Biodiversity Science ›› 2016, Vol. 24 ›› Issue (3): 296-303.doi: 10.17520/biods.2015259

• Orginal Article • Previous Article     Next Article

Genetic relationships of buckwheat species based on the sequence analysis of ITS and ndhF-rpl32

Yani Hu1, 2, Zongwen Zhang2, 3, *(), Bin Wu2, Jia Gao2, Yanqin Li1, *()   

  1. 1 Institute of Biotechnology, Shanxi University, Taiyuan 030006
    2 Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081
    3 China Office of Biodiversity International, Beijing 100081
  • Received:2015-09-21 Accepted:2016-03-02 Online:2016-04-05
  • Zhang Zongwen,Li Yanqin;

Buckwheat was originated in China and evolved into abundant species and genetic diversity. In order to effectively use germplasm resources of buckwheat and its wild relatives, the genetic relationships of buckwheat species were analyzed on 71 Fagopyrum samples including 10 species (subspecies, varieties and complex), which were collected mainly from Sichuan, Guizhou and Gansu provinces. Through the analysis of ITS and ndhF-rpl32 sequences and the construction of phylogenetic trees, the inter- and intra-specific relationships of these species were discussed. Results showed that the sequence length of ITS was 725 bp in the matrix, while the parsimony informative sites was 150, accounting for 20.7% of the total length. In the matrix of ndhF-rpl32 sequence, the length was 940 bp, while the parsimony informative sites was 158, accounting for 16.8% of total length. On one hand, the phylogenetic trees based on both ITS and ndhF-rpl32 sequencing data clearly separated the big-achene-group buckwheat (F. tataricum, F. cymosum complex, F. esculentum and F. esculentum ssp. ancestralis) from the small-achene-group buckwheat (F. gracilipes var. odontopterum, F. leptopodum var. grossii, F. leptopodum, F. densovillosum, F. gracilipes, and F. urophyllum). On the other hand, the phylogenetic tree based on ndhF-rpl32 sequences can be used to distinguish F. esculentum ssp. ancestralis and F. esculentum, which indicated that the ndhF-rpl32 sequence was more effective in analyzing the phylogenetic relationships of buckwheat species. These results provide a scientific basis for studies of taxonomy and establishing barcodes of Fagopyrum species.

Key words: buckwheat, genetic relationships, ITS, ndhF-rpl32

Table 1

The Latin names and sources of the tested Fagopyrum materials"

Collecting number
Collecting number
齿翅野荞 Fagopyrum gracilipes var. odontopterum 细柄野荞 F. gracilipes
YXCC201211030 四川越西 Yuexi, Sichuan a1 XDXB201211028 四川喜德 Xide, Sichuan g1
ZJCC2012102601 四川昭觉 Zhaojue, Sichuan a2 ZJXB2012102602 四川昭觉 Zhaojue, Sichuan g2
ZJCC2012102603 四川昭觉 Zhaojue, Sichuan a3 ZJXB2012102605 四川昭觉 Zhaojue, Sichuan g3
ZJCC2012102604 四川昭觉 Zhaojue, Sichuan a4 ZJXB2012102703 四川昭觉 Zhaojue, Sichuan g4
ZJCC2012102704 四川昭觉 Zhaojue, Sichuan a5 MGXB2012102901 四川美姑 Meigu, Sichuan g5
BTCC2012102706 四川布拖 Butuo, Sichuan a6 HLXB2012110303 四川会理 Huili, Sichuan g6
ZJCC2012102801 四川昭觉 Zhaojue, Sichuan a7 HLXB2012110306 四川会理 Huili, Sichuan g7
MGCC2012102902 四川美姑 Meigu, Sichuan a8 HDXB2012110404 四川会东 Huidong, Sichuan g8
LBCC2012103002 四川雷波 Leibo, Sichuan a9 HDXB2012110501 四川会东 Huidong, Sichuan g9
HLCC2012110304 四川会理 Huili, Sichuan a10 HDCC2012110504 四川会东 Huidong, Sichuan g10
HLCC2012110305 四川会理 Huili, Sichuan a11 HDXB2012110504 四川会东 Huidong, Sichuan g11
HDCC2012110502 四川会东 Huidong, Sichuan a12 HLXB2012110301 四川会理 Huili, Sichuan g12
HDCC2012110503 四川会东 Huidong, Sichuan a13 MNXB201210006 四川冕宁 Mianning, Sichuan g13
YXCC201211040 四川越西 Yuexi, Sichuan a14 XDXB201210014 四川喜德 Xide, Sichuan g14
YXCC201211044 四川越西 Yuexi, Sichuan a15 XDXB201211046 四川喜德 Xide, Sichuan g15
YYCC201210012 四川盐源 Yanyuan, Sichuan a16 YXXB201211031 四川越西 Yuexi, Sichuan g16
HDCC2012110402 四川越西 Yuexi, Sichuan a17 金荞复合体 F. cymosum complex
栽培苦荞 F. tataricum XDJQ201210004 四川喜德 Xide, Sichuan h1
XDKQ201210003 四川喜德 Xide, Sichuan b1 MNJQ201210007 四川冕宁 Mianning, Sichuan h2
XDKQ201210005 四川喜德 Xide, Sichuan b2 XDKQ201210017 西川喜德 Xide, Sichuan h3
XDKQ201210013 四川喜德 Xide, Sichuan b3 XDJQ201210022 西川喜德 Xide, Sichuan h4
XDKQ201210019 四川喜德 Xide, Sichuan b4 YXJQ201211029 四川越西 Yuexi, Sichuan h5
XDKQ201210020 四川喜德 Xide, Sichuan b5 YXJQ201211039 四川越西 Yuexi, Sichuan h6
YXKQ201211032 四川越西 Yuexi, Sichuan b6 XDJQ201211045 四川喜德 Xide, Sichuan h7
YXKQ201211033 四川越西 Yuexi, Sichuan b7 DCJQ2012110302 四川德昌 Dechang, Sichuan h8
疏穗小野荞 F. leptopodum var.grossii PGJQ2012110601 四川普格 Puge, Sichuan h9
GLSS201211037 四川甘洛 Ganluo, Sichuan c1 DCJQ2012110202 四川德昌 Dechang, Sichuan h10
GLSS201211038 四川甘洛 Ganluo, Sichuan c2 HDJQ2012110403 四川会东 Huidong, Sichuan h11
GLSS201211050 四川甘洛 Ganluo, Sichuan c3 XDKQ201210018 四川喜德 Xide, Sichuan h12
GLSS201211052 四川甘洛 Ganluo, Sichuan c4 YXJQ201211043 四川越西 Yuexi, Sichuan h13
YXSS201211051 四川越西 Yuexi, Sichuan c5 硬枝万年荞 F. urophyllum
野生甜荞 F. esculentum ssp. ancestralis YYYZ201210011 四川盐源 Yanyuan, Sichuan i1
XCYTQ201210008 四川西昌 Xichang, Sichuan d1 LBYZ2012103004 四川雷波 Leibo, Sichuan i2
LBTJ2012103001 四川雷波 Leibo, Sichuan d2 MGYZ2012102903 四川美姑 Meigu, Sichuan i3
小野荞 F. leptopodum 栽培甜荞 F. esculentum
XDXY201210021 四川喜德 Xide, Sichuan e1 00000664 甘肃武威 Wuwei, Gansu j1
MNXY201210024 四川冕宁 Mianning, Sichuan e2 00000906 贵州威宁 Weining, Guizhou j2
密毛野荞 F. densovillosum 米苦荞 F. tataricum
MGMM2012102804 四川美姑 Meigu, Sichuan f1 YXXMQ201211034 四川越西 Yuexi, Sichuan k1
LBMM2012103003 四川雷波 Leibo, Sichuan f2 YXXMQ201211042 四川越西 Yuexi, Sichuan k2

Table 2

The G+C contents of ITS and ndhF-rpl32 sequences in Fagopyrum species"

种名 Species ITS (%) ndhF-rpl32 (%)
齿翅野荞 F. gracilipes var. odontopterum 65.57 24.17
栽培苦荞 F. tataricum 67.65 22.79
疏穗小野荞 F. leptopodum var. grossii 65.96 22.01
野生甜荞 F. esculentum ssp. ancestralis 66.46 24.47
小野荞 F. leptopodum 66.82 23.43
密毛野荞 F. densovillosum 65.34 24.77
细柄野荞 F. gracilipes 65.81 23.17
金荞复合体 F. cymosum complex 65.80 22.75
硬枝万年荞 F. urophyllum 63.93 24.68
栽培甜荞 F. esculentum 65.47 24.13
米苦荞 F. tataricum 67.95 23.40

Table 3

Distance within Fagopyrum species based on ITS and ndhF-rpl32 sequences"

种名 Species ITS ndhF-rpl32
齿翅野荞 F. gracilipes var. odontopterum 0.001 0.182
栽培苦荞 F. tataricum 0.003 0.000
疏穗小野荞 F. leptopodum var. grossii 0.002 0.002
野生甜荞 F. esculentum ssp. ancestralis 0.107 0.001
小野荞 F. leptopodum 0.062 0.021
密毛野荞 F. densovillosum 0.003 0.018
细柄野荞 F. gracilipes 0.001 0.099
金荞复合体 F. cymosum complex 0.028 0.026
硬枝万年荞 F. urophyllum 0.165 0.014
栽培甜荞 F. esculentum 0.110 0.000
米苦荞 F. tataricum 0.000 0.001

Table 4

Distance between Fagopyrum species based on ITS (below diagonal) and ndhF-rpl32 (above diagonal) sequences"

齿翅野荞(CC) F. gracilipes var. odontopterum 0.191 0.024 0.198 0.001 0.001 0.001 0.191 0.027 0.197 0.191
F. tataricum
0.157 0.185 0.037 0.191 0.190 0.191 0.007 0.188 0.039 0.001
F. leptopodum var. grossii
0.034 0.169 0.191 0.025 0.024 0.025 0.186 0.021 0.194 0.186
F. esculentum ssp. ancestralis
0.193 0.145 0.209 0.199 0.198 0.199 0.039 0.194 0.003 0.038
F. leptopodum
0.031 0.176 0.038 0.204 0.001 0.000 0.192 0.028 0.198 0.192
F. densovillosum
0.003 0.160 0.036 0.196 0.033 0.001 0.191 0.027 0.197 0.191
F. gracilipes
0.001 0.157 0.034 0.193 0.031 0.003 0.191 0.027 0.198 0.192
F. cymosum complex
0.144 0.059 0.156 0.144 0.161 0.147 0.144 0.188 0.041 0.008
F. urophyllum
0.111 0.238 0.117 0.267 0.118 0.114 0.112 0.217 0.197 0.189
F. esculentum
0.211 0.170 0.233 0.133 0.226 0.214 0.211 0.168 0.279 0.040
米苦荞 (MKQ)
F. tataricum
0.156 0.002 0.168 0.146 0.175 0.159 0.156 0.060 0.237 0.071

Fig. 1

Neighbor-joining trees of the genus Fagopyrum resulted from (A) ITS sequences; (B) ndhF-rpl32 sequences."

1 Chen QF (1999a) A study of resources of Fagopyrum (Polygonaceae) native to China. Botanical Journal of the Linnean Society, 130, 53-64.
2 Chen QF (1999b) Hybridization between Fagopyrum (Polygonaceae) species native to China. Botanical Journal of the Linnean Society, 131, 177-185.
3 Chen QF (2004) A study of isozyme and interspecific hybridization on big-achene group of buckwheat species (Fagopyrum, Polygonaceae). Crop Sciences, 44, 1151-1158.
4 Chen QF (2012) Plant Sciences on Genus Fagopyrum. Science Press, Beijing.(in Chinese)
[陈庆富 (2012) 荞麦属植物科学. 科学出版社, 北京.]
5 Doyle JJ (1986) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
6 Han JP, Song JY, Liu C, Chen J, Qian J, Zhu YJ, Shi LC, Yao H, Chen SL (2010) Identification of Cistanche species (Orobanchaceae) based on sequences of the plastid psbA- trnH intergenic region. Acta Pharmaceutica Sinica, 45, 126-130.
7 Hedberg O (1946) Pollen morphology in the genus Polygonees L. (s. lat.) and its taxonomical significance. Svensk Botaisk Tidskrift, 40, 371-404.
8 Hirose T, Ujihara A, Kitayashi H, Minami M (1995) Pollen tube behavior related to self incompatibility in interspecific crosses of Fagopyrum. Breeding Science, 45, 65-70.
9 Hou YJ, Zhang ZW, Wu B, Li YQ (2009) Genetic diversity in tartary buckwheat revealed by AFLP analysis. Scientia Agricultura Sinica, 42, 4166-4174.(in Chinese with English abstract)
[侯雅君, 张宗文, 吴斌, 李艳琴 (2009) 苦荞种质资源AFLP标记遗传多样性分析. 中国农业科学, 42, 4166-4174.]
10 Liu J, He T, Chun Z (2009) Analysis and authentication of chloroplast matK gene sequences of Herba dendrobii. Acta Pharmaceutica Sinica, 44, 1051-1055.(in Chinese with English abstract)
[刘静, 何涛, 淳泽 (2009) 药用石斛的叶绿体matK基因序列分析及鉴别. 药学学报, 44, 1051-1055.]
11 Ohsako T, Ohishi O (2000) Intra and interspecific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA. American Journal of Botany, 87, 573-582.
12 Sharma TR, Jana S (2002a) Random amplified polymorphic DNA (RAPD) variation in Fagopyrum tataricum Gaertn. accessions from China and the Himalayan region. Euphytica, 127, 327-333.
13 Sharma TR, Jana S (2002b) Species relationships in Fagopyrum revealed by PCR based DNA fingerprinting. Theoretical & Applied Genetics, 105, 306-312.
14 Shevchuk TE, Gavrilyuk IP, Konarev VG (1981) Immunochemical analysis of the affinities of the genus Fagopyrum and the species of some other genera of the family Polygonaceae. Botanical Journal, 66, 259-267.
15 Shi JQ, Li YQ, Zhang ZW, Wu B, Wang AH (2015) Genetic diversity of buckwheat and its wild species. Journal of Plant Genetic Resources, 16, 443-450.(in Chinese with English abstract)
[史建强, 李艳琴, 张宗文, 吴斌, 王安虎 (2015) 荞麦及其野生种遗传多样性分析. 植物遗传资源学报, 16, 443-450.]
16 Steward AN (1930) The Polygonaceae of Eastern Asia. Contributions from the Gray Herbarium of Harvard University, Boston.
17 Tsuji K, Ohnishi O (2001) Phylogenetic position of east Tibetan natural populations in Tartary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genetic Resources and Crop Evolution, 48, 63-67.
18 Wang AH, Xia MZ, Cai GZ, Ren YH (2006) Study of the characteristics and geographical distribution of wild buckwheat resources in eastern Liangshan of Sichuan Province. Crops, (5), 25-27.(in Chinese)
[王安虎, 夏明忠, 蔡光泽, 任迎虹 (2006) 四川省凉山州东部野生荞麦资源的特征特性和地理分布研究. 作物杂志, (5), 25-27.]
19 Wang AH, Xia MZ, Cai GZ, Yang P (2008a) The origin of cultivating buckwheat and the genetic analysis of the kindred species. Southwest China Journal of Agricultural Sciences, 21, 282-285.(in Chinese with English abstract)
[王安虎, 夏明忠, 蔡光泽, 杨坪 (2008a) 栽培苦荞麦的起源及其近缘种亲缘分析. 西南农业学报, 21, 282-285.]
20 Wang AH, Xia MZ, Cai GZ, Ren YH (2008b) Studies on the characteristics and the geographical distribution diversity of wild buckwheat resources in Sichuan. Southwest China Journal of Agricultural Sciences, 21, 575-580.(in Chinese with English abstract)
[王安虎, 夏明忠, 蔡光泽, 任迎虹 (2008b) 四川野生荞麦资源的特征特性与地理分布多样性研究. 西南农业学报, 21, 575-580.]
21 Wang LH, Yin FY, Liu JM, Ye CR (2004) Genetic diversity and relationships of the wild buckwheat resources from Yunnan Province by RAPD. Molecular Plant Breeding, 2, 807-815.(in Chinese with English abstract)
[王莉花, 殷富有, 刘继梅, 叶昌荣 (2004) 利用RAPD分析云南野生荞麦资源的多样性和亲缘关系. 分子植物育种, 2, 807-815.]
22 White TJ, Bruns T, Lee S (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. Academic Press, San Diego.
23 Xu LP (2014) Research progress of nutrient and chemical constituents in buckwheat. Sichuan Chemical Industry, 17(4), 4-8.(in Chinese with English abstract)
[徐珑珀 (2014) 荞麦营养与化学成份研究进展. 四川化工, 17(4), 4-8.]
24 Yang YX (2008) Studies on Genetic Diversity of Buckwheat Germplasms. PhD dissertation, Sichuan Agricultural University, Chengdu.(in Chinese with English abstract)
[杨玉霞 (2008) 荞麦种质资源遗传多样性研究. 博士学位论文, 四川农业大学, 雅安]
25 Yang XY, Chen H, Shao JR, Wu Q, Tang Y (2007) Preliminary study on genetic relationship among buckwheat species in north western Sichuan. Acta Botanica Boreali-Occidentalia Sinica, 27, 1752-1758.(in Chinese with English abstract)
[杨小艳, 陈惠, 邵继荣, 吴琦, 唐宇 (2007) 川西北荞麦种间亲缘关系初步研究. 西北植物学报, 27, 1752-1758.]
26 Yu H, Mao J, Qu SP, Xiong L, Li YY, He R (2005) Study on the relationship of nine varieties of Asian Lilium based on nrDNA ITS. Southwest China Journal of Agricultural Sciences, 18, 387-391.(in Chinese with English abstract)
[虞泓, 毛钧, 瞿素萍, 熊丽, 李永谊, 和锐 (2005) 亚洲系百合九个品种的亲缘关系研究——来自nrDNA ITS证据. 西南农业学报, 18, 387-391.]
27 Zhang L, Gao FH, Gao LJ, Yin XM, Diao Y (2011) Research progress of buckwheat nutrition, function and its products. South China Agriculture, 5(6), 74-77.(in Chinese)
[张玲, 高飞虎, 高伦江, 尹旭敏, 刁源 (2011) 荞麦营养功能及其利用研究进展. 南方农业, 5(6), 74-77.]
[1] Shitong Wang,Yaozhan Xu,Teng Yang,Xinzeng Wei,Mingxi Jiang. (2020) Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis . Biodiv Sci, 28(3): 277-288.
[2] Qiuhong Feng,Dengfeng Li,Tao Yu,Junqing Li,Wenbao Ma,Lei Zhang. (2020) Phenotypic fruit and seed variations of Acer catalpifolium, a Wild Plant with Extremely Small Populations in China . Biodiv Sci, 28(3): 314-322.
[3] Zhigang Jiang. (2020) Insights on the legislation, law enforcement and management of zoonosis from the epidemic of new coronavirus pneumonia (COVID-19) . Biodiv Sci, 28(2): 256-261.
[4] WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. (2020) Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe . Chin J Plant Ecol, 44(1): 22-32.
[5] CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. (2019) Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China . Chin J Plant Ecol, 43(8): 697-708.
[6] LI Qun, ZHAO Cheng-Zhang, WANG Ji-Wei, WEN Jun, LI Zi-Qin, MA Jun-Yi. (2019) Morphological and photosynthetic physiological characteristics of Saussurea salsa in response to flooding in salt marshes of Xiao Sugan Lake, Gansu, China . Chin J Plant Ecol, 43(8): 685-696.
[7] FU Yi-Wen, TIAN Da-Shuan, WANG Jin-Song, NIU Shu-Li, ZHAO Ken-Tian. (2019) Patterns and affecting factors of nitrogen use efficiency of plant leaves and roots in Nei Mongol and Qinghai-Xizang Plateau grasslands . Chin J Plant Ecol, 43(7): 566-575.
[8] XU Hao, LIU Ming-Guo, DONG Sheng-Jun, WU Yue-Liang, ZHANG Hao-Kai. (2019) Diversity and geographical variations of germplasm resources of Armeniaca mandshurica . Chin J Plant Ecol, 43(7): 585-600.
[9] Gu Hanjiao, Zhang Cancan, Wang Jinsong, Shi Xuewen, Xia Ruixue, Liu Bin, Chen Fusheng, Bu Wensheng. (2019) Variation in basic morphological and functional traits of Chinese bamboo . Biodiv Sci, 27(6): 585-594.
[10] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. (2019) Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis . Chin J Plant Ecol, 43(6): 501-511.
[11] Miao Qingxia, Fang Yan, Chen Yinglong. (2019) Studies in the Responses of Wheat Root Traits to Drought Stress . Chin Bull Bot, 54(5): 652-661.
[12] WANG Jin, ZHU Jiang, AI Xun-Ru, YAO Lan, HUANG Xiao, WU Man-Ling, ZHU Qiang, HONG Jian- Feng. (2019) Effects of topography on leaf functional traits across plant life forms in Xingdou Mountain, Hubei, China . Chin J Plant Ecol, 43(5): 447-457.
[13] Hu Jianlin,Liu Zhifang,Ci Xiuqin,Li Jie. (2019) Use of DNA Barcoding in Identifying Tropical Trees from Dipterocarpaceae . Chin Bull Bot, 54(3): 350-359.
[14] Xie Lihong,Huang Qingyang,Cao Hongjie,Yang Fan,Wang Jifeng,Ni Hongwei. (2019) Leaf functional traits of Acer mono in Wudalianchi Volcano, China . Biodiv Sci, 27(3): 286-296.
[15] TAN Feng-Sen, SONG Hui-Qing, LI Zhong-Guo, ZHANG Qi-Wei, ZHU Shi-Dan. (2019) Hydraulic safety margin of 17 co-occurring woody plants in a seasonal rain forest in Guangxi’s Southwest karst landscape, China . Chin J Plant Ecol, 43(3): 227-237.
Full text