生物多样性 ›› 2021, Vol. 29 ›› Issue (5): 647-660. DOI: 10.17520/biods.2021013
徐岩1, 张聪伶1, 降瑞娇1, 王子斐1, 朱梦晨1, 沈国春1,*()
收稿日期:
2021-01-12
接受日期:
2021-03-16
出版日期:
2021-05-20
发布日期:
2021-04-22
通讯作者:
沈国春
作者简介:
* E-mail: gcshen@des.ecnu.edu.cn基金资助:
Yan Xu1, Congling Zhang1, Ruijiao Jiang1, Zifei Wang1, Mengchen Zhu1, Guochun Shen1,*()
Received:
2021-01-12
Accepted:
2021-03-16
Online:
2021-05-20
Published:
2021-04-22
Contact:
Guochun Shen
摘要:
冠层树种多样性是自然森林生态系统功能和服务的重要基础。及时掌握冠层多样性的现状及变化趋势, 是探讨诸多重要生态学问题的前提, 更是制定合理生物多样性保护策略的基础。但受制于传统的多样性信息采集方法, 区域尺度的高精度冠层多样性监测发展较为缓慢; 许多在气候变化和人类干扰下的生物多样性分布信息得不到及时更新。近年来基于无人机的冠层高光谱影像收集与分析技术的发展, 使得冠层多样性监测迎来了新的发展契机。本文从森林冠层高光谱影像出发, 介绍了与多样性监测相关的无人机航拍和基于深度学习的图像处理技术, 并结合已有文献, 探讨了无人机高光谱应用于森林冠层树种多样性监测的研究现状、可行性、优势及缺陷等。我们认为冠层高光谱影像为多样性监测提供了不可或缺且丰富的原始信息; 而无人机与高光谱相机的结合, 使得区域化高频率(如每周)、高精度(如分米乃至厘米级)的冠层多样性信息自动化收集成为可能。然而高光谱影像数据量大、数据维度高与数据结构非线性的特点为影像处理带来了挑战, 而深度学习技术的飞跃, 使得从冠层高光谱影像中提取个体及物种信息达到了极高精度。恰当地使用这些技术将大大提升冠层树种多样性的自动化监测水平, 由此也将帮助我们在当前剧变环境下及时掌握森林冠层多样性的现状与变化, 为生物多样性研究与保护提供可靠的数据支撑。
徐岩, 张聪伶, 降瑞娇, 王子斐, 朱梦晨, 沈国春 (2021) 无人机高光谱影像与冠层树种多样性监测. 生物多样性, 29, 647-660. DOI: 10.17520/biods.2021013.
Yan Xu, Congling Zhang, Ruijiao Jiang, Zifei Wang, Mengchen Zhu, Guochun Shen (2021) UAV-based hyperspectral images and monitoring of canopy tree diversity. Biodiversity Science, 29, 647-660. DOI: 10.17520/biods.2021013.
图1 浙江天童亚热带常绿阔叶林典型森林冠层RGB影像与高光谱影像示意图。(A)普通RGB影像, 仅包含红(620-760 nm)、绿(500-560 nm)、蓝(430-470 nm) 3层信息, 因此在RGB影像中多数常绿树种的冠层呈现近乎相同的绿色, 给冠层树种的识别造成了极大的困难; (B)冠层高光谱影像的三维立体展示, x轴为扫描长度, y轴为扫描宽度, z轴为光谱轴; (C)选定像素的光谱反射曲线, 横坐标代表波长, 纵坐标代表波段反射率值, 该像素在不同的波段下表现出不同的反射率值, 组成了一条近乎连续的光谱曲线。
Fig. 1 RGB image and hyperspectral image of typical forest canopy of the subtropical evergreen broad-leaved forest in Tiantong, Zhejiang Province. (A) Ordinary RGB images only contain three layers of information: red (620-760 nm), green (500-560 nm) and blue (430-470 nm). Therefore, the canopy of most evergreen tree species is almost the same green in RGB images, which makes it very difficult to identify the canopy species; (B) Three dimensional display of canopy hyperspectral image, x-axis is the scanning length, y-axis is the scanning width, z-axis is the spectral axis; (C) The spectral reflection curve of selected pixel, abscissa represents the wavelength, ordinate represents the band reflectance value, the pixel shows different reflectance values in different bands, forming a nearly continuous spectral curve.
图2 冠层RGB影像与主成分分析(PCA)处理后的冠层高光谱影像对比图。(A)冠层RGB影像, 各树种冠层呈现相近的绿色; (B)通过PCA处理后的前三轴的冠层高光谱影像, 不同树种的林冠呈现不一样的颜色, 这意味着高光谱影像具备充分的潜力, 能够反映出不同树种之间的细微差异。
Fig. 2 Comparison of canopy RGB image and canopy hyperspectral image processed by principal component analysis (PCA). (A) The canopy RGB image shows that the canopy of each tree species is similar in green; (B) Through PCA processing of the first three axes of the canopy hyperspectral image, the canopy hyperspectral image of different tree species shows different colors, which means that the hyperspectral images have full potential to reflect the subtle differences between different tree species.
图3 个体的林冠层光谱特征曲线。(A)主成分分析(PCA)处理后的冠层高光谱影像, 其中数字①-⑤分别代表不同的个体。(B) 5个林冠个体的光谱反射曲线。不同的植物因其化学性质和结构的不同, 表现出不同的光谱反射曲线, 这是基于光谱物种分类的基础。
Fig. 3 Individual canopy spectral characteristic curve. (A) In the hyperspectral images of forest canopy processed by principal component analysis (PCA), the numbers ①-⑤ represent different individuals; (B) Spectral reflectance curves of five canopy individuals. Different plants show different spectral reflectance curves because of their different chemical properties and structures, which is the basis of spectral species classification.
图4 基于深度学习网络的分类模型。模型中包括输入层、隐藏层和输出层, 隐藏层用于提取图像特征, 层数越高, 隐藏层提取的特征越高级。
Fig. 4 Classification model based on deep learning network. The model includes input layer, hidden layer and output layer. Hidden layer is used to extract image features. The higher the number of layers is, the higher the features can be extracted by hidden layer.
图5 2000-2019年间生态学领域中分别使用无人机(UAV)、深度学习、高光谱进行研究的文章统计结果
Fig. 5 From 2000 to 2019, the statistical results of articles in the field of ecology using unmanned aerial vehicle (UAV), deep learning and hyperspectral, respectively
图6 深度学习与非深度学习算法在高光谱树种分类中的表现。通过统计检验结果可看出, 深度学习算法在物种分类中有明显优势。
Fig. 6 The performance of deep learning and non deep learning algorithms in hyperspectral tree species classification. The statistical test results show that the deep learning algorithm has obvious advantages in species classification.
[1] |
Adam E, Mutanga O, Rugege D (2010) Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: A review. Wetlands Ecology and Management, 18, 281-296.
DOI URL |
[2] |
Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Salim KA, Almeyda AM, Alfonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, Burslem DFRP, Butt N, Cao M, Cardenas D, Chuyong GB, Clay K, Cordell S, Dattaraja HS, Deng XB, Detto M, Du XJ, Duque A, Erikson DL, Ewango CEN, Fischer GA, Fletcher C, Foster RB, Giardina CP, Gilbert GS, Gunatilleke N, Gunatilleke S, Hao ZQ, Hargrove WW, Hart TB, Hau BCH, He FL, Hoffman FM, Howe RW, Hubbell SP, Inman-Narahari FM, Jansen PA, Jiang MX, Johnson DJ, Kanzaki M, Kassim AR, Kenfack D, Kibet S, Kinnaird MF, Korte L, Kral K, Kumar J, Larson AJ, Li YD, Li XK, Liu SR, Lum SKY, Lutz JA, Ma KP, Maddalena DM, Makana JR, Malhi Y, Marthews T, Mat Serudin R, McMahon SM, McShea WJ, Memiaghe HR, Mi XC, Mizuno T, Morecroft M, Myers JA, Novotny V, de Oliveira AA, Ong PS, Orwig DA, Ostertag R, den Ouden J, Parker GG, Phillips RP, Sack L, Sainge MN, Sang WG, Sri-Ngernyuang K, Sukumar R, Sun IF, Sungpalee W, Suresh HS, Tan S, Thomas SC, Thomas DW, Thompson J, Turner BL, Uriarte M, Valencia R, Vallejo MI, Vicentini A, Vrška T, Wang XH, Wang XG, Weiblen G, Wolf A, Xu H, Yap S, Zimmerman J (2015) CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change. Global Change Biology, 21, 528-549.
DOI PMID |
[3] | Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proceedings of the National Academy of Sciences, USA, 102, 4383-4386. |
[4] |
Asner GP, Martin RE, Ford AJ, Metcalfe DJ, Liddell MJ (2009) Leaf chemical and spectral diversity in Australian tropical forests. Ecological Applications, 19, 236-253.
DOI URL |
[5] |
Asner GP, Martin RE, Anderson CB, Knapp DE (2015) Quantifying forest canopy traits: Imaging spectroscopy versus field survey. Remote Sensing of Environment, 158, 15-27.
DOI URL |
[6] | Asner GP, Knapp DE, Anderson CB, Martin RE, Vaughn N (2016) Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences, USA, 113, E4043-E4051. |
[7] |
Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, Sinca F, Vaughn NR, Llactayo W (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science, 355, 385-389.
DOI URL |
[8] |
Ballanti L, Blesius L, Hines E, Kruse B (2016) Tree species classification using hyperspectral imagery: A comparison of two classifiers. Remote Sensing, 8, 445.
DOI URL |
[9] |
Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, Nilus R, Clewley D, Phillips OL, Coomes DA (2019) Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy. Ecology Letters, 22, 1608-1619.
DOI PMID |
[10] |
Cayuela L, Benayas JMR, Justel A, Salas-Rey J (2006) Modelling tree diversity in a highly fragmented tropical montane landscape. Global Ecology and Biogeography, 15, 602-613.
DOI URL |
[11] |
Chen YS, Jiang HL, Li CY, Jia XP, Ghamisi P (2016) Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251.
DOI URL |
[12] | Chesson P, Donahue MJ, Melbourne B, Sears ALW (2005) Scale Transition Theory for Understanding Mechanisms in Metacommunities. University of Chicago Press, Chicago. |
[13] |
Christin S, Hervet É, Lecomte N (2019) Applications for deep learning in ecology. Methods in Ecology and Evolution, 10, 1632-1644.
DOI |
[14] |
Christin S, Hervet É, Lecomte N (2021) Going further with model verification and deep learning. Methods in Ecology and Evolution, 12, 130-134.
DOI URL |
[15] |
Clark ML, Roberts DA (2012) Species-level differences in hyperspectral metrics among tropical rainforest trees as determined by a tree-based classifier. Remote Sensing, 4, 1820-1855.
DOI URL |
[16] | Crawley MJ (2012) The R Book, 2nd edn. Wiley, New Jersey. |
[17] |
Dalponte M, Ørka HO, Ene LT, Gobakken T, Næsset E (2014) Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data. Remote Sensing of Environment, 140, 306-317.
DOI URL |
[18] |
Dalponte M, Ene LT, Marconcini M, Gobakken T, Næsset E (2015) Semi-supervised SVM for individual tree crown species classification. ISPRS Journal of Photogrammetry and Remote Sensing, 110, 77-87.
DOI URL |
[19] |
Dalponte M, Frizzera L, Gianelle D (2019) Individual tree crown delineation and tree species classification with hyperspectral and LiDAR data. PeerJ, 6, e6227.
DOI URL |
[20] | Du PJ, Xia JS, Xue ZH, Tan K, Su HJ, Bao R (2016) Review of hyperspectral remote sensing image classification. Journal of Remote Sensing, 20, 236-256. (in Chinese with English abstract) |
[ 杜培军, 夏俊士, 薛朝辉, 谭琨, 苏红军, 鲍蕊 (2016) 高光谱遥感影像分类研究进展. 遥感学报, 20, 236-256.] | |
[21] |
Duro DC, Coops NC, Wulder MA, Han T (2007) Development of a large area biodiversity monitoring system driven by remote sensing. Progress in Physical Geography: Earth and Environment, 31, 235-260.
DOI URL |
[22] |
Fairbanks DHK, McGwire KC (2004) Patterns of floristic richness in vegetation communities of California: Regional scale analysis with multi-temporal NDVI. Global Ecology and Biogeography, 13, 221-235.
DOI URL |
[23] |
Fricker GA, Ventura JD, Wolf JA, North MP, Davis FW, Franklin J (2019) A convolutional neural network classifier identifies tree species in mixed-conifer forest from hyperspectral imagery. Remote Sensing, 11, 2326.
DOI URL |
[24] | Ghamisi P, Maggiori E, Li ST, Souza R, Tarablaka Y, Moser G, De Giorgi A, Fang LY, Chen YS, Chi MM, Serpico SB, Benediktsson JA (2018) New frontiers in spectral-spatial hyperspectral image classification: The latest advances based on mathematical morphology, Markov random fields, segmentation, sparse representation, and deep learning. IEEE Geoscience and Remote Sensing Magazine, 6(3), 10-43. |
[25] |
Ghosh A, Fassnacht FE, Joshi PK, Koch B (2014) A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales. International Journal of Applied Earth Observation and Geoinformation, 26, 49-63.
DOI URL |
[26] |
Graves SJ, Asner GP, Martin RE, Anderson CB, Colgan MS, Kalantari L, Bohlman SA (2016) Tree species abundance predictions in a tropical agricultural landscape with a supervised classification model and imbalanced data. Remote Sensing, 8, 161.
DOI URL |
[27] |
Guo QH, Wu FF, Hu TY, Chen LH, Liu J, Zhao XQ, Gao S, Pang SJ (2016) Perspectives and prospects of unmanned aerial vehicle in remote sensing monitoring of biodiversity. Biodiversity Science, 24, 1267-1278. (in Chinese with English abstract)
DOI URL |
[ 郭庆华, 吴芳芳, 胡天宇, 陈琳海, 刘瑾, 赵晓倩, 高上, 庞树鑫 (2016) 无人机在生物多样性遥感监测中的应用现状与展望. 生物多样性, 24, 1267-1278.] | |
[28] | Hu JB, Zhang J (2018) Unmanned aerial vehicle remote sensing in ecology: Advances and prospects. Acta Ecologica Sinica, 38, 20-30. (in Chinese with English abstract) |
[ 胡健波, 张健 (2018) 无人机遥感在生态学中的应用进展. 生态学报, 38, 20-30.] | |
[29] | Hu W, Huang YY, Wei L, Zhang F, Li HC (2015) Deep convolutional neural networks for hyperspectral image classification. Journal of Sensors, 2015(2), 1-12. |
[30] | Huang Y, Chen XH, Liu YL, Sun M, Su QC, Li YD (2019) UAV hyperspectral built-in push-scan image fast splicing method. Journal of Geomatics, 44(5), 24-28. (in Chinese with English abstract) |
[ 黄宇, 陈兴海, 刘业林, 孙梅, 苏秋城, 李艳大 (2019) 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测. 测绘地理信息, 44(5), 24-28.] | |
[31] | Jia W, Pang Y, Ju HB, Li ZY (2018) A BRDF normalization correction method for airborne push broom hyperspectral images in forest areas: China, CN201711429219.3. (in Chinese) |
[ 荚文, 庞勇, 鞠洪波, 李增元 (2018) 林区机载推扫式高光谱影像的BRDF归一化校正方法: 中国, CN201711429219.3.] | |
[32] |
Kalacska M, Sanchez-Azofeifa GA, Rivard B, Caelli T, White HP, Calvo-Alvarado JC (2007) Ecological fingerprinting of ecosystem succession: Estimating secondary tropical dry forest structure and diversity using imaging spectroscopy. Remote Sensing of Environment, 108, 82-96.
DOI URL |
[33] |
Kayet N, Pathak K, Chakrabarty A, Kumar S, Singh CP, Chowdary VM (2020) Assessment of mining activities on tree species and diversity in hilltop mining areas using Hyperion and Landsat data. Environmental Science and Pollution Research, 27, 42750-42766.
DOI URL |
[34] |
Kerr JT, Ostrovsky M (2003) From space to species: Ecological applications for remote sensing. Trends in Ecology and Evolution, 18, 299-305.
DOI URL |
[35] |
Kong JX, Zhang ZC, Zhang J (2019) Classification and identification of plant species based on multi-source remote sensing data: Research progress and prospect. Biodiversity Science, 27, 796-812. (in Chinese with English abstract)
DOI URL |
[ 孔嘉鑫, 张昭臣, 张健 (2019) 基于多源遥感数据的植物物种分类与识别: 研究进展与展望. 生物多样性, 27, 796-812.] | |
[36] |
Luoto M, Virkkala R, Heikkinen RK, Rainio K (2004) Predicting bird species richness using remote sensing in boreal agricultural-forest mosaics. Ecological Applications, 14, 1946-1962.
DOI URL |
[37] |
Nagendra H (2001) Using remote sensing to assess biodiversity. International Journal of Remote Sensing, 22, 2377-2400.
DOI URL |
[38] |
Oindo BO, Skidmore AK (2002) Interannual variability of NDVI and species richness in Kenya. International Journal of Remote Sensing, 23, 285-298.
DOI URL |
[39] |
Pu RL (2009) Broadleaf species recognition with in situ hyperspectral data. International Journal of Remote Sensing, 30, 2759-2779.
DOI URL |
[40] | Qin ZF, Chang QR, Xie BN, Shen J (2016) Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 32(23), 77-85. (in Chinese with English abstract) |
[ 秦占飞, 常庆瑞, 谢宝妮, 申健 (2016) 基于无人机高光谱影像的引黄灌区水稻叶片全氮含量估测. 农业工程学报, 32(23), 77-85.] | |
[41] | Quan XW (2017) Research on weak sensitive parameters retrieval using vegetation canopy reflectance model. PhD dissertation, University of Electronic Science and Technology of China, Chengdu. (in Chinese with English abstract) |
[ 全兴文 (2017) 植被冠层反射率模型弱敏感参数遥感反演方法. 博士学位论文, 电子科技大学, 成都.] | |
[42] |
Raczko E, Zagajewski B (2018) Tree species classification of the UNESCO Man and the Biosphere Karkonoski National Park (Poland) using artificial neural networks and APEX hyperspectral images. Remote Sensing, 10, 1111.
DOI URL |
[43] | Rivard B, Sanchez-Azofeifa GA, Foley S, Calvo-Alvarado J (2008) Species classification of tropical tree leaf reflectance and dependence on selection of spectral bands. In: Hyperspectral Remote Sensing of Tropical and Sub-tropical Forests (eds Kalacska M, Sanchez-Azofeifa GA), pp. 141-157. CRC Press, Florida. |
[44] |
Shen X, Cao L (2017) Tree-species classification in subtropical forests using airborne hyperspectral and LiDAR data. Remote Sensing, 9, 1180.
DOI URL |
[45] |
Signoroni A, Savardi M, Baronio A, Benini S (2019) Deep learning meets hyperspectral image analysis: A multidisciplinary review. Journal of Imaging, 5, 52.
DOI URL |
[46] | Song YC (2001) Vegetation Ecology. East China Normal University Press, Shanghai. (in Chinese) |
[ 宋永昌 (2001) 植被生态学. 华东师范大学出版社, 上海.] | |
[47] | Tan BX, Li ZY, Chen EX, Pang Y, Wu HG (2008) Research advance in forest information extraction from hyperspectral remote sensing data. Forest Research, 21(A1), 105-111. (in Chinese with English abstract) |
[ 谭炳香, 李增元, 陈尔学, 庞勇, 武红敢 (2008) 高光谱遥感森林信息提取研究进展. 林业科学研究, 21(A1), 105-111.] | |
[48] |
Tang ZY, Jiang MW, Zhang J, Zhang XY (2018) Applications of satellite and air-borne remote sensing in biodiversity research and conservation. Biodiversity Science, 26, 807-818. (in Chinese with English abstract)
DOI URL |
[ 唐志尧, 蒋旻炜, 张健, 张新悦 (2018) 航空航天遥感在物种多样性研究与保护中的应用. 生物多样性, 26, 807-818.] | |
[49] | Thenkabail PS, Lyon JG, Huete A (2018) Biophysical and Biochemical Characterization and Plant Species Studies, 2nd edn. 2nd edn. CRC Press, Taylor & Francis Group, Florida. |
[50] |
Trier ØD, Salberg AB, Kermit M, Rudjord Ø, Gobakken T, Næsset E, Aarsten D (2018) Tree species classification in Norway from airborne hyperspectral and airborne laser scanning data. European Journal of Remote Sensing, 51, 336-351.
DOI URL |
[51] |
Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology and Evolution, 18, 306-314.
DOI URL |
[52] |
Underwood E, Ustin S, DiPietro D (2003) Mapping nonnative plants using hyperspectral imagery. Remote Sensing of Environment, 86, 150-161.
DOI URL |
[53] |
Vaglio Laurin G, Liesenberg V, Chen Q, Guerriero L, Del Frate F, Bartolini A, Coomes D, Wilebore B, Lindsell J, Valentini R (2013) Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa. International Journal of Applied Earth Observation and Geoinformation, 21, 7-16.
DOI URL |
[54] |
Wäldchen J, Mäder P (2018) Machine learning for image based species identification. Methods in Ecology and Evolution, 9, 2216-2225.
DOI URL |
[55] |
Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends in Ecology and Evolution, 17, 379-386.
DOI URL |
[56] | Wu JG (2007) Landscape Ecology: Pattern, Process, Scale and Hierarchy, 2nd edn. Higher Education Press, Beijing. (in Chinese) |
[ 邬建国 (2007) 景观生态学——格局、过程、尺度与等级 (第二版). 高等教育出版社, 北京.] | |
[57] | Xi XF, Zhou GD (2016) A survey on deep learning for natural language processing. Acta Automatica Sinica, 42, 1445-1465. (in Chinese with English abstract) |
[ 奚雪峰, 周国栋 (2016) 面向自然语言处理的深度学习研究. 自动化学报, 42, 1445-1465.] | |
[58] |
Xi YB, Ren CY, Wang ZM, Wei SQ, Bai JL, Zhang B, Xiang HX, Chen L (2019) Mapping tree species composition using OHS-1 hyperspectral data and deep learning algorithms in Changbai Mountains, Northeast China. Forests, 10, 818.
DOI URL |
[59] | Yang C, Wu GF, Li QQ, Wang JL, Qu LQ, Ding K (2018) Research progress on remote sensing classification of vegetation. Geography and Geo-Information Science, 34(4), 24-32. (in Chinese with English abstract) |
[ 杨超, 邬国锋, 李清泉, 王金亮, 渠立权, 丁凯 (2018) 植被遥感分类方法研究进展. 地理与地理信息科学, 34(4), 24-32. | |
[60] | Zhang CY, Qiu F (2012) Mapping individual tree species in an urban forest using airborne lidar data and hyperspectral imagery. Photogrammetric Engineering & Remote Sensing, 78, 1079-1087. |
[61] |
Zhang J, Chen SB, Chen B, Du YJ, Huang XL, Pan XB, Zhang Q (2013) Citizen science: Integrating scientific research, ecological conservation and public participation. Biodiversity Science, 21, 738-749. (in Chinese with English abstract)
DOI |
[ 张健, 陈圣宾, 陈彬, 杜彦君, 黄晓磊, 潘绪斌, 张强 (2013) 公众科学: 整合科学研究、生态保护和公众参与. 生物多样性, 21, 738-749.] | |
[62] | Zhang YJ, Fan CK, Huang K, Liu YJ, Zu JX, Zhu JT (2017) Opportunities and challenges in remote sensing applications to ecosystem ecology. Chinese Journal of Ecology, 36, 809-823. (in Chinese with English abstract) |
[ 张扬建, 范春捆, 黄珂, 刘瑶杰, 俎佳星, 朱军涛 (2017) 遥感在生态系统生态学上应用的机遇与挑战. 生态学杂志, 36, 809-823.] | |
[63] | Zhang ZM, Xu Q, Wang B, Sun H, Geng YP, Tian J (2017) Applications of unmanned aerial vehicles remote sensing technology in landscape ecology. Acta Ecologica Sinica, 37, 4029-4036. (in Chinese with English abstract) |
[ 张志明, 徐倩, 王彬, 孙虎, 耿宇鹏, 田冀 (2017) 无人机遥感技术在景观生态学中的应用. 生态学报, 37, 4029-4036.] | |
[64] | Zhao SD, Zhang YM (2006) Ecosystems and human well-being: The achievements, contributions and prospects of the millennium ecosystem assessment. Advances in Earth Science, 21, 895-902. (in Chinese with English abstract) |
[ 赵士洞, 张永民 (2006) 生态系统与人类福祉——千年生态系统评估的成就、贡献和展望. 地球科学进展, 21, 895-902.] |
[1] | 王永财, 万华伟, 高吉喜, 胡卓玮, 孙晨曦, 吕娜, 张志如. 基于深度学习的我国北方常见天然草地植物识别[J]. 生物多样性, 2024, 32(4): 23435-. |
[2] | 蔡建民, 何培宇, 杨智鹏, 李露莹, 赵启军, 潘帆. 基于深度特征融合的鸟鸣识别方法及其可解释性分析[J]. 生物多样性, 2023, 31(7): 23087-. |
[3] | 李珍珍, 杜梦甜, 朱原辛, 王大伟, 李治霖, 王天明. 基于红外相机的不可个体识别动物种群密度估算方法[J]. 生物多样性, 2023, 31(3): 22422-. |
[4] | 黄雨菲, 路春燕, 贾明明, 王自立, 苏越, 苏艳琳. 基于无人机影像与面向对象-深度学习的滨海湿地植物物种分类[J]. 生物多样性, 2023, 31(3): 22411-. |
[5] | 肖文宏, 李学友, 权锐昌, 连新明, 李明, 聂永刚, 向左甫, 杨维康, 徐峰, 王杰, 周岐海, 范朋飞, 杨锡福, 刘伟, 孙悦华, 张礼标, 黄志旁, 黄华, 范宗骥, 肖治术. 中国兽类多样性监测与研究网络建设: 十年回顾与展望[J]. 生物多样性, 2023, 31(12): 23326-. |
[6] | 申小虎, 朱翔宇, 史洪飞, 王传之. 基于机器学习鸟声识别算法研究进展[J]. 生物多样性, 2023, 31(11): 23272-. |
[7] | 孙翊斐, 王士政, 冯佳伟, 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[8] | 张健, 孔宏智, 黄晓磊, 傅声雷, 郭良栋, 郭庆华, 雷富民, 吕植, 周玉荣, 马克平. 中国生物多样性研究的30个核心问题[J]. 生物多样性, 2022, 30(10): 22609-. |
[9] | 张昭臣, 胡健波, 杨庆松, 练琚愉, 李步杭, 王希华, 叶万辉, 张健. 中国亚热带4个森林动态监测样地无人机可见光遥感影像数据集[J]. 生物多样性, 2021, 29(9): 1181-1185. |
[10] | 陈星, 官天培, 蒋文乐, 李丹丹, 杨孔, 李晟. 中国牛科动物分布与种群现状: 基于文献计量数据[J]. 生物多样性, 2021, 29(5): 668-679. |
[11] | 李晟, William J. McShea, 王大军, 申小莉, 卜红亮, 官天培, 王放, 古晓东, 张晓峰, 廖灏泓. 西南山地红外相机监测网络建设进展[J]. 生物多样性, 2020, 28(9): 1049-1058. |
[12] | 王天明, 冯利民, 杨海涛, 鲍蕾, 王红芳, 葛剑平. 东北虎豹生物多样性红外相机监测平台概述[J]. 生物多样性, 2020, 28(9): 1059-1066. |
[13] | 李学友, 胡文强, 普昌哲, 李权, 于秋鹏, 胡哲畅, William V. Bleisch, 蒋学龙. 西南纵向岭谷区兽类及雉类红外相机监测平台:方案、进展与前景[J]. 生物多样性, 2020, 28(9): 1090-1096. |
[14] | 刘炎林, 宋大昭, 刘蓓蓓, 夏凡, 陈月龙, 王一晴, 黄巧雯. 中国猫科动物红外相机监测平台介绍: 民间环保机构的数据整合[J]. 生物多样性, 2020, 28(9): 1067-1074. |
[15] | 赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平. 声景生态学研究进展和展望[J]. 生物多样性, 2020, 28(7): 806-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn