生物多样性 ›› 2021, Vol. 29 ›› Issue (1): 109-117.  DOI: 10.17520/biods.2020215

• 技术与方法 • 上一篇    下一篇

被动声学监测技术在西黑冠长臂猿监测中的应用

钟恩主1, 管振华1,2, 周兴策1, 赵友杰1, 李函3, 谭绍斌4, 胡坤融1,*()   

  1. 1.西南林业大学大数据与智能工程学院, 昆明 650224
    2.西南林业大学云南生物多样性研究院, 昆明 650224
    3.哀牢山国家级自然保护区, 云南楚雄 675000
    4.楚雄彝族自治州森林和草原资源监测站, 云南楚雄 675000
  • 收稿日期:2020-05-26 接受日期:2020-07-31 出版日期:2021-01-20 发布日期:2020-09-11
  • 通讯作者: 胡坤融
  • 作者简介:*E-mail: hukunrong@swfu.edu.cn
  • 基金资助:
    国家自然科学基金(31960142);云南省教育厅科学研究基金(2017ZZX212);云南省专业学位研究生教学案例库项目;云南省高校优势特色重点学科(生物学)建设项目

Application of passive acoustic monitoring technology in the monitoring of western black crested gibbons

Enzhu Zhong1, Zhenhua Guan1,2, Xingce Zhou1, Youjie Zhao1, Han Li3, Shaobin Tan4, Kunrong Hu1,*()   

  1. 1 College of Big Data and Intelligent Engineering, Southwest Forestry University, Kunming 650224
    2 Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224
    3 Ailao Mountain National Nature Reserve, Chuxiong, Yunnan 675000
    4 Monitoring Station of Forest and Grassland Resources in Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan 675000
  • Received:2020-05-26 Accepted:2020-07-31 Online:2021-01-20 Published:2020-09-11
  • Contact: Kunrong Hu

摘要:

近年来, 被动声学监测技术被广泛应用于陆生哺乳动物的监测, 它能以较低的价格和非侵入的方式在特定区域进行野生动物无人值守监测, 面临的主要问题是需要人工收回数据和后期数据分析整理较为困难。本研究设计了一套被动声学监测系统用于西黑冠长臂猿(Nomascus concolor)监测, 监测系统在野外由太阳能供电, 使用自研的指向性拾音器阵列采集鸣声数据, 并通过无线网桥实时传输数据至管护局办公楼的服务器进行存储, 通过后台的鸣声数据管理系统辅助研究人员识别鸣声和辨认鸣声来源方向, 简化数据采集和处理流程。该系统在哀牢山国家级自然保护区枇杷箐科研监听点对两个西黑冠长臂猿群体进行了351天的连续监测, 特点为: 系统运行长期稳定, 数据通过无线方式传输便捷高效且不受季节天气影响。指向性拾音器阵列能有效分辨长臂猿鸣声来源方向, 弥补了传统监测设备难以分辨鸣声方向的缺陷。该系统与现有人工监测方法相比在数据采集的持续性、连续性、完整度以及鸣声数据处理智能化和监测成本方面均具有一定优势, 符合西黑冠长臂猿持续长期监测需求, 未来可作为西黑冠长臂猿自动化监测的解决方案进行推广应用。

关键词: 被动声学监测, 指向性拾音器阵列, 西黑冠长臂猿, 声源定位

Abstract

Aims: Passive acoustic monitoring technology has begun to be widely used for monitoring terrestrial mammals. Such technology enables the unattended monitoring of wildlife in specific areas at a low-cost and in a non-invasive manner. The main problem, however, is the need to manually retrieve the data. Moreover, the subsequent data analysis and sorting can be complicated.
Innovation: In this study, a passive acoustic monitoring system was designed for monitoring the western black crested gibbon (Nomascus concolor). The monitoring system is powered by solar energy in the field. Sound data are collected by a directional pick-up array. The data are transmitted through a wireless network to a server in the management office building. Researchers are assisted in identifying the sound and the direction of the sound by using the sound-data management system, which simplifies data collection and processing.
Significance: This system has been continuously monitoring two groups of western black crested gibbons for at least 351 days at the monitoring site (of Pipaqing in the Ailao Mountain Nature Reserve). Monitoring results up until now demonstrate that the system has had a long continuous run-time and is not affected by the weather conditions; data transmission is convenient and efficient; the directions of sound source can be determined by the directional pick-up array well, overcoming the shortcomings of traditional monitoring equipment. This system has advantages over manual monitoring methods in terms of data continuity and integrity, intelligence in data processing, and monitoring costs. This system meets the continuous long-term monitoring needs of western black crested gibbons, and can be improved and applied in the future as an automated solution for the monitoring of this primate species.

Key words: passive acoustic monitoring, directional pick-up array, western black crested gibbon, sound source localization