生物多样性 ›› 2023, Vol. 31 ›› Issue (1): 22337. DOI: 10.17520/biods.2022337
• 中国野生脊椎动物鸣声监测与生物声学研究专题 • 上一篇 下一篇
王士政1,2,3, 孙翊斐1,2,3, 李珍珍1,2,3, 舒越1,2,3, 冯佳伟1,2,3, 王天明1,2,3,*()
收稿日期:
2022-06-16
接受日期:
2022-11-24
出版日期:
2023-01-20
发布日期:
2022-12-03
通讯作者:
王天明
作者简介:
*E-mail: wangtianming@bnu.edu.cn基金资助:
Shizheng Wang1,2,3, Yifei Sun1,2,3, Zhenzhen Li1,2,3, Yue Shu1,2,3, Jiawei Feng1,2,3, Tianming Wang1,2,3,*()
Received:
2022-06-16
Accepted:
2022-11-24
Online:
2023-01-20
Published:
2022-12-03
Contact:
Tianming Wang
摘要:
声景生态学是一个相对较新和快速发展的研究领域, 被动声学监测技术和声学指数已经成为研究湿地鸟类和声景多样性的重要方法。本研究评价了鸟类迁徙对中国东北图们江流域下游湿地声景日、月和季节变化的影响。我们从2020年11月至2021年12月在图们江下游敬信湿地设置10个采样点, 获得91,988条时长5 min的有效音频, 计算了声音复杂度指数(acoustic complexity index, ACI)、生物声学指数(bioacoustic index, BIO)、声音均匀度指数(acoustic evenness index, AEI)和标准化声景差异指数(normalized difference soundscape index, NDSI)以及1-11 kHz频段的功率谱密度(power spectral density, PSD)。结果表明, 声学指数对鸟类迁徙活动敏感, 其中2个迁徙期声景(2-4月和10-11月)都以1-2 kHz雁类白天的叫声为主, NDSI显著降低, 1-2 kHz的PSD显著升高, 但雁类向北迁徙时几个声学指数变化更为敏感, 有效地捕获了迁徙峰值, 表明不同季节鸟类迁徙模式存在差异。非迁徙期声景由夏候鸟、蛙类和昆虫发声为主, 4种声学指数和PSD随月份呈现不同的动态特征, 反映了声景的多样性和复杂性, 其中5-7月声景以2-11 kHz的夏候鸟鸣唱(呈现显著高的黎明和鸣行为)和2-3 kHz的蛙类鸣叫为主, 8-9月声景以2-3 kHz、4-5 kHz和6-10 kHz频段的夜间昆虫鸣叫为主, 12月至次年1月仅记录到少量的鸟类发声活动。综上所述, 图们江下游湿地声景呈现明显的日和月变化规律, 多种声学指数联合使用可以有效地监测迁徙鸟类物候的变化, 特别是追踪春季雁类向北迁徙的时间和规模。随着全球气候变暖, 我们的结果强调声景监测与声学指数的应用可成为监测迁徙鸟类群落对气候变化响应的有效方法。
王士政, 孙翊斐, 李珍珍, 舒越, 冯佳伟, 王天明 (2023) 鸟类迁徙对图们江下游湿地声景时间格局的影响. 生物多样性, 31, 22337. DOI: 10.17520/biods.2022337.
Shizheng Wang, Yifei Sun, Zhenzhen Li, Yue Shu, Jiawei Feng, Tianming Wang (2023) Effects of bird migration on the temporal patterns of the wetland soundscape in the downstream region of the Tumen River Basin of China. Biodiversity Science, 31, 22337. DOI: 10.17520/biods.2022337.
图1 图们江下游研究区域位置图及10个声学记录采样点
Fig. 1 Map of the study area in downstream of the Tumen River Basin of China showing the 10 sites where audio recordings were collected
示意图 Schematic diagram | 声学指数 Acoustic indices | 声景格局 Soundscape pattern | 参考文献 References |
---|---|---|---|
时频图 Spectrogram | 声音复杂度指数(ACI): 音频中相邻时间窗声强的变异性, 值的范围 > 0。Quantifies the sound complexity for estimating the variability of the intensities between time samples within a frequency band. Range = [0, +]. | 高值代表高水平的鸟类活动; 低值代表持续性的昆虫噪音。High values represent higher levels of bird activity, while low values represent consistent insect noise. | Pieretti et al, |
频谱图 Spectrum | 生物声学指数(BIO): 声谱图中2-11 kHz范围内超过分贝阈值部分的面积, 值的范围 > 0。Estimates the area under curve of the mean spectrum above a specific decibel (dB) threshold within 2-11 kHz. Range = [0, +]. | 高值代表生物声丰富, 大量频段被占据, 最高声和最安静频段差异大; 低值代表在2-11 kHz之间很少有声音。High values represent higher levels of biophonic, in which many frequency bands are occupied, and significant disparity between the loudest and quietest bands; low values represent no sound between 2 and 11 kHz. | Boelman et al, |
声音均匀度指数(AEI): 表示声信号强度在不同频段的均匀度, 计算Gini系数来表示声信号强度在每个1 kHz频段的不均等程度, 值的范围为0-1。Measures the evenness of the acoustic activity distribution estimating the Gini coefficient on the signal proportion in each 1 kHz band. Range = [0, 1]. | 高值代表少数频段由高的声强主导; 低值代表多个频段被占据或者所有频段没有声学活动。High values represent high sound intensity in a restricted range of frequencies; low values represent either high or no acoustic activity across all frequency bins. | Villanueva-Rivera et al, | |
标准化声景差异指数(NDSI): 人造声(1-2 kHz)与生物声(2-11 kHz)频段间声信号功率的比率, 值的范围为-1至1。The ratio of signal power in the frequency bands between anthrophony (1-2 kHz) and biophony (2-11 kHz). Range = [-1, 1]. | 高值代表高水平的生物声, 而低值代表人造声为主。High values represent higher levels of biophonic activity, and minimal noise in 1-2 kHz. |
表1 4种声学指数的定义和属性
Table 1 Summary of four acoustic indices definitions and properties
示意图 Schematic diagram | 声学指数 Acoustic indices | 声景格局 Soundscape pattern | 参考文献 References |
---|---|---|---|
时频图 Spectrogram | 声音复杂度指数(ACI): 音频中相邻时间窗声强的变异性, 值的范围 > 0。Quantifies the sound complexity for estimating the variability of the intensities between time samples within a frequency band. Range = [0, +]. | 高值代表高水平的鸟类活动; 低值代表持续性的昆虫噪音。High values represent higher levels of bird activity, while low values represent consistent insect noise. | Pieretti et al, |
频谱图 Spectrum | 生物声学指数(BIO): 声谱图中2-11 kHz范围内超过分贝阈值部分的面积, 值的范围 > 0。Estimates the area under curve of the mean spectrum above a specific decibel (dB) threshold within 2-11 kHz. Range = [0, +]. | 高值代表生物声丰富, 大量频段被占据, 最高声和最安静频段差异大; 低值代表在2-11 kHz之间很少有声音。High values represent higher levels of biophonic, in which many frequency bands are occupied, and significant disparity between the loudest and quietest bands; low values represent no sound between 2 and 11 kHz. | Boelman et al, |
声音均匀度指数(AEI): 表示声信号强度在不同频段的均匀度, 计算Gini系数来表示声信号强度在每个1 kHz频段的不均等程度, 值的范围为0-1。Measures the evenness of the acoustic activity distribution estimating the Gini coefficient on the signal proportion in each 1 kHz band. Range = [0, 1]. | 高值代表少数频段由高的声强主导; 低值代表多个频段被占据或者所有频段没有声学活动。High values represent high sound intensity in a restricted range of frequencies; low values represent either high or no acoustic activity across all frequency bins. | Villanueva-Rivera et al, | |
标准化声景差异指数(NDSI): 人造声(1-2 kHz)与生物声(2-11 kHz)频段间声信号功率的比率, 值的范围为-1至1。The ratio of signal power in the frequency bands between anthrophony (1-2 kHz) and biophony (2-11 kHz). Range = [-1, 1]. | 高值代表高水平的生物声, 而低值代表人造声为主。High values represent higher levels of biophonic activity, and minimal noise in 1-2 kHz. |
图2 具有不同声学多样性的6秒时频图示例。 A代表只有雁类声信号的声景; B代表雁类和其他鸟类声信号都存在的声景; C代表无雁类声信号, 主要为2-11 kHz频段鸟类声信号的声景; D代表多种昆虫持续性声信号主导的声景。时频图在Kaleidoscope Pro软件(Wildlife Acoustics)中绘制, 使用短时傅里叶变换和Hann窗。
Fig. 2 Examples of 6 s-spectrograms with high and low acoustic diversity. (A) A soundscape with only wild geese vocal signals; (B) A soundscape with both wild geese and other bird vocal signals; (C) A soundscape devoid of wild geese vocal signals and dominated by bird vocal signals in the 2-11 kHz; (D) A soundscape dominated by multiple insect persistent vocal signals. Spectrograms were drawn with Kaleidoscope Pro software (Wildlife Acoustics), using short-time Fourier transform and Hann window type.
图3 迁徙期和非迁徙期声学指数的非度量多维尺度法(NMDS)排序图
Fig. 3 Non-metric multidimensional scaling (NMDS) ordination of the soundscapes between bird migration and non-migration period
图4 五个时段的功率谱密度(PSD)归一化值。PSDi表示频段i的功率谱密度, 即i到(i + 1) kHz频段的功率谱密度。
Fig. 4 Power spectral density (PSD) levels across different periods. PSDi denotes the power spectral density of band i, i.e., the power spectral density of band i to (i + 1) kHz.
声学指数 Acoustic indices | 2-4月 Feb.-Apr. | 5-7月 May-July | 8-9月 Aug.-Sept. | 10-11月 Oct.-Nov. | 12月至次年1月 Dec.-Jan. | P |
---|---|---|---|---|---|---|
声音复杂度指数 Acoustic complexity index (ACI) | 4,530.52 ± 17.78a | 4,622.86 ± 28.88a | 4,523.64 ± 22.69a | 4,449.51 ± 7.54b | 4,413.08 ± 7.26b | < 0.001 |
生物声学指数 Bioacoustic index (BIO) | 10.38 ± 0.48c | 12.22 ± 0.47b | 14.15 ± 0.52a | 8.32 ± 0.19d | 7.15 ± 0.20e | < 0.001 |
声音均匀度指数 Acoustic evenness index (AEI) | 0.90 ± 0.01b | 0.83 ± 0.01c | 0.78 ± 0.01d | 0.90 ± 0.01b | 0.92 ± 0.01a | < 0.001 |
标准化声景差异指数 Normalized difference soundscape index (NDSI) | -0.04 ± 0.07c | 0.46 ± 0.05b | 0.88 ± 0.01a | 0.10 ± 0.06c | 0.40 ± 0.04b | < 0.001 |
表2 一年中各时段4种声学指数的Kruskal-Wallis检验
Table 2 Kruskal-Wallis test of four acoustic indices for different periods
声学指数 Acoustic indices | 2-4月 Feb.-Apr. | 5-7月 May-July | 8-9月 Aug.-Sept. | 10-11月 Oct.-Nov. | 12月至次年1月 Dec.-Jan. | P |
---|---|---|---|---|---|---|
声音复杂度指数 Acoustic complexity index (ACI) | 4,530.52 ± 17.78a | 4,622.86 ± 28.88a | 4,523.64 ± 22.69a | 4,449.51 ± 7.54b | 4,413.08 ± 7.26b | < 0.001 |
生物声学指数 Bioacoustic index (BIO) | 10.38 ± 0.48c | 12.22 ± 0.47b | 14.15 ± 0.52a | 8.32 ± 0.19d | 7.15 ± 0.20e | < 0.001 |
声音均匀度指数 Acoustic evenness index (AEI) | 0.90 ± 0.01b | 0.83 ± 0.01c | 0.78 ± 0.01d | 0.90 ± 0.01b | 0.92 ± 0.01a | < 0.001 |
标准化声景差异指数 Normalized difference soundscape index (NDSI) | -0.04 ± 0.07c | 0.46 ± 0.05b | 0.88 ± 0.01a | 0.10 ± 0.06c | 0.40 ± 0.04b | < 0.001 |
图5 广义加性模型拟合的4种声学指数的年动态变化。 曲线阴影表示95%置信区间。灰色部分代表迁徙期。
Fig. 5 The dynamics of the four acoustic indices throughout the year, with predicted values from generalized additive model (GAM) output for each index. The shadows represent 95% confidence interval, and gray area indicate bird migration period.
图6 广义加性模型拟合的4种声学指数的日变化。 曲线阴影表示95%置信区间, 黄色虚线代表日出(6:00)和日落(18:00)时间。
Fig. 6 Diel patterns of four acoustic indices, with predicted values from generalized additive model (GAM) output for each period. The shadows represent 95% confidence intervals, and dashed vertical lines indicate sunrise (6:00) and sunset (18:00) time.
声学指数 Acoustic indices | 时段 Period | 白天 Day | 夜晚 Night | W | P |
---|---|---|---|---|---|
声音复杂度指数 Acoustic complexity index (ACI) | 2-4月 Feb.-Apr. | 4,612.30 ± 25.94a | 4,460.47 ± 12.26b | 368 | < 0.001 |
5-7月 May-July | 4,656.94 ± 37.25a | 4,596.90 ± 24.96a | 446 | 0.38 | |
8-9月 Aug.-Sept. | 4,554.53 ± 37.00a | 4,494.61 ± 15.23a | 163 | 0.20 | |
10-11月 Oct.-Nov. | 4,484.44 ± 8.30a | 4,417.02 ± 8.51b | 291 | < 0.001 | |
12月至次年1月 Dec.-Jan. | 4,443.98 ± 8.55a | 4,383.45 ± 6.25b | 366 | < 0.001 | |
生物声学指数 Bioacoustic index (BIO) | 2-4月 Feb.-Apr. | 11.71 ± 0.52a | 9.22 ± 0.49b | 317 | < 0.001 |
5-7月 May-July | 12.85 ± 0.48a | 11.65 ± 0.50a | 497 | 0.09 | |
8-9月 Aug.-Sept. | 12.88 ± 0.60b | 15.41 ± 0.49a | 57 | < 0.01 | |
10-11月 Oct.-Nov. | 9.47 ± 0.24a | 7.25 ± 0.20b | 308 | < 0.001 | |
12月至次年1月 Dec.-Jan. | 7.66 ± 0.22a | 6.67 ± 0.19b | 306 | < 0.01 | |
声音均匀度指数 Acoustic evenness index (AEI) | 2-4月 Feb.-Apr. | 0.95 ± 0.06a | 0.68 ± 0.06b | 71 | < 0.001 |
5-7月 May-July | 0.81 ± 0.01b | 0.83 ± 0.01a | 218 | < 0.01 | |
8-9月 Aug.-Sept. | 0.78 ± 0.01a | 0.79 ± 0.02a | 117 | 0.70 | |
10-11月 Oct.-Nov. | 0.88 ± 0.01b | 0.92 ± 0.01a | 63 | < 0.01 | |
12月至次年1月 Dec.-Jan. | 0.91 ± 0.01b | 0.93 ± 0.01a | 73 | < 0.001 | |
标准化声景差异指数 Normalized difference soundscape index (NDSI) | 2-4月 Feb.-Apr. | 0.00 ± 0.07a | -0.09 ± 0.08a | 228 | 0.58 |
5-7月 May-July | 0.52 ± 0.05a | 0.40 ± 0.05a | 482 | 0.14 | |
8-9月 Aug.-Sept. | 0.85 ± 0.02a | 0.90 ± 0.01a | 79 | 0.07 | |
10-11月 Oct.-Nov. | 0.03 ± 0.07a | 0.16 ± 0.07a | 127 | 0.28 | |
12月至次年1月 Dec.-Jan. | 0.35 ± 0.05a | 0.44 ± 0.03a | 148 | 0.17 |
表3 4种声学指数昼夜差异的Mann-Whitney U检验
Table 3 Mann-Whitney U test of four acoustic indices between day and night for different periods
声学指数 Acoustic indices | 时段 Period | 白天 Day | 夜晚 Night | W | P |
---|---|---|---|---|---|
声音复杂度指数 Acoustic complexity index (ACI) | 2-4月 Feb.-Apr. | 4,612.30 ± 25.94a | 4,460.47 ± 12.26b | 368 | < 0.001 |
5-7月 May-July | 4,656.94 ± 37.25a | 4,596.90 ± 24.96a | 446 | 0.38 | |
8-9月 Aug.-Sept. | 4,554.53 ± 37.00a | 4,494.61 ± 15.23a | 163 | 0.20 | |
10-11月 Oct.-Nov. | 4,484.44 ± 8.30a | 4,417.02 ± 8.51b | 291 | < 0.001 | |
12月至次年1月 Dec.-Jan. | 4,443.98 ± 8.55a | 4,383.45 ± 6.25b | 366 | < 0.001 | |
生物声学指数 Bioacoustic index (BIO) | 2-4月 Feb.-Apr. | 11.71 ± 0.52a | 9.22 ± 0.49b | 317 | < 0.001 |
5-7月 May-July | 12.85 ± 0.48a | 11.65 ± 0.50a | 497 | 0.09 | |
8-9月 Aug.-Sept. | 12.88 ± 0.60b | 15.41 ± 0.49a | 57 | < 0.01 | |
10-11月 Oct.-Nov. | 9.47 ± 0.24a | 7.25 ± 0.20b | 308 | < 0.001 | |
12月至次年1月 Dec.-Jan. | 7.66 ± 0.22a | 6.67 ± 0.19b | 306 | < 0.01 | |
声音均匀度指数 Acoustic evenness index (AEI) | 2-4月 Feb.-Apr. | 0.95 ± 0.06a | 0.68 ± 0.06b | 71 | < 0.001 |
5-7月 May-July | 0.81 ± 0.01b | 0.83 ± 0.01a | 218 | < 0.01 | |
8-9月 Aug.-Sept. | 0.78 ± 0.01a | 0.79 ± 0.02a | 117 | 0.70 | |
10-11月 Oct.-Nov. | 0.88 ± 0.01b | 0.92 ± 0.01a | 63 | < 0.01 | |
12月至次年1月 Dec.-Jan. | 0.91 ± 0.01b | 0.93 ± 0.01a | 73 | < 0.001 | |
标准化声景差异指数 Normalized difference soundscape index (NDSI) | 2-4月 Feb.-Apr. | 0.00 ± 0.07a | -0.09 ± 0.08a | 228 | 0.58 |
5-7月 May-July | 0.52 ± 0.05a | 0.40 ± 0.05a | 482 | 0.14 | |
8-9月 Aug.-Sept. | 0.85 ± 0.02a | 0.90 ± 0.01a | 79 | 0.07 | |
10-11月 Oct.-Nov. | 0.03 ± 0.07a | 0.16 ± 0.07a | 127 | 0.28 | |
12月至次年1月 Dec.-Jan. | 0.35 ± 0.05a | 0.44 ± 0.03a | 148 | 0.17 |
[1] | Akbal E, Dogan S, Tuncer T (2022) An automated multispecies bioacoustics sound classification method based on a nonlinear pattern: Twine-pat. Ecological Informatics, 68, 101529. |
[2] |
Au WWL, Mobley J, Burgess WC, Lammers MO, Nachtigall PE (2000) Seasonal and diurnal trends of chorusing humpback whales wintering in waters off western Maui. Marine Mammal Science, 16, 530-544.
DOI URL |
[3] |
Barbaro L, Sourdril A, Froidevaux JSP, Cauchoix M, Calatayud F, Deconchat M, Gasc A (2022) Linking acoustic diversity to compositional and configurational heterogeneity in mosaic landscapes. Landscape Ecology, 37, 1125-1143.
DOI URL |
[4] |
Bedoya C, Isaza C, Daza JM, López JD (2017) Automatic identification of rainfall in acoustic recordings. Ecological Indicators, 75, 95-100.
DOI URL |
[5] |
Benocci R, Brambilla G, Bisceglie A, Zambon G (2020) Eco-acoustic indices to evaluate soundscape degradation due to human intrusion. Sustainability, 12, 10455.
DOI URL |
[6] |
Benocci R, Roman HE, Bisceglie A, Angelini F, Brambilla G, Zambon G (2021) Eco-acoustic assessment of an urban park by statistical analysis. Sustainability, 13, 7857.
DOI URL |
[7] |
Boelman NT, Asner GP, Hart PJ, Martin RE (2007) Multi-trophic invasion resistance in Hawaii: Bioacoustics, field surveys, and airborne remote sensing. Ecological Applications, 17, 2137-2144.
DOI URL |
[8] |
Bradfer-Lawrence T, Gardner N, Bunnefeld L, Bunnefeld N, Willis SG, Dent DH (2019) Guidelines for the use of acoustic indices in environmental research. Methods in Ecology and Evolution, 10, 1796-1807.
DOI |
[9] |
Buxton RT, Brown E, Sharman L, Gabriele CM, Mckenna MF (2016) Using bioacoustics to examine shifts in songbird phenology. Ecology and Evolution, 6, 4697-4710.
DOI PMID |
[10] |
Buxton RT, Mckenna MF, Clapp M, Meyer E, Stabenau E, Angeloni LM, Crooks K, Wittemyer G (2018) Efficacy of extracting indices from large-scale acoustic recordings to monitor biodiversity. Conservation Biology, 32, 1174-1184.
DOI PMID |
[11] | Ceballos G, Ehrlich PR, Dirzo R (2017) Biological annihilation via the ongoing Sixth Mass Extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences, USA, 30, E6089-E6096. |
[12] | Diepstraten J, Willie J (2021) Assessing the structure and drivers of biological sounds along a disturbance gradient. Global Ecology and Conservation, 31, e01819. |
[13] |
Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science, 345, 401-406.
DOI PMID |
[14] | Doser JW, Finley AO, Kasten EP, Gage SH (2020) Assessing soundscape disturbance through hierarchical models and acoustic indices: A case study on a shelterwood logged northern Michigan forest. Ecological Indicators, 113, 106244. |
[15] |
Eldridge A, Guyot P, Moscoso P, Johnston A, Eyre-Walker Y, Peck M (2018) Sounding out ecoacoustic metrics: Avian species richness is predicted by acoustic indices in temperate but not tropical habitats. Ecological Indicators, 95, 939-952.
DOI URL |
[16] |
Favaro L, Cresta E, Friard O, Ludynia K, Mathevon N, Pichegru L, Reby D, Gamba M (2021) Passive acoustic monitoring of the endangered African penguin (Spheniscus demersus) using autonomous recording units and ecoacoustic indices. Ibis, 163, 1472-1480.
DOI URL |
[17] |
Feng JW, Sun YF, Li HL, Xiao YQ, Zhang DD, Smith JLD, Ge JP, Wang TM (2021) Assessing mammal species richness and occupancy in a Northeast Asian temperate forest shared by cattle. Diversity and Distributions, 27, 857-872.
DOI URL |
[18] | Francomano D, Gottesman BL, Pijanowski BC (2020) Biogeographical and analytical implications of temporal variability in geographically diverse soundscapes. Ecological Indicators, 112, 105845. |
[19] | Fu TS, Song YJ, Gao W (1981) Population composition and distribution of waterfowl in Jilin Province. Chinese Journal of Wildlife, (3), 2-6. (in Chinese) |
[傅桐生, 宋榆钧, 高玮 (1981) 吉林省水鸟的种群组成及分布. 野生动物, (3), 2-6.] | |
[20] |
Fuller S, Axel AC, Tucker D, Gage SH (2015) Connecting soundscape to landscape: Which acoustic index best describes landscape configuration? Ecological Indicators, 58, 207-215.
DOI URL |
[21] | Gage SH, Towsey M, Kasten EP (2017) Analytical methods in ecoacoustics. In: Ecoacoustics: The Ecological Role of Sounds (eds Farina A, Gage SH), pp. 273-296. John Wiley & Sons, Oxford. |
[22] |
Gasc A, Sueur J, Jiguet F, Devictor V, Grandcolas P, Burrow C, Depraetere M, Pavoine S (2013) Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279-287.
DOI URL |
[23] | Kasten EP, Gage SH, Fox J, Joo W (2012) The remote environmental assessment laboratory’s acoustic library: An archive for studying soundscape ecology. Ecological Informatics, 12, 50-67. |
[24] |
Krebs JR, Kacelnik A (1983) The dawn chorus in the great tit (Parus major): Proximate and ultimate causes. Behaviour, 83, 287-308.
DOI URL |
[25] |
Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science, 349, 827-832.
DOI PMID |
[26] | Lin TH, Tsao Y, Wang YH, Yen HW, Lu SS (2017) Computing biodiversity change via a soundscape monitoring network. In: 2017 Pacific Neighborhood Consortium Annual Conference and Joint Meetings (PNC 2017), pp. 128-133. IEEE, Tainan, China. |
[27] |
Liu J, Kang J, Luo T, Behm H, Coppack T (2013) Spatiotemporal variability of soundscapes in a multiple functional urban area. Landscape and Urban Planning, 115, 1-9.
DOI URL |
[28] | Marrugan AE, Dornelas M (2010) Biological diversity in a changing world. Transactions of the Royal Society B: Biological Sciences, 365, 3593-3597. |
[29] |
Metcalf OC, Barlow J, Devenish C, Marsden S, Berenguer E, Lees AC (2021) Acoustic indices perform better when applied at ecologically meaningful time and frequency scales. Methods in Ecology and Evolution, 12, 421-431.
DOI URL |
[30] | Metcalf OC, Lees AC, Barlow J, Marsden S, Devenish C (2020) hardRain: An R package for quick, automated rainfall detection in ecoacoustic datasets using a threshold-based approach. Ecological Indicators, 109, 105793. |
[31] | Oliver RY, Ellis DPW, Chmura HE, Krause JS, Pérez JH, Sweet SK, Gough L, Wingfield JC, Boelman NT (2018) Eavesdropping on the Arctic: Automated bioacoustics reveal dynamics in songbird breeding phenology. Science Advances, 4, eaaq1084. |
[32] | Opaev A, Gogoleva S, Palko I, Nguyen VT, Rozhnov V (2021) Annual acoustic dynamics are associated with seasonality in a monsoon tropical forest in South Vietnam. Ecological Indicators, 122, 107269. |
[33] |
Pérez-Granados C, Bota G, Giralt D, Barrero A, Gómez-Catasús J, Bustillo-De La Rosa D, Traba J (2019) Vocal activity rate index: A useful method to infer terrestrial bird abundance with acoustic monitoring. Ibis, 161, 901-907.
DOI URL |
[34] |
Pieretti N, Farina A, Morri D (2011) A new methodology to infer the singing activity of an avian community: The acoustic complexity index (ACI). Ecological Indicators, 11, 868-873.
DOI URL |
[35] |
Pijanowski BC, Villanueva-Rivera LJ, Dumyahn SL, Farina A, Krause BL, Napoletano BM, Gage SH, Pieretti N (2011) Soundscape ecology: The science of sound in the landscape. BioScience, 61, 203-216.
DOI URL |
[36] |
Ridout MS, Linkie M (2009) Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14, 322-337.
DOI URL |
[37] |
Rumelt RB, Basto A, Mere Roncal C (2021) Automated audio recording as a means of surveying tinamous (Tinamidae) in the Peruvian Amazon. Ecology and Evolution, 11, 13518-13531.
DOI PMID |
[38] |
Sanders CE, Mennill DJ (2014) Acoustic monitoring of nocturnally migrating birds accurately assesses the timing and magnitude of migration through the Great Lakes. The Condor, 116, 371-383.
DOI URL |
[39] |
Saunders AA (1947) The seasons of bird song the beginning of song in spring. The Auk, 64, 97-107.
DOI URL |
[40] | Shamon H, Paraskevopoulou Z, Kitzes J, Card E, Deichmann JL, Boyce AJ, McShea WJ (2021) Using ecoacoustics metrices to track grassland bird richness across landscape gradients. Ecological Indicators, 120, 106928. |
[41] |
Silva B, Mestre F, Barreiro S, Alves PJ, Herrera JM (2022) soundClass: An automatic sound classification tool for biodiversity monitoring using machine learning. Methods in Ecology and Evolution, 13, 2356-2362.
DOI URL |
[42] |
Staaterman E, Paris CB, Deferrari HA, Mann DA, Rice AN, D’Alessandro EK (2014) Celestial patterns in marine soundscapes. Marine Ecology Progress Series, 508, 17-32.
DOI URL |
[43] | Sueur J, Farina A, Gasc A, Pieretti N, Pavoine S (2014) Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica, 100, 772-781. |
[44] |
Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends in Ecology & Evolution, 18, 306-314.
DOI URL |
[45] |
Ulloa JS, Aubin T, Llusia D, Bouveyron C, Sueur J (2018) Estimating animal acoustic diversity in tropical environments using unsupervised multiresolution analysis. Ecological Indicators, 90, 346-355.
DOI URL |
[46] |
Villanueva-Rivera LJ, Pijanowski BC, Doucette J, Pekin B (2011) A primer of acoustic analysis for landscape ecologists. Landscape Ecology, 26, 1233-1246.
DOI URL |
[47] | Wang Q, Zhu WH, Zhang D, Liu ZF, Sun P (2010) Ecological evaluation of the wetland in the downstream region of Tumen River. Wetland Science, 8(1), 79-85. (in Chinese with English abstract) |
[王琪, 朱卫红, 张达, 刘志峰, 孙鹏 (2010) 图们江下游地区湿地生态评价. 湿地科学, 8(1), 79-85.] | |
[48] |
Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15, 70-73.
DOI URL |
[49] | Wu JC, Liu JQ, Li LB, Zheng ZH, Cheng L, Zhu WY, Yan GH (2018) Investigation and diversity analysis on the number of winter waterfowl in Jingxin Wetland of Hunchun Nature Reserve in Jilin Province. Journal of Economic Animal, 22(3), 177-180. (in Chinese with English abstract) |
[吴景才, 刘佳琪, 李灵贝, 郑振和, 程龙, 朱文宇, 阎庚华 (2018) 吉林省珲春保护区敬信湿地冬季水鸟数量调查及多样性分析. 经济动物学报, 22(3), 177-180.] | |
[50] | Xie LD (2001) Studies on the Time Domain Characters of Songs and the Stridulatory Organs of Grylloidea from China. PhD dissertation, Shaanxi Normal University, Xi’an. (in Chinese with English abstract) |
[谢令德 (2001) 中国蟋蟀总科昆虫发声器及鸣声时域特征的研究. 博士学位论文, 陕西师范大学,西安.] | |
[51] | Yang G, Zhang B, Jiang M, Wang ZQ, Wang ZM (2006) Biodiversity and their protection in the Jingxin Wetland in the Tumen River Basin. Wetland Science, 4(1), 36-41. (in Chinese with English abstract) |
[杨桄, 张柏, 姜明, 王志强, 王宗明 (2006) 图们江流域敬信湿地生物多样性及其保护对策. 湿地科学, 4(1), 36-41.] | |
[52] | Yang XJ, Jin XS (2000) The water birds and their ecology distribution along the lower reaches of Tumen River. Chinese Journal of Zoology, 35(5), 26-30. (in Chinese with English abstract) |
[杨兴家, 金玄善 (2000) 图们江下游湿地水鸟及其生态分布. 动物学杂志, 35(5), 26-30.] | |
[53] | Yang XJ, Wu ZG (1994) Community structure of Anatidae in spring in Jingxin area of Hunchun, Jilin Province. Chinese Journal of Wildlife, (2), 26-28. (in Chinese) |
[杨兴家, 吴志刚 (1994) 吉林省珲春敬信地区春季鸭科鸟类群落结构的研究. 野生动物, (2), 26-28.] | |
[54] |
Zhao Y, Shen XL, Li S, Zhang YY, Peng RH, Ma KP (2020) Progress and outlook for soundscape ecology. Biodiversity Science, 28, 806-820. (in Chinese with English abstract)
DOI |
[赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平 (2020) 声景生态学研究进展和展望. 生物多样性, 28, 806-820.]
DOI |
|
[55] |
Zheng XJ, Sun P, Zhu WH, Xu Z, Fu J, Man WD, Li HL, Zhang J, Qin L (2017) Landscape dynamics and driving forces of wetlands in the Tumen River Basin of China over the past 50 years. Landscape and Ecological Engineering, 13, 237-250.
DOI URL |
[56] | Zwerts JA, Wiegers JN, Sterck EHM, Van Kuijk M (2022) Exploring spatio-temporal variation in soundscape saturation of an African tropical forest landscape. Ecological Indicators, 137, 108712. |
[1] | 肖治术, 崔建国, 王代平, 王志陶, 罗金红, 谢捷. 现代生物声学的学科发展趋势及中国机遇[J]. 生物多样性, 2023, 31(1): 22423-. |
[2] | 张屹美, 王言一, 何衍, 周冰, 田苗, 夏灿玮. Beta声学指数的特征和应用[J]. 生物多样性, 2023, 31(1): 22513-. |
[3] | 孙翊斐, 王士政, 冯佳伟, 王天明. 东北虎豹国家公园森林声景的昼夜和季节变化[J]. 生物多样性, 2023, 31(1): 22523-. |
[4] | 王言一, 张屹美, 夏灿玮, Anders Pape Møller. Alpha声学指数效应的meta分析[J]. 生物多样性, 2023, 31(1): 22369-. |
[5] | 边琦, 王成, 程贺, 韩丹, 赵伊琳, 殷鲁秦. 声学指数在城市森林鸟类多样性评估中的应用[J]. 生物多样性, 2023, 31(1): 22080-. |
[6] | 赵莹, 申小莉, 李晟, 张雁云, 彭任华, 马克平. 声景生态学研究进展和展望[J]. 生物多样性, 2020, 28(7): 806-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
备案号:京ICP备16067583号-7
Copyright © 2022 版权所有 《生物多样性》编辑部
地址: 北京香山南辛村20号, 邮编:100093
电话: 010-62836137, 62836665 E-mail: biodiversity@ibcas.ac.cn