Biodiversity Science ›› 2016, Vol. 24 ›› Issue (8): 888-895.doi: 10.17520/biods.2016079

• Orginal Article • Previous Article     Next Article

Species identification and phylogenetic relationship of Thryssa species in the coastal waters of China

Jing Zhang1, 4, Yuan Li2, Na Song1, Longshan Lin2, Tianxiang Gao3, *()   

  1. 1 Fisheries College, Ocean University of China, Qingdao, Shandong 266003
    2 Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005
    3 School of Fishery, Zhejiang Ocean University, Zhoushan, Zhejiang 316000
    4 Fisheries College, Jimei University, Xiamen, Fujian 361021
  • Received:2016-03-22 Accepted:2016-05-13 Online:2016-09-02
  • Gao Tianxiang E-mail:gaotianxiang0611@163.com

Six Thryssa species were collected from Chinese coastal waters for morphological description and phylogenetic relationships analysis. Results indicated that the position of maxillary extend and number of lower gill rake in the first gill rake were the main morphological characteristics for the identification of six Thryssa species. Mitochondrial COI gene fragments were amplified and sequenced for thirty individuals of Thryssa species. A 525 bp sequence was obtained, containing 175 variable sites, which determines 172 parsimony informative sites, 3 singleton sites, no indels/deletions, 182 transitions, and 57 transversions. An obvious anti-G biasness was noted from the base composition of A and T higher than that of G and C. Comparing homologous sequences from GenBank with our study validates that there are variations among Thryssa species based on the COI sequence. Moreover ten absolute groups were also identified in all sequences based on genetic differences in amino acids and genetic distances between groups. However, this requires further investigation to determine whether there are uncovered cryptic species. The NJ tree indicated that T. setirostris was the first species derived from the genus, and sequences of T. mystax were disorderly clustered with that of T. vitrirostris. The divergence date of Thryssa species presented here is early Miocene. It is suggested that more molecular markers be needed to clarify variations in T. mystax and T. vitrirostris in the future.

Key words: Thryssa, phylogenetic relationship, DNA barcoding, genetic distance, morphology

Table 1

Information of Thryssa samples and sequences in this study"

种名
Species
本研究 This study 引用序列号
Accession no.
地点
Sampling sites
采样时间
Sampling time
编号
Number
赤鼻棱鳀
T. kammalensis
福建省晋江市
Jinjiang, Fujian
2014.3 CB1-CB5 EF607590-607596, JN813096, JQ738607-738609, KF951618, KP260469, KP260453
中颌棱鳀
T. mystax
山东省东营市
Dongying, Shandong
2009.10 ZH1-ZH5 ———
杜氏棱鳀
T. dussumieri
福建省漳州市
Zhangzhou, Fujian
2013.5 DS1-DS5 JX983287-983289
长颌棱鳀
T. setirostris
福建省泉州市
Quanzhou, Fujian
2013.5 CH1-CH5 EF607597-607599, EU541324, JF494684-494688
汉氏棱鳀
T. hamiltonii
福建省晋江市
Jinjiang, Fujian
2013.11 HS1-HS5 EF607588, EF607589, JQ681498, EU148567-148570
黄吻棱鳀
T. vitrirostris
广东省江门市
Jiangmen, Guangdong
2013.3 HW1-HW5 JF494689-494693

Table 2

Range of standard length and meristic values of the samples of six Thryssa species"

Fig. 1

Phylogenetic tree of Thryssa vitrirostris and T. mystax based on all haplotypes. Shared haplotypes are in the box."

Table 3

Base composition and number of haplotypes of mitochondrial COI gene segment in six Thryssa species"

种类 Species 碱基组成 Nucleotide composition (%) 单倍型数量
Number of haplotypes
T(U) C A G
赤鼻棱鳀 T. kammalensis 31.6 25.3 25.5 17.5 1
中颌棱鳀 T. mystax 30.3 26.1 26.1 17.5 2
杜氏棱鳀 T. dussumieri 28.4 26.2 26.6 18.8 2
长颌棱鳀 T. setirostris 28.8 27.1 25.3 18.9 2
汉氏棱鳀 T. hamiltonii 30.3 25.1 25.0 19.6 2
黄吻棱鳀 T. vitrirostris 30.3 26.1 26.1 17.5 3
平均 Average 29.9 26.1 25.5 18.5 -

Fig. 2

Phylogenetic tree of Thryssa species based on neighbor-joining method"

Table 4

Genetic distances within and among groups, the divergence dates between ten groups based on COI gene"

组群1
Group 1
组群2
Group 2
组群3
Group 3
组群4
Group 4
组群5
Group 5
组群6
Group 6
组群7
Group 7
组群8
Group 8
组群9
Group 9
组群10
Group 10
组群1 Group 1 0.001 2.83 2.75 13.58 15.75 15.25 15.33 15.08 13.92 14.50
组群2 Group 2 0.034 0.001 4.00 14.42 15.17 14.00 14.42 15.00 15.33 15.83
组群3 Group 3 0.033 0.048 - 13.58 14.50 14.92 16.75 16.17 14.83 15.50
组群4 Group 4 0.163 0.173 0.163 0.004 15.50 16.08 17.33 14.75 16.25 16.33
组群5 Group 5 0.189 0.182 0.174 0.186 0.002 16.83 17.83 15.83 15.42 17.00
组群6 Group 6 0.183 0.168 0.179 0.193 0.202 0.001 12.25 15.50 15.50 16.33
组群7 Group 7 0.184 0.173 0.201 0.208 0.214 0.147 0.003 14.25 15.92 16.17
组群8 Group 8 0.181 0.180 0.194 0.177 0.190 0.186 0.171 0.003 17.42 16.08
组群9 Group 9 0.167 0.184 0.178 0.195 0.185 0.186 0.191 0.209 - 13.67
组群10 Group 10 0.174 0.190 0.186 0.196 0.204 0.196 0.194 0.193 0.164 0.001
[1] Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Molecular Systematics of Fishes (eds Kocher TD, Stepier CA), pp. 113-126. Academic Press, San Diego.
[2] Bloom DD, Lovejoy NR (2012) Molecular phylogenetics reveals a pattern of biome conservatism in New World anchovies (family Engraulidae). Journal of Evolutionary Biology, 25, 701-715.
[3] Chen WT, Ma XH, Shen YJ, Mao YT, He SP (2015) The fish diversity in the upper reaches of the Salween River, Nujiang River, revealed by DNA barcoding. Scientific Reports, Doi: 10.1038/srep17437.
[4] Gao TX, Ji DP, Xiao YS, Xue TQ, Yanagimoto T, Setoguma T (2011) Description and DNA barcoding of a new Sillago species, Sillago sinica (Perciformes: Sillaginidae), from coastal waters of China. Zoological Studies, 50, 254-263.
[5] Guo XW, Tang QS (2000) Consumption and ecological conversion efficiency of Thrissa kammalensis. Journal of Fisheries of China, 24, 422-427. (in Chinese with English abstract)
[郭学武, 唐启升 (2000) 赤鼻棱鳀的摄食与生态转换效率. 水产学报, 24, 422-427.]
[6] Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences, 270, 313-321.
[7] Hyde JR, Vetter RD (2007) The origin, evolution, and diversification of rockfishes of the genus Sebastes (Cuvier). Molecular Phylogenetics and Evolution, 44, 790-811.
[8] Jia XP, Li YZ, Li CH, Qiu YS, Gan JL (2004) Environment and Fishery Resources in the Exclusive Economic Zone and the Continental Shelf of South China Sea, pp. 339-542. Science Press, Beijing. (in Chinese)
[贾晓平, 李永振, 李纯厚, 邱永松, 甘居利 (2004) 南海专属经济区和大陆架渔业生态环境与渔业资源, 339-542. 科学出版社, 北京.]
[9] Ko HL, Wang YT, Chiu TS, Lee MA, Leu MY, Chang KZ, Chen WY, Shao KT (2012) Evaluating the accuracy of morphological identification of larval fishes by applying DNA barcoding. PLoS ONE, 8, e53451.
[10] Krück NC, Tibbetts IR, Ward RD, Johnson JW, Loh WKW, Ovenden JR (2013) Multi-gene barcoding to discriminate sibling species within a morphologically difficult fish genus (Sillago). Fisheries Research, 143, 39-46.
[11] Lavoué S, Miya M, Nishida M (2010) Mitochondrial phylogenomics of anchovies (family Engraulidae) and recurrent origins of pronounced miniaturization in the order Clupeiformes. Molecular Phylogenetics and Evolution, 56, 480-485.
[12] Li ZY, Jin XS, Zhuang ZM, Su YQ, Tang QS (2007) Food competition of Engraulis japonicus and Thryssa kammalensis from the southern Yellow Sea in spring. Journal of Fishery Sciences of China, 14, 630-636. (in Chinese with English abstract)
[李忠义, 金显仕, 庄志猛, 苏永全, 唐启升 (2007) 南黄海春季鳀和赤鼻棱鳀的食物竞争. 中国水产科学, 14, 630-636.]
[13] Li Y, Song N, Khan FS, Yanagimoto T, Gao TX (2013) New evidence of morphological characters and DNA barcoding of Pampus argenteus (Euphrasen, 1788). Journal of Fisheries of China, 37, 1-9. (in Chinese with English abstract)
[李渊, 宋娜, Khan FS, 柳本卓, 高天翔 (2013) 银鲳形态特征与DNA条形码研究. 水产学报, 37, 1-9.]
[14] Li Y, Zhang LY, Song PQ, Zhong ZH, Zhang R, Gao TX, Lin LS (2014) A new record of Sillago species in Fujian coastal waters—Sillago sinica (Gao and Xue, 2011). Journal of Applied Oceanography, 33, 546-552. (in Chinese with English abstract)
[李渊, 张丽艳, 宋普庆, 钟指挥, 张然, 高天翔, 林龙山 (2014) 福建省沿海鱚属(Sillago)鱼类新记录种——中国鱚(Sillago sinica Gao and Xue, 2011). 应用海洋学学报, 33, 546-552.]
[15] Ma CY, Ma LB, Ni Y, Shen AL, Zhang Y, Zhang FY, Zhao YL (2010) Phylogenetic relationship of Thryssa inferred from morphologic characteristic and mitochondrial 16S rRNA gene sequences. Journal of Fishery Sciences of China, 17, 471-476. (in Chinese with English abstract)
[马春艳, 马凌波, 倪勇, 沈盎绿, 张永, 张凤英, 赵云龙 (2010) 基于形态特征和线粒体16S rRNA基因序列探讨棱鳀属的系统进化. 中国水产科学, 17, 471-476.]
[16] Shen YJ, Guan LH, Wang DQ, Gan XN (2016a) DNA barcoding and evaluation of genetic diversity in Cyprinidae fish in the midstream of the Yangtze River. Ecology and Evolution, Doi:10.1002/ece3.2060.
[17] Shen YJ, Kang JL, Chen WT, He SP (2016b) DNA barcoding for the identification of common economic aquatic products in Central China and its application for the supervision of the market trade. Food Control, 61, 79-91.
[18] Summerer M, Hanel R, Sturmbauer C (2001) Mitochondrial phylogeny and biogeographic affinities of sea breams of the genus Diplodus (Sparidae). Journal of Fish Biology, 59, 1638-1652.
[19] Sun DR, Chen Z (2013) Fish Retrieval of South China Sea (Volume I), pp. 120-123. China Ocean Press, Beijing. (in Chinese)
[孙典荣, 陈铮 (2013) 南海鱼类检索 (上册), 120-123. 海洋出版社, 北京.]
[20] Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1847-1857.
[21] Whitehead PJP, Nelson GJ, Wongratana F (1988) FAO Species Catalogue, Vol. 7: Clupeoid Fishes of the World (suborder Clupeoidei): an Annotated and Illustrated Catalogue of the Herrings, Sardines, Pilchards, Sprats, Shads, Anchovies and Wolf-herrings (Part 2): Enggraulidae, Food and Agriculture Organization of the United Nations, Rome, pp. 305-579.
[22] Zhang H, Zhang Y, Zhang ZH, Gao TX (2013) DNA barcodes of eight species in genus Sebastes. Biochemical Systematics and Ecology, 48, 45-50.
[23] Zhang JB, Hanner R (2012) Molecular approach to the identification of fish in the South China Sea. PLoS ONE, 7, e30621.
[24] Zhang SY (2001) Fauna Sinica: Osteichthyes, Acipenseriformes, Elopiforms, Clupeiformes, Gonorhynchiformes, pp. 137-147. Science Press, Beijing. (in Chinese)
[张世义 (2001) 中国动物志∙硬骨鱼纲: 鲟形目、海鲢目、鲱形目、鼠鱚目, 137-147. 科学出版社, 北京.]
[25] Zhou MY, Chen X, Yang SY (2015) Identification of several fish eggs and larvae by DNA barcoding in Xiamen Water. Marine Environmental Science, 34, 120-125. (in Chinese with English abstract)
[周美玉, 陈骁, 杨圣云 (2015) 采用DNA条形码技术对厦门海域鱼卵、仔稚鱼种类的鉴定. 海洋环境科学, 34, 120-125.]
[26] Zhu YD. Wu HL, Jin XB, Meng QW, Liu J, Lian ZS, Shen GY, Huang ST, Chen HX, Zhang QY, Li WD, Wu XH (1984) Fish of Fujian (Vol. I), pp. 140-153. Fujian Science and Technology Publishing House, Fuzhou. (in Chinese)
[朱元鼎, 伍汉霖, 金鑫波, 孟庆闻, 刘基, 连珍水, 沈根媛, 黄少涛, 陈焕新, 张其永, 李婉端, 吴秀鸿 (1984) 福建鱼类志 (上卷), 140-153. 福建科学技术出版社, 福州.]
[1] Gu Yufeng,Jin Dongmei,Liu Baodong,Dai Xiling,Yan Yuehong. (2020) Morphology Characters and Evolution of Ferns Scale Ι: Pteridaceae . Chin Bull Bot, 55(2): 163-176.
[2] Wei Wang,Yang Liu. (2020) The current status, problems, and policy suggestions for reconstructing the plant tree of life . Biodiv Sci, 28(2): 176-188.
[3] Liu Shanlin. (2019) DNA barcoding and emerging reference construction and data analysis technologies . Biodiv Sci, 27(5): 526-533.
[4] Shao Xinning, Song Dazhao, Huang Qiaowen, Li Sheng, Yao Meng. (2019) Fast surveys and molecular diet analysis of carnivores based on fecal DNA and metabarcoding . Biodiv Sci, 27(5): 543-556.
[5] Hu Jianlin,Liu Zhifang,Ci Xiuqin,Li Jie. (2019) Use of DNA Barcoding in Identifying Tropical Trees from Dipterocarpaceae . Chin Bull Bot, 54(3): 350-359.
[6] ZOU Xian-Hua, HU Ya-Nan, WEI Dan, CHEN Si-Tong, WU Peng-Fei, MA Xiang-Qing. (2019) Correlation between endogenous hormone and the adaptability of Chinese fir with high phosphorus-use efficiency to low phosphorus stress . Chin J Plant Ecol, 43(2): 139-151.
[7] Chen Zuoyi, Xu Xiaojing, Zhu Suying, Zhai Mengyi, Li Yang. (2019) Species diversity and geographical distribution of the Chaetoceros lorenzianus complex along the coast of China . Biodiv Sci, 27(2): 149-158.
[8] Zeng Yinwei, Cao Yuman, Sha Xuyang, Li Shuxia, Yang Peizhi, Hu Tianming, Liu Jinlong. (2018) An Observation Method of Nodule and Root Morphology without Damage in Real-time . Chin Bull Bot, 53(5): 661-670.
[9] Hou Qinxi, Ci Xiuqin, Liu Zhifang, Xu Wumei, Li Jie. (2018) Assessment of the evolutionary history of Lauraceae in Xishuangbanna National Nature Reserve using DNA barcoding . Biodiv Sci, 26(3): 217-228.
[10] ZHENG Shan-Shan, CHEN Xu-Bo, XU Wei-Nan, LUO Zheng-Rong, XIA Geng-Shou. (2018) Effects of exotic-native species relationship on naturalization and invasion of exotic plant species . Chin J Plant Ecol, 42(10): 990-999.
[11] Xue Zhang, Yurui Wang, Yangbo Fan, Xiaotian Luo, Xiaozhong Hu, Feng Gao. (2017) Morphology, ontogeny and molecular phylogeny of Euplotes aediculatus Pierson, 1943 (Ciliophora, Euplotida) . Biodiv Sci, 25(5): 549-560.
[12] Wei Wang, Xiaoxia Zhang, Zhiduan Chen, Anming Lu. (2017) Comments on the APG’s classification of angiosperms . Biodiv Sci, 25(4): 418-426.
[13] Jinfeng Hao, Xiaohong Zhang, Yusong Wang, Jinlin Liu, Yongchao Zhi, Xinjiang Li. (2017) Diversity investigation and application of DNA barcoding of Acridoidea from Baiyangdian Wetland . Biodiv Sci, 25(4): 409-417.
[14] Xile Zhou, Dongmei Jin, Yicheng Liu, Hui Shang, Yuehong Yan. (2017) Sporangia Morphology of Ferns I. Lindsaeaceae . Chin Bull Bot, 52(3): 322-330.
[15] Xiuqin Ci,Jie Li. (2017) Phylogenetic diversity and its application in floristics and biodiversity conservation . Biodiv Sci, 25(2): 175-181.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed