生物多样性 ›› 2025, Vol. 33 ›› Issue (11): 24574.  DOI: 10.17520/biods.2024574  cstr: 32101.14.biods.2024574

• 技术与方法 • 上一篇    下一篇

环境DNA技术在濒危水生动物监测中的应用

寇毅秀1,2,翁朝红1,2*,吉芬芬1,2*,Kit Yue Kwan1,2,谢仰杰1,2,王家樵1,2,潘杭钊1,2,赵云廷1,2,叶坤1,2   

  1. 1. 集美大学水产学院, 农业农村部东海海水健康养殖重点实验室, 福建厦门 361021; 2. 集美大学水产学院, 福建省海洋渔业资源与生态环境重点实验室, 福建厦门 361021
  • 收稿日期:2024-12-19 修回日期:2025-07-01 出版日期:2025-11-20 发布日期:2025-12-26
  • 通讯作者: 翁朝红
  • 基金资助:
    福建省自然科学基金项目(2023J05156); 厦门市自然基金项目(3502Z20227207); 福建省海洋渔业资源与生态环境重点实验室开放基金资助项目

Applications of environmental DNA techniques in monitoring endangered aquatic animals

Yixiu Kou1,2, Zhaohong Weng1,2*, Fenfen Ji1,2*, Kit Yue Kwan1,2, Yangjie Xie1,2, Jiaqiao Wang1,2, Hangzhao Pan1,2, Yunting Zhao1,2, Kun Ye1,2   

  1. 1 Fisheries College of Jimei University, Key Laboratory of Healthy Mariculture for the East China Sea of Ministry of Agriculture and Rural Affairs, Xiamen, Fujian 361021, China 

    2 Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, Fujian 361021, China

  • Received:2024-12-19 Revised:2025-07-01 Online:2025-11-20 Published:2025-12-26
  • Contact: Zhaohong Weng
  • Supported by:
    Xiamen Natural Science Foundation Project(3502Z20227207); Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment

摘要: 在全球气候变化及人类在海洋和淡水水域活动日益加剧的背景下, 濒危水生动物比濒危陆生物种面临更为严峻的生存危机。为有效保护这些濒危水生动物, 需精准掌握其种群大小、密度、分布及其动态变化等基本信息。然而, 传统野外调查方法耗时费力、主观性强、因濒危水生动物稀少而导致监测效率低、可能对生物及其生境造成伤害或破坏等不足, 亟需调查技术改进或更替。eDNA技术通过检测水体中目标物种DNA片段来识别该物种的存在、分布及其丰度等, 且无需直接捕获生物。近年来环境DNA (environmental DNA, eDNA)技术在濒危水生动物的监测与保护中逐渐崭露头角。本文对eDNA技术在濒危水生动物单一物种种群分布、丰度、生物量、生活史动态追踪等方面的应用进行综述。首先, 梳理了从特异性引物和探针设计、室内模拟实验与数学模型构建到野外采样与实验室分析的全套技术流程与关键步骤。接着, 进一步探讨了影响eDNA检测准确性的主要因素, 包括生物因素(如生物量、个体大小、生理状态)、环境因素(如水温、pH、水流)以及技术环节中可能产生的误差。最后, 客观分析了当前其在精确定量、鉴别活体等方面的不足, 并对未来eDNA技术与遥感、人工智能等多技术融合, 实现标准化、智能化监测的发展方向进行了展望。以期为濒危水生动物资源的保护与管理提供新的方法论支持与理论参考。

关键词: 环境DNA, 濒危水生动物, 种群监测, 技术流程, 影响因素

Abstract

Background & Aims: Endangered aquatic species face greater survival challenges than their terrestrial counterparts under increasing pressures from global climate change and human activities in marine and freshwater ecosystems. Accurate data on population size, density, distribution, and dynamics are critical for effective conservation, yet traditional field surveys suffer from limitations such as high labor demands, subjective biases, and low efficiency due to the rarity of these species. Moreover, conventional methods often disturb both target organisms and their habitats. So it is an urgent need to explore technological improvements or replacements. 

Progress: Environmental DNA (eDNA) technology addresses these challenges by detecting species-specific DNA fragments in water samples, enabling non-invasive monitoring of presence, distribution, and abundance. In recent years, environmental DNA (eDNA) technology has gradually emerged as a prominent tool for monitoring and protecting endangered aquatic species. This paper overviews the eDNA applications for tracking single endangered aquatic species, including population distribution, abundance, biomass, and dynamic of life-history. It summarizes the complete technical workflow-from species-specific primer and probe design, laboratory simulation experiments, and mathematical model construction, to field sampling and laboratory analysis-highlighting each critical step. Furthermore, the review examines the principal factors influencing eDNA detection accuracy, including biological variables (e.g., biomass, body size, physiological status), environmental parameters (e.g., water temperature, pH, flow regime), and potential errors introduced during technical procedures, while objectively addressing current limitations in precise quantification and discrimination of living individuals. 

Prospect: The future development direction of eDNA technology’s integration with multiple technologies such as remote sensing and artificial intelligence to achieve standardized and intelligent monitoring was prospected, with the aim of providing new methodological support and theoretical frameworks for conserving these vulnerable or endangered species.

Key words: environmental DNA, endangered aquatic animals, population monitoring, technical process, influencing factors