretion in starlings. Journal of Animal Ecology, 81, 605-613. |
[3] | Amo L, López-Rull I, Pagán I,Macías Garcia C (2012b) Male quality and conspecific scent preferences in the house finch, Carpodacus mexicanus. Animal Behaviour, 84, 1483-1489. |
[4] | Amo L, Tomás G, Parejo D, Avilés JM (2014) Are female starlings able to recognize the scent of their offspring? PLoS ONE, 9, e109505. |
[5] | Amundsen T (2000) Why are female birds ornamented? Trends in Ecology & Evolution, 15, 149-155. |
[6] | Audubon JJ (1826) Account of the habits of the Turkey buzzard, Vultur aura, particularly with the view of exploding the opinion generally entertained of its extraordinary power of smelling Edinburgh New Philosophical Journal, 2, e184. |
[7] | Balthazart J, Schoffeniels E (1979) Pheromones are involved in the control of sexual behaviour in birds. Die Naturwissenschaften, 66, 55-56. |
[8] |
Bang BG (1971) Functional anatomy of the olfactory system in 23 orders of birds. Acta Anatomica, 79, 1-76.
PMID |
[9] | Barrera-Guzmán AO, Aleixo A, Shawkey MD, Weir JT (2018) Hybrid speciation leads to novel male secondary sexual ornamentation of an Amazonian bird. Proceedings of the National Academy of Sciences, USA., 115, E218-E225. |
[10] | Belliure B, Mínguez E,de León A (2003) Self-odour recognition in European storm-petrel chicks. Behaviour, 140, 925-933. |
[11] | Bonadonna F, Caro SP, Brooke ML (2009) Olfactory sex recognition investigated in Antarctic prions. PLoS ONE, 4, e4148. |
[12] |
Bonadonna F, Cunningham GB, Jouventin P, Hesters F, Nevitt GA (2003) Evidence for nest-odour recognition in two species of diving petrel. Journal of Experimental Biology, 206, 3719-3722.
PMID |
[13] | Bonadonna F, Mardon J (2013) Besides colours and songs, odour is the new black of avian communication. In: Chemical Signals in Vertebrates 12 (eds East M, Dehnhard M), pp. 325-339, New York, NY. |
[14] |
Bonadonna F, Nevitt GA (2004) Partner-specific odor recognition in an Antarctic seabird. Science, 306, 835.
PMID |
[15] | Bonadonna F, Sanz-Aguilar A (2012) Kin recognition and inbreeding avoidance in wild birds: The first evidence for individual kin-related odour recognition. Animal Behaviour, 84, 509-513. |
[16] | Breed MD (2014) Kin and nestmate recognition: The influence of W. D. Hamilton on 50 years of research. Animal Behaviour, 92, 271-279. |
[17] | Campagna S, Mardon J, Celerier A, Bonadonna F (2011) Potential semiochemical molecules from birds: A practical and comprehensive compilation of the last 20 years studies. Chemical Senses, 37, 3-25. |
[18] |
Caro SP, Balthazart J, Bonadonna F (2015) The perfume of reproduction in birds: Chemosignaling in avian social life. Hormones and Behavior, 68, 25-42.
DOI PMID |
[19] | Caspers BA, Gagliardo A, Krause ET (2015) Impact of kin odour on reproduction in zebra finches. Behavioral Ecology and Sociobiology, 69, 1827-1833. |
[20] | Caspers BA, Hagelin JC, Paul M, Bock S, Willeke S, Krause ET (2017) Zebra finch chicks recognise parental scent, and retain chemosensory knowledge of their genetic mother, even after egg cross-fostering. Scientific Reports, 7, 1-8. |
[21] | Caspers BA, Hoffman JI, Kohlmeier P, Krüger O, Krause ET (2013) Olfactory imprinting as a mechanism for nest odour recognition in zebra finches. Animal Behaviour, 86, 85-90. |
[22] |
Caspers BA, Krause ET (2011) Odour-based natal nest recognition in the zebra finch (Taeniopygia guttata), a colony-breeding songbird. Biology Letters, 7, 184-186.
DOI PMID |
[23] | Caspers BA, Krause ET (2013) Intraspecific olfactory communication in zebra finches (Taeniopygia guttata):Potential information apart from visual and acoustic cues. In: Chemical Signals in Vertebrates 12 (eds East M, Dehnhard M), pp. 341-351 New York, NY. |
[24] | Cava JA, Perlut NG, Travis SE (2016) Why come back home? Investigating the proximate factors that influence natal philopatry in migratory passerines. Animal Behaviour, 118, 39-46. |
[25] |
Célérier A, Bon C, Malapert A, Palmas P, Bonadonna F (2011) Chemical kin label in seabirds. Biology Letters, 7, 807-810.
DOI PMID |
[26] |
Chung H, Carroll SB (2015) Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays, 37, 822-830.
DOI PMID |
[27] | Coffin HR, Watters JV, Mateo JM (2011) Odor-based recognition of familiar and related conspecifics: A first test conducted on captive Humboldt penguins (Spheniscus humboldti). PLoS ONE, 6, e25002. |
[28] |
Corfield JR, Price K, Iwaniuk AN, Gutierrez-Ibañez C, Birkhead T, Wylie DR (2015) Diversity in olfactory bulb size in birds reflects allometry, ecology, and phylogeny. Frontiers in Neuroanatomy, 9, 102.
DOI PMID |
[29] | Cruz-Yepez N, González C, Ornelas JF (2020) Vocal recognition suggests premating isolation between lineages of a lekking hummingbird. Behavioral Ecology, 31, 1046-1053. |
[30] | Driver RJ, Balakrishnan CN (2021) Highly contiguous genomes improve the understanding of avian olfactory receptor repertoires. Integrative and Comparative Biology. 61, 1281-1290. |
[31] | Fracasso G, Tuliozi B, Hoi H, Griggio M (2018) Can house sparrows recognize familiar or kin-related individuals by scent? Current Zoology, 65, 53-59. |
[32] | Gagliardo A (2013) Forty years of olfactory navigation in birds. Journal of Experimental Biology, 216, 2165-2171. |
[33] | Gagliardo A, Ioalè P, Filannino C, Wikelski M (2011) Homing pigeons only navigate in air with intact environmental odours: A test of the olfactory activation hypothesis with GPS data loggers. PLoS ONE, 6, e22385. |
[34] | Gagliardo A, Pollonara E, Wikelski M (2018) Only natural local odours allow homeward orientation in homing pigeons released at unfamiliar sites. Journal of Comparative Physiology, 204, 761-771. |
[35] |
Golüke S, Bischof HJ, Caspers BA (2021) Nestling odour modulates behavioural response in male, but not in female zebra finches. Scientific Reports, 11, 712.
DOI PMID |
[36] |
Golüke S, Bischof HJ, Engelmann J, Caspers BA, Mayer U (2019) Social odour activates the hippocampal formation in zebra finches (Taeniopygia guttata). Behavioural Brain Research, 364, 41-49.
DOI PMID |
[37] | Golüke S, Dörrenberg S, Krause ET, Caspers BA (2016) Female zebra finches smell their eggs. PLoS ONE, 11, e0155513. |
[38] | Grieves LA, Bernards MA, MacDougall-Shackleton EA (2019a) Behavioural responses of songbirds to preen oil odour cues of sex and species. Animal Behaviour, 156, 57-65. |
[39] | Grieves LA, Gilles M, Cuthill IC, Székely T, MacDougall-Shackleton EA, Caspers BA (2022) Olfactory camouflage and communication in birds. Biological Reviews, 97, 1193-1209. |
[40] | Grieves LA, Gloor GB, Bernards MA, MacDougall-Shackleton EA (2019b) Songbirds show odour-based discrimination of similarity and diversity at the major histocompatibility complex. Animal Behaviour. 158, 131-138. |
[41] | Griggio M, Fracasso G, Mahr K, Hoi H (2016) Olfactory assessment of competitors to the nest site: An experiment on a passerine species. PLoS ONE, 11, e0167905. |
[42] | Hill A (1905) Can birds smell? Nature, 71, 318-319. |
[43] | Hirao A, Aoyama M, Sugita S (2009) The role of uropygial gland on sexual behavior in domestic chicken Gallus gallus domesticus. Behavioural Processes, 80, 115-120. |
[44] | Jorge PE, Marques PA, Phillips JB (2010) Activational effects of odours on avian navigation. Proceedings of the Royal Society B: Biological Sciences, 277, 45-49. |
[45] | Kenyon HL, Toews DPL, Irwin DE (2011) Can song discriminate between Macgillivray’s and Mourning warblers in a narrow hybrid zone? The Condor, 113, 655-663. |
[46] | Krause ET, Brummel C, Kohlwey S, Baier MC, Müller C, Bonadonna F, Caspers BA (2014) Differences in olfactory species recognition in the females of two Australian songbird species. Behavioral Ecology and Sociobiology, 68, 1819-1827. |
[47] | Krause ET, Caspers BA (2012) Are olfactory cues involved in nest recognition in two social species of estrildid finches? PLoS ONE, 7, e36615. |
[48] |
Krause ET, Krüger O, Kohlmeier P, Caspers BA (2012) Olfactory kin recognition in a songbird. Biology Letters, 8, 327-329.
DOI PMID |
[49] | Leclaire S, Bourret V, Bonadonna F (2017a) Blue petrels recognize the odor of their egg. Journal of Experimental Biology, 220, 3022-3025. |
[50] | Leclaire S, Strandh M, Mardon J, Westerdahl H, Bonadonna F (2017b) Odour-based discrimination of similarity at the major histocompatibility complex in birds. Proceedings of the Royal Society B: Biological Sciences, 284, 20162466. |
[51] |
Leclaire S, Voccia S, Merkling T, Ducamp C, Hatch SA, Blanchard P, Danchin É, Wagner RH (2014) Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Scientific Reports, 4, 6920.
DOI PMID |
[52] |
Li ZQ, Courchamp F, Blumstein DT (2016) Pigeons home faster through polluted air. Scientific Reports, 6, 18989.
DOI PMID |
[53] |
Mäntylä E, Kipper S, Hilker M (2020) Insectivorous birds can see and smell systemically herbivore-induced pines. Ecology and Evolution, 10, 9358-9370.
DOI PMID |
[54] | Maraci Ö, Engel K, Caspers BA (2018) Olfactory communication via microbiota: What is known in birds? Genes, 9, 387. |
[55] | Mardon J, Bonadonna F (2009) Atypical homing or self-odour avoidance?. Blue petrels (Halobaena caerulea) are attracted to their mate’s odour but avoid their own. Behavioral Ecology and Sociobiology, 63, 537-542. |
[56] | Mariette MM, Griffith SC (2012) Conspecific attraction and nest site selection in a nomadic species, the zebra finch. Oikos, 121, 823-834. |
[57] |
Mennerat A (2008) Blue tits (Cyanistes caeruleus) respond to an experimental change in the aromatic plant odour composition of their nest. Behavioural Processes, 79, 189-191.
DOI PMID |
[58] | Mihailova M, Berg ML, Buchanan KL, Bennett ATD (2014) Odour-based discrimination of subspecies, species and sexes in an avian species complex, the crimson rosella. Animal Behaviour, 95, 155-164. |
[59] | Miller SE, Legan AW, Flores ZA, Ng HY, Sheehan MJ (2018) Strong, but incomplete, mate choice discrimination between two closely related species of paper wasp. Biological Journal of the Linnean Society, 126, 614-622. |
[60] | Mora CV, Davison M, Martin WJ, Walker MM (2004) Magnetoreception and its trigeminal mediation in the homing pigeon. Nature, 432, 508-511. |
[61] | Moreno-Rueda G (2017) Preen oil and bird fitness: A critical review of the evidence. Biological Reviews, 92, 2131-2143. |
[62] | Nevitt GA, Prada PA (2015) The Chemistry of Avian Odors: An Introduction to Best Practices. In: Handbook of Olfaction and Gustation (ed. Doty RL), pp. 565-578. Wiley Blackwell, New Jersey. |
[63] | Nie YG, Swaisgood RR, Zhang ZJ, Hu YB, Ma YS, Wei FW (2012) Giant panda scent-marking strategies in the wild: Role of season, sex and marking surface. Animal Behaviour, 84, 39-44. |
[64] |
Overath P, Sturm T, Rammensee HG (2014) Of volatiles and peptides: In search for MHC-dependent olfactory signals in social communication. Cellular and Molecular Life Sciences, 71, 2429-2442.
DOI PMID |
[65] | Papi F, Fiore L, Fiaschi V, Benvenuti S (1972) Olfaction and homing in pigeons. Italian Journal of Zoology, 6, 85-95. |
[66] |
Patel RM, Pinto JM (2014) Olfaction: Anatomy, physiology, and disease. Clinical Anatomy, 27, 54-60.
DOI PMID |
[67] |
Price-Waldman RM, Shultz AJ, Burns KJ (2020) Speciation rates are correlated with changes in plumage color complexity in the largest family of songbirds. Evolution, 74, 1155-1169.
DOI PMID |
[68] |
Rekdal SL, Anmarkrud JA, Lifjeld JT, Johnsen A (2019) Extra-pair mating in a passerine bird with highly duplicated major histocompatibility complex class II: Preference for the golden mean. Molecular Ecology, 28, 5133-5144.
DOI PMID |
[69] | Rosenthal GG, Rosenthal G (2017) Mate Choice:The Evolution of Sexual Decision Making from Microbes to Humans. Princeton University Press, Princeton, NJ. |
[70] | Rossi M, Marfull R, Golüke S, Komdeur J, Korsten P, Caspers BA (2017) Begging blue tit nestlings discriminate between the odour of familiar and unfamiliar conspecifics. Functional Ecology, 31, 1761-1769. |
[71] |
Sardell RJ, Kempenaers B, DuVal EH (2014) Female mating preferences and offspring survival: Testing hypotheses on the genetic basis of mate choice in a wild lekking bird. Molecular Ecology, 23, 933-946.
DOI PMID |
[72] | Schausberger P (2007) Kin recognition by juvenile predatory mites: Prior association or phenotype matching? Behavioral Ecology and Sociobiology, 62, 119-125. |
[73] |
Shaw CL, Rutter JE, Austin AL, Garvin MC, Whelan RJ (2011) Volatile and semivolatile compounds in gray catbird uropygial secretions vary with age and between breeding and wintering grounds. Journal of Chemical Ecology, 37, 329-339.
DOI PMID |
[74] | Slade JWG, Watson MJ, Kelly TR, Gloor GB, Bernards MA, MacDougall-Shackleton EA (2016) Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds. Proceedings of the Royal Society B: Biological Sciences, 283, 20161966. |
[75] | Stager KE (1967) Avian olfaction. American Zoologist, 7, 415-420. |
[76] | Steiger SS, Fidler AE, Valcu M, Kempenaers B (2008) Avian olfactory receptor gene repertoires:Evidence for a well-developed sense of smell in birds? Proceedings of the Royal Society B: Biological Sciences, 275, 2309-2317. |
[77] |
Tuttle EM, Sebastian PJ, Posto AL, Soini HA, Novotny MV, Gonser RA (2014) Variation in preen oil composition pertaining to season, sex, and genotype in the polymorphic white-throated sparrow. Journal of Chemical Ecology, 40, 1025-1038.
DOI PMID |
[78] |
Van Huynh A, Rice AM (2019) Conspecific olfactory preferences and interspecific divergence in odor cues in a chickadee hybrid zone. Ecology and Evolution, 9, 9671-9683.
DOI |
[79] | Wallraff HG (1970) Further aviary experiments with homing pigeons: Probable influence of dynamic factors of the atmosphere on their orientation. Journal of Comparative Physiology, 68, 182-201. |
[80] | Walter WG (1942) Some Experiments on the Sense of Smell in Birds: Studied by the Method of Conditioned Reflexes. PhD dissertation, University of Amsterdam, Amsterdam. |
[81] | Whittaker DJ, Gerlach NM, Soini HA, Novotny MV, Ketterson ED (2013) Bird odour predicts reproductive success. Animal Behaviour, 86, 697-703. |
[82] |
Whittaker DJ, Hagelin JC (2021) Female-based patterns and social function in avian chemical communication. Journal of Chemical Ecology, 47, 43-62.
DOI PMID |
[83] | Whittaker DJ, Kuzel M, Burrell MJ, Soini HA, Novotny MV, DuVal EH (2019) Chemical profiles reflect heterozygosity and seasonality in a tropical lekking passerine bird. Animal Behaviour, 151, 67-75. |
[84] | Whittaker DJ, Reichard DG, Dapper AL, Ketterson ED (2009) Behavioral responses of nesting female dark-eyed juncos Junco hyemalis to hetero- and conspecific passerine preen oils. Journal of Avian Biology, 40, 579-583. |
[85] | Whittaker DJ, Richmond KM, Miller AK, Kiley R, Bergeon BC, Atwell JW, Ketterson ED (2011) Intraspecific preen oil odor preferences in dark-eyed juncos (Junco hyemalis). Behavioral Ecology, 22, 1256-1263. |
[86] |
Winternitz J, Abbate JL, Huchard E, Havlíček J, Garamszegi LZ (2017) Patterns of MHC-dependent mate selection in humans and nonhuman primates: A meta-analysis. Molecular Ecology, 26, 668-688.
DOI PMID |
[87] | Yu C, You ZQ, Wan Y, Li ZQ (2021) Effects of air pollution on individual performance in homing pigeon. Chinese Journal of Zoology, 56, 8-15. (in Chinese with English abstract) |
[于丛, 游章强, 万月, 李忠秋 (2021) 空气污染对信鸽比赛个体归巢速度的影响. 动物学杂志, 56, 8-15.] | |
[88] | Zhang JX, Sun LX, Zuo MX (2009) Uropygial gland volatiles may code for olfactory information about sex, individual, and species in Bengalese finches Lonchura striata. Current Zoology, 55, 357-365. |
[89] | Zhang JX, Wei W, Zhang JH, Yang WH (2010) Uropygial gland-secreted alkanols contribute to olfactory sex signals in budgerigars. Chemical Senses, 35, 375-382. |
[90] | Zhang YH, Du YF, Zhang JX (2013) Uropygial gland volatiles facilitate species recognition between two sympatric sibling bird species. Behavioral Ecology, 24, 1271-1278. |
[1] | 万凤鸣, 万华伟, 张志如, 高吉喜, 孙晨曦, 王永财. 草地植物多样性无人机调查的应用潜力[J]. 生物多样性, 2024, 32(3): 23381-. |
[2] | 何远思, 张轶宣, 王代平. 配偶行为相容性对动物繁殖的影响[J]. 生物多样性, 2023, 31(6): 22534-. |
[3] | 吴科毅, 阮文达, 周棣锋, 陈庆春, 张承云, 潘新园, 余上, 刘阳, 肖荣波. 基于音节聚类分析的被动声学监测技术及其在鸟类监测中的应用[J]. 生物多样性, 2023, 31(1): 22370-. |
[4] | 孔嘉鑫, 张昭臣, 张健. 基于多源遥感数据的植物物种分类与识别: 研究进展与展望[J]. 生物多样性, 2019, 27(7): 796-812. |
[5] | 魏亚男, 王晓梅, 姚鹏程, 陈小勇, 李宏庆. 比较不同DNA条形码对中国海岸带耐盐植物的识别率[J]. 生物多样性, 2017, 25(10): 1095-1104. |
[6] | 宁淑萍, 颜海飞, 郝刚, 葛学军. 植物DNA条形码研究进展[J]. 生物多样性, 2008, 16(5): 417-425. |
[7] | 张洪茂, 张知彬. 围栏条件下影响岩松鼠寻找分散贮藏核桃种子的关键因素[J]. 生物多样性, 2007, 15(4): 329-336. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn