Biodiversity Science ›› 2014, Vol. 22 ›› Issue (4): 467-475.doi: 10.3724/SP.J.1003.2014.13243

• Orginal Article • Previous Article     Next Article

Pollination biology of Impatiens hainanensis (Balsaminaceae) populations at different altitudes

Yunfang Zhong1, 3, Zhe Zhang1, 2, Xiqiang Song1, 2, Zhaode Zhou1, 3, *()   

  1. 1. Key Laboratory of Protection and Developmental Utilization of Tropical Crop Germplasm Resources of Ministry of Education, Hainan University , Haikou 570228
    2. College of Horticulture and Landscape Architecture, Hainan University, Haikou 570228
    3. College of Agronomy, Hainan University, Haikou 570228
  • Received:2013-11-25 Accepted:2014-07-02 Online:2014-07-24
  • Zhou Zhaode E-mail:zhouzhaode2012@163.com

The genus Impatiens, known as “dicotyledonous orchids”, is of great interest to pollination biologists because of its extremely wide diversity and different types of specialized pollinators. In this study, populations of Impatiens hananensis, endemic to Hainan Island, distributed at three different altitudes were studied. Floral phenology, floral structure, pollen viability and stigma activity, floral visitors and their behavior, and the breeding system were determined. Results showed that the average life span of a single flower was 4.10 ± 0.46 d; the male and female flowers lasted 3.15 ± 0.24 d and 0.95 ± 0.36 d, respectively. The species’ flowering peak was in early August, and the high altitude population flowered the latest. The pollen viability of a single flower appears in the trend of first increased then decreased with the flowering time went on, and reached to the highest on the second flowering day in low and middle altitude populations, and which declined gradually with the flowering time went on in high altitude population. Stigma activity generally rose as flowering time went on, but this measure was lower in high altitude population on different flowering days. The main pollinators were Amegilla leptocoma and A. zonata; A. leptocoma was the main visitor in low and middle altitude populations while A. zonata was in the high altitude population. We observed no automatic self-pollination or apomixis in I. hainanensis, and hand-pollination increased the fruit set (75-90%), compared to the natural situation (40-60%). This lower natural pollination success rate was especially true in the high altitude population where pollination was most limited. Therefore, conservation work with Impatiens hainanensis should protect both habitats and effective pollinators of I. hainanensis in order to promote gene flow via pollinators and seed movement among populations at different altitude via pollinators, and maintain the population genetic diversity and effective population size of Impatiens hainanensis.

Key words: Impatiens hainanensis, endemic species, karst landforms, breeding system, ecological adaptation, dichogamy

Table 1

Habitats of three different altitude populations of Impatiens hainanensis"

种群
Population
经纬度
Longitude/latitude
海拔
Altitude (m)
种群大小(株)
Population size
植被类型
Vegetation type
低海拔
Low altitude
109°08′3″-109°08′16″ E /18°57′39″-18°57′45″ N 198-245 100-120 异序乌桕(Sapium insigne)+美丽梧桐(Firmiana pulcherrima)-圆叶刺桑(Taxotrophis aquifolioides )+马缨丹(Lantana camara)-海南凤仙花(Impatiens hainanensis)+海南绿萝(Scindapsus maclurei)+飞机草(Eupatorium odoratum)群丛
中海拔
Mid altitude
109°07′08″-109°07′10″E
/19°01′23″-19°01′25″ N
422-460 70-90 美丽梧桐(Firmiana pulcherrima)+海南榄仁(Terminalia hainanensis)-圆叶刺桑(Taxotrophis aquifolioides)+鹅掌藤(Schefflera arboricola)-海南凤仙花(Impatiens hainanensis)+栎叶槲蕨(Drynaria quercifolia)群丛
高海拔
High altitude
109°06′33″-109°06′34″ E /19°00′48″-19°00′50″ N 1, 080-1, 100 30-50 海南龙血树(Dracaena cambodiana)-鹅掌藤(Schefflera arboricola)+海南大戟(Euphorbia hainanensis)-海南凤仙花(Impatiens hainanensis)群丛; 坝王栎(Quercus bawanglingensis)+海南苏铁(Euphorbia hainanensis)-海南大戟(Cycas hainanensis)+雀梅藤(Sageretia thea)-海南凤仙花(Impatiens hainanensis)+芳香石豆兰(Bulbophyllum ambrosia)群丛

Fig. 1

The flower structure and pollination channel characteristic of Impatiens hainanensis. PM, Petalum; AA, Adnate anther; PA, Petala; PP, Protuberance on petalam; SQ, Squrs; CH, Channel height; CW, Channel width; CD, Channel depth."

Fig. 2

Flowering curves of Impatiens hainanensis populations at different altitudes in 2012"

Fig. 3

Pollination channel characteristic of flowering female stage of Impatiens hainanensis populations at different altitudes. The different letters indicate that the difference is significant at 0.05 level."

Fig. 4

Pollen viability and stigma activity of Impatiens hainanensis populations at different altitudes. Different letters indicate that pollen viability or the bubble numbers of the stigma apex in different altitude populations are significantly different at 0.05 level on the different blooming days."

Table 2

Species and physical characteristics of main pollinators of Impatiens hainanensis (Mean ± SD, mm)"

传粉者 Pollinators 体长 Body length 胸高 Thorax height 胸宽 Thorax width
黄黑无垫蜂 Amegilla leptocoma (n = 11) 14.84 ± 1.01 5.21 ± 0.37 5.48 ± 0.43
绿条无垫蜂 A. zonata (n = 6) 12.16 ± 1.16 4.08 ± 0.25 4.22 ± 0.17
Thrinchostoma一种 Thrinchostoma sp.1 (n = 9) 11.78 ± 1.13 2.71 ± 0.31 3.00 ± 0.32

Fig. 5

The floral vistors of Impatiens hainanensis. Black arrows indicate pollen. The capital letters (A) Amegilla leptocoma; (B) A. zonata; (C) Thrinchostoma sp.1; (D) Croisa sp.1; (E) Drosophila sp.1; (F) Ceratina iwatai."

Fig. 6

Visitation proportion of main pollinators of Impatiens hainanensis populations at different altitudes"

Table 3

Fruit-set percentage of different hand-pollination treatments of Impatiens hainanensis"

处理
Treatments
低海拔种群
Low altitude population
中海拔种群
Mid altitude population
高海拔种群
High altitude population
仅套袋 Bagged only 0 0 0
去雄 Emasculated 0 0 0
自花人工授粉 Autogamy hand-pollination 85% 75% 80%
同株异花人工授粉 Geitonogamy hand-pollination 90% 85% 75%
异株异花人工授粉 Xenogamy hand-pollination 90% 90% 90%
对照 Control 60% 55% 40%
[1] Barrett SCH (2002) The evolution of plant sexual diversity.Nature Reviews Genetics, 3, 274-284.
[2] Bertin RI, Newman CM (1993) Dichogamy in angiosperms.The Botanical Review, 59, 112-152.
[3] Bingham RA, Orthner AR (1998) Efficient pollination of alpine plants.Nature, 391, 238-239.
[4] Caris PL, Geuten KP, Janssens SB, Smets EF (2006) Floral development in three species of Impatiens (Balsaminaceae).American Journal of Botany, 93, 1-14.
[5] Chen YL (陈艺林) (2001) Balsaminaceae. In: Flora Reipublicae Popularis Sinicae (中国植物志∙凤仙花科), pp.1-397. Science Press, Beijing. (in Chinese)
[6] Dafni A (1992) Pollination Ecology: A Practical Approach, pp.1-250. Oxford University Press, Oxford.
[7] Duan YW (段元文), Zhang TF (张挺峰), Liu JQ (刘建全) (2007) Pollination biology of Anisodus tanguticus (Solanaceae).Biodiversity Science(生物多样性), 15, 584-591. (in Chinese with English abstract)
[8] Fabbro T, Korner C (2004) Altitude differences in flower traits and reproductive allocation. Flora, 199, 70-81.
[9] Galen C (1996) Rates of floral evolution: adaption to bumblebee pollination in an alpine wild flower, Polemonium viscosum.Evolution, 50, 120-125.
[10] Grey-Wilson C (1980) Impatiens of Africa. pp.1-235. AA Balkema, Rotterdam.
[11] Heinrich B (1972) Energetics of temperature regulation and foraging in a bumblebee, Bombus terricola K.Journal of Comparative Physiology, 77, 49-64.
[12] Huang SQ, Guo YH (2000) New advances in pollination biology and studies in China.Chinese Science Bulletin, 45, 1441-1447.
[13] Huang SQ (黄双全) (2007) Studies on plant-pollinator interaction and its significances.Biodiversity Science(生物多样性), 15, 569-575. (in Chinese with English abstract)
[14] Huang SQ (黄双全) (2014) Most effective pollinator principle of floral evolution: evidence and query.Chinese Bulletin of Life Sciences(生命科学), 26, 118-124. (in Chinese with English abstract)
[15] Kato M, Itino I, Hotta M, Abbas I, Okada H (1989) Flower visitors of 32 plant species in West Sumatra.Occasional Papers of the Kagoshima University Research Center for the South Pacific, 16, 15-31.
[16] Kearns CA, Inouye DW (1994) Fly pollination of Linum lewisii (Linaceae).American Journal of Botany, 81, 1091-1095.
[17] Mao ZB (毛志斌), Cedric B, Ge XJ (葛学军) (2011) Pollination ecology and breeding system of Impatiens lateristachys (Balsaminaceae) endemic to China.Guihaia(广西植物), 31, 160-166. (in Chinese with English abstract)
[18] Qin XS (秦新生), He KS (何科稣), Liu LW (刘立武), Sun JM (孙君梅), Qi XM (齐旭明), Shi H (施浩) (2012) Floristic and ecological characteristics of the community with Impatiens hainanensis in Exianling Limestone Mountain, Hainan.Journal of South China Agricultural University(华南农业大学学报), 33, 361-367. (in Chinese with English abstract)
[19] Ren MX (任明迅) (2008) Stamen fusion in plants: diversity, adaptive significance, and taxonomic implications.Journal of Systematics and Evolution(植物分类学报), 46, 452-466. (in Chinese with English abstract)
[20] Robertson C (1928) Flowers and Insects, pp.1-221. Science Press Printing Co., Lancaster.
[21] Rust RW (1977) Pollination in Impatiens capensis and Impatiens pallida (Balsaminaceae).Bulletin of the Torrey Botanical Club, 104, 361-367.
[22] Schemske DW (1978) Evolution of reproductive characteristics in Impatiens (Balsaminaeeae): the significance of cleistogamy and chasmogamy.Ecology, 59, 596-613.
[23] Schmitt J, Ehrhardt DW (1990) Enhancement of inbreeding depression by dominance and suppression in Impatiens capensis.Evolution, 44, 269-278.
[24] Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms.Annual Review of Ecology and Systematics, 1, 307-326.
[25] Tian JP, Liu KM, Hu GW (2004) Pollination ecology and pollination system of Impatiens reptans (Balsaminaceae) endemic to China.Annual of Botany, 93, 167-175.
[26] Totland O (2001) Environment dependent pollen limitation and selection on floral traits in an alpine species.Ecology, 82, 2233-2244.
[27] Wilson P, Thomson JD (1991) Heterogeneity among floral visitors leads to discordance between removal and deposition of pollen. Ecology, 72, 1503-1507.
[28] Xiao LX (肖乐希) & Liu KM (刘克明) (2009) Floral traits and pollination system of Impatiens chinensis(Balsam inaceae).Bulletin of Botanical Research(植物研究), 29, 164-168. (in Chinese with English abstract)
[29] Yu SX (于胜祥), Xu WB (许为斌), Chen YL (陈艺林), Qin HN (覃海宁) (2010) Supplementary description of floral morphology of Impatiens hainanensis and I. morsei (Balsaminaceae).Guihaia(广西植物), 30, 33-35. (in Chinese with English abstract)
[30] Zhang TF (张挺峰), Duan YW (段元文), Liu JQ (刘建全) (2006) Pollination ecology of Aconitum gymnandrum (Ranunculaceae) at two sites with different altitudes. Acta Phytotaxonomica Sinica(植物分类学报), 44, 362-370. (in Chinese with English abstract)
[31] Zhong YF (钟云芳), Wu HZ (武华周), Song XQ (宋希强), Zhou ZD (周兆德) (2014) Species diversity and the relationship with habitat community characteristics of Impatiens hainanensis, endemic to Hainan Island.Chinese Journal of Tropical Crops(热带作物学报), 35, 355-361. (in Chinese with English abstract)
[32] Zimmerman M, Cook S (1985) Pollinator foraging, experimental nectar-robbing and plant fitness in Impatiens capensis.American Midland Naturalist, 113, 84-91.
[1] Xiang Wenqian, Ren Mingxun. Adaptive significance of yellow flowered Bombax ceiba (Malvaceae) [J]. Biodiv Sci, 2019, 27(4): 373-379.
[2] Bo Wang,Yong Huang,Jiatang Li,Qiang Dai,Yuezhao Wang,Daode Yang. Amphibian species richness patterns in karst regions in Southwest China and its environmental associations [J]. Biodiv Sci, 2018, 26(9): 941-950.
[3] Shiguo Sun,Bin Lu,Xinmin Lu,Shuangquan Huang. On reproductive strategies of invasive plants and their impacts on native plants [J]. Biodiv Sci, 2018, 26(5): 457-467.
[4] Zhihuan Huang, Qifeng Lu, Yingzhuo Chen. Comparative study on reproductive success of Corydalis sheareri (Papaveraceae) between alkaline limestone soil and red soil habitats in a karst area [J]. Biodiv Sci, 2017, 25(9): 972-980.
[5] Shaojun Ling, Qianwan Meng, Liang Tang, Mingxun Ren. Gesneriaceae on Hainan Island: distribution patterns and phylogenetic relationships [J]. Biodiv Sci, 2017, 25(8): 807-815.
[6] Yi WU, Wen-Yao LIU, Liang SONG, Xi CHEN, Hua-Zheng LU, Su LI, Xian-Meng SHI. Advances in ecological studies of epiphytes using canopy cranes [J]. Chin J Plan Ecolo, 2016, 40(5): 508-522.
[7] Zhenna Qian,Mingxun Ren. Floral evolution and pollination shifts of the “Malpighiaceae route” taxa, a classical model for biogeographical study [J]. Biodiv Sci, 2016, 24(1): 95-101.
[8] Zhigang Jiang,Yong Ma,Yi Wu,Yingxiang Wang,Zuojian Feng,Kaiya Zhou,Shaoying Liu,Zhenhua Luo,Chunwang Li. China’s mammalian diversity [J]. Biodiv Sci, 2015, 23(3): 351-364.
[9] Shengwang Pan, Mingcheng Hu, Jinghong Luo, Yunxiao Wu. Effects of rehabilitation species on slope vegetation diversity and soil and water conservation [J]. Biodiv Sci, 2015, 23(3): 341-350.
[10] Yukun Wei, Qi Wang, Yanbo Huang. Species diversity and distribution of Salvia (Lamiaceae) [J]. Biodiv Sci, 2015, 23(1): 3-10.
[11] WU Yun,LIU Yu-Rong,PENG Han,YANG Yong,LIU Guang-Li,CAO Guo-Xing,ZHANG Qiang. Pollination ecology of alpine herb Meconopsis integrifolia at different altitudes [J]. Chin J Plan Ecolo, 2015, 39(1): 1-13.
[12] Li Chen,Hongjin Dong,Hua Peng. Diversity and distribution of higher plants in Yunnan, China [J]. Biodiv Sci, 2013, 21(3): 359-363.
[13] QIN Feng-Fei, LI Qiang, CUI Zhao-Ming, LI Hong-Ping, and YANG Zhi-Ran. Leaf anatomical structures and ecological adaptabilities to light of three alfalfa cultivars with different fall dormancies under shading during overwintering [J]. Chin J Plan Ecolo, 2012, 36(4): 333-345.
[14] Min Chen, Linde Liu, Li Zhang, Lijuan Wang. Pollination Ecological Studies of Tamarix chinensis in the Middle Reaches of Heihe River and Yantai Seashore [J]. Chin Bull Bot, 2012, 47(3): 264-270.
[15] Xinxin Liu, Xiaoqin Wu, Dianxiang Zhang. Distyly and heteromorphic self-incompatibility of Hedyotis pulcherrima (Rubiaceae) [J]. Biodiv Sci, 2012, 20(3): 337-347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Yao, TAO Ye, and ZHANG Yuan-Ming. Biomass allocation and leaf stoichiometric characteristics in four desert herbaceous plants during different growth periods in the Gurbantünggüt Desert, China[J]. Chin J Plan Ecolo, 2014, 38(9): 929 -940 .
[2] SONG Ya-Na, WANG He, LI Chun-Jian and ZHANG Fu-Suo. Fe Accumulation and Mobilization in Root Apoplast of Soybean Seedlings Under Fedeficiency Condition[J]. J Integr Plant Biol, 1999, 41(12): .
[3] Wu Jian-feng. Lichen Ptant in Langskan Area Nantong[J]. Chin Bull Bot, 1993, 10(01): 62 .
[4] ZHANG Cheng-Xiang and CHEN Wei-Feng. Stress responses of Canna indica to Cd and its accumulation of Cd[J]. Chin J Plan Ecolo, 2012, 36(7): 690 -696 .
[5] TANG Zhi-Yao, FANG Jing-Yun, ZHANG Ling. Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains[J]. Biodiv Sci, 2004, 12(1): 115 -122 .
[6] Zhao Yu-hua. Effect of the Plant Cold-resister on Overcoming Rice Seedling Decay in Low Temperature Stress in our County[J]. Chin Bull Bot, 1994, 11(特辑): 97 -99 .
[7] XIAO Qun-Ying, YIN Chun-Ying, PU Xiao-Zhen, QIAO Ming-Feng, and LIU Qing. Ecophysiological characteristics of leaves and fine roots in dominant tree species in a subalpine coniferous forest of western Sichuan during seasonal frozen soil period[J]. Chin J Plan Ecolo, 2014, 38(4): 343 -354 .
[8] Jun WEN, Qiu-Yun (Jenny) XIANG, Hong QIAN, Jianhua LI, Xiao-Quan WANG, Stefanie M. ICKERT-BOND. Intercontinental and intracontinental biogeography—patterns and methods[J]. J Syst Evol, 2009, 47(5): 327 -330 .
[9] Hong Wei, Wu Chengzhen, Lan Bin. A General Model For Neighborhood Interference Index and Its Application[J]. Chin J Plan Ecolo, 1997, 21(2): 149 -154 .
[10] Hai Yan, Jin Chen, He He. Preliminary investigation on function recognition and image perception in public upon botanical gardens[J]. Biodiv Sci, 2010, 18(5): 516 -522 .