Biodiversity Science ›› 2013, Vol. 21 ›› Issue (3): 326-333.doi: 10.3724/SP.J.1003.2013.08223

• Orginal Article • Previous Article     Next Article

Concordance among different aquatic insect assemblages and the relative role of spatial and environmental variables

Chunyan Qin1, *, Yong Zhang1, *, Haiyan Yu2, Beixin Wang1, **()   

  1. 1 Laboratory of Aquatic Insects and Stream Ecology, Department of Entomology, Nanjing Agricultural University, Nanjing 210095
    2 Zhejiang Environmental Monitoring Center, Hangzhou 310007
  • Received:2012-11-22 Accepted:2013-04-22 Online:2013-06-05
  • Qin Chunyan,Zhang Yong,Wang Beixin

Indicator groups are often used for biodiversity monitoring and conservation, however, the effectiveness of these groups in representing biodiversity is rarely tested. To explore community congruence among different aquatic insect groups and how this may be affected by spatial factors and environmental variables, we carried out an investigation on aquatic insects in April 2010 in 21 headwater streams within the Dongtiaoxi Basin, China. In total, we recorded 130 species from 92 genera, 44 families and 7 orders. We divided the stream insects into three groups, Coleoptera (C), Ephemeroptera + Plecoptera + Trichoptera (EPT), and Diptera + Megaloptera + Odonata (DMO). In Mantel tests, three aquatic insect groups showed significant cross-taxon concordance, C versus EPT (r= 0.65, P< 0.001), C versus DMO (r= 0.67, P< 0.001) and EPT versus DMO (r= 0.82, P< 0.001). According to variance partitioning procedures, environmental variables were the major determinants of aquatic insect community structures, while spatial factors were less important. Species composition in different taxon groups exhibited similar relationships to environmental gradients. Altitude, pH, mean velocity and concentration of oxygen were the most important drivers of aquatic insect assemblage patterns. Overall, our results indicated that, at least in the studied region, community congruence among different aquatic insect groups was strong. We propose that one group, such as the EPT group, may be used as a biodiversity indicator in future cost-effective surveys.

Key words: community congruence, aquatic insect, spatial factors, environmental variables, biodiversiy

Fig. 1

Locations of the sampling sites in 21 headwater streams within the Dongtiaoxi Basin, Zhejiang"

Table 1

The range and average value (Mean ± SE) of major environmental variables for the macrozoobenthos sampling sites within the Dongtiaoxi Basin"

Mean ± SE
海拔 Altitude (m) alt 326 ± 43 35 796
总氮 Total nitrogen (mg/L) TN 1.37 ± 0.33 0.82 2.73
磷酸盐 Phosphorus (mg/L) PO4 0.02 ± 0.01 0.00 0.08
化学需氧量 Chemical oxygen demand (mg/L) COD 2.50 ± 0.30 0.32 6.62
酸碱度 pH pH 7.7 ± 0.2 6.5 9.7
溶解氧 Dissolved oxygen (mg/L) DO 9.7 ± 0.2 8.1 12.7
电导 Conductivity (µg/cm) Cond 80 ± 19 22 440
钙离子 Mean Ca2+ concentration (mg/L) Ca 64 ± 6 23 122
镁离子 Mean Mg2+ concentration (mg/L) Mg 5 ± 1 2 24
平均流速 Mean velocity (m/s) Vmean 0.6 ± 0.1 0.1 1.4
平均水宽 Mean wetted width (m) Width 2.3 ± 0.4 0.4 7.1
平均水深 Mean depth (cm) Depth 12 ± 2 3 26
砂 Percentage of sand substrate Sand 0.11 ± 0.04 0.00 0.62
砾石 Percentage of gravel substrate Gravel 0.45 ± 0.04 0.00 0.85
卵石 Percentage of cobble substrate Cobble 0.62 ± 0.03 0.38 0.84

Table 2

Species composition and the occurrence frequency of aquatic insects in headwater streams within the Dongtiaoxi Basin"

物种 Species 频度 Frequency 物种 Species 频度 Frequency
鞘翅目 Coleoptera 新襀属一种 Neoperla sp. 0.29
长角泥甲科 Elmidae 毛翅目 Trichoptera
Macronychus sp. 0.38 短石蛾科 Brachycentridae
Neocylloepus sp. 0.29 Micrasema sp. 0.33
Ordobreria sp. 0.43 枝石蛾科 Colamoceratidae
Stenelmis sp. 1.00 Anisocentropus sp.1 0.29
水龟虫科 Hydrophilidae Glossosoma sp. 0.67
Berosus sp. 0.48 纹石蛾科 Hydropsychidae
Enochrus sp. 0.38 班侧枝纹石蛾 Aphropsyche sp. 2 0.29
扁泥甲科 Psephenidae 心唇纹石蛾 Cheumatopsyche sp. 1 0.38
Macroeubria sp. 0.33 平唇纹石蛾 Cheumatopsyche sp. 3 0.52
Nipponeubria sp. 0.29 黄条纹石蛾 Hydropsyche sp.3 0.33
Psephenus sp. 0.38 鳞石蛾科 Lepidostomatidae
沼甲科 Scirtidae 鳞石蛾属一种 Lepidostoma sp. 0.43
Scrites sp. 0.86 沼石蛾科 Limnephilidae
蜉蝣目 Ephemeroptera Apatania sp. 0.29
四节蜉科 Baetidae 多距石蛾科 Polycentropodidae
四节蜉属一种 Baetis sp. 1.00 Neureclipsis sp. 0.62
花翅蜉属一种 Baetiella sp. 0.48 原石蛾科 Rhyacophilidae
小蜉科 Ephemerellidae 原石蛾属一种 Rhyacophila sp. 0.75
美丽弯握蜉 Drunella bella 0.29 双翅目 Diptera
小蜉属一种 Ephemerella sp. 0.48 摇蚊科 Chironomidae
锯形蜉属一种 Serratella sp. 0.48 环足摇蚊属一种 Cricotopus sp. 0.29
蜉蝣科 Ephemeridae 真开氏摇蚊属一种 Eukiefferiella sp. 0.57
绢蜉 Ephemera serica 0.38 直突摇蚊属一种 Orthocladius sp. 0.52
扁蜉科 Heptageniidae 无突摇蚊属一种 Ablabesmyia sp. 1.00
似动蜉属一种 Cinygmin sp. 0.43 大粗腹摇蚊属一种 Macropelopia sp. 0.29
高翔蜉属一种 Epeorus sp. 1 0.43 长足摇蚊属一种 Tanypus sp. 0.29
高翔蜉属一种 Epeorus sp. 2 0.29 蚋科 Simuliidae 0.76
何氏高翔蜉 Epeorus herklots 0.52 广翅目 Megaloptera
扁蜉属一种 Heptagenia sp. 0.86 Corydalidae
赞蜉属一种 Paegniodes sp. 0.71 斑齿蛉属一种 Neochauliodes sp. 0.43
细裳蜉科 Leptophlebiidae 星齿蛉属一种 Protohermes sp. 0.33
宽基蜉属一种 Choroterpes sp. 0.57 蜻蜓目 Odonata
柔裳蜉属一种 Habrophlebiodes sp. 0.95 综蟌科一种 Chlorolestidae sp. 0.29
襀翅目 Plecoptera 大蜓科 Cordulegasteridae
叉襀科 Nemouridae 大蜓属一种 Cordulegaster sp. 0.33
倍叉襀属一种 Amphinemura sp. 0.29 溪蟌科一种 Euphaeidae sp. 0.38
中叉襀属一种 Mesonemura sp. 0.48 春蜓科 Gomphidae
襀科 Perlidae 环尾春蜓属一种 Lamelligomphus sp. 0.43
钩襀属一种 Kamimuria sp. 1.00 华春蜓属一种 Sinogomphus sp. 0.29

Fig. 2

meta-MDS ordination of the Coleoptera (C), Ephemeroptera + Plecoptera + Trichoptera (EPT), and Diptera + Megaloptera + Odonata (DMO) assemblages with fitted vectors of environmental variables (envfit, P < 0.05)"

Table 3

Correlations (r2) of environmental variables with the meta-MDS ordinations of Coleoptera (C), Ephemeroptera + Plecoptera + Trichoptera (EPT), and Diptera + Megaloptera + Odonata (DMO) groups"

r2 P r2 P r2 P
Environmental variables
海拔 Altitude (alt) 0.50 0.003 0.57 0.001 0.54 0.003
总氮 Total nitrogen (TN) 0.42 0.003 0.30 0.032 0.38 0.009
化学需氧量 Chemical oxygen demand (COD) 0.36 0.014 0.39 0.003 0.44 0.002
酸碱度 pH 0.83 0.001 0.67 0.001 0.90 0.001
溶解氧 Dissolved oxygen (DO) 0.39 0.011 0.39 0.011 0.50 0.002
平均流速 Mean velocity (Vmean) 0.51 0.002 0.42 0.004 0.61 0.001
平均水宽 Mean wetted width (Width) 0.01 0.938 0.22 0.101 0.35 0.017
平均水深 Mean depth (Depth) 0.22 0.110 0.33 0.025 0.38 0.016
砂 Percentage of sand substrate (Sand) 0.57 0.542 0.11 0.335 0.28 0.04
Spatial factors
PCNM1 0.77 0.001 0.81 0.001 0.91 0.001
PCNM13 0.26 0.035 0.01 0.906 0.02 0.848
1 Briers RA, Biggs J (2003) Indicator taxa for the conservation of pond invertebrate diversity. Aquatic Conservation: Marine and Freshwater Ecosystems, 13, 323-330.
2 Collier KJ, Quinn JM (2003) Land-use influences macro-inver- tebrate community response following a pulse disturbance. Freshwater Biology, 48, 1462-1481.
3 Dudgeon D, Arthington AH, Gessner MO, Kawabata ZI, Knowler DJ, Lévêque C, Naiman RJ, Prieur-Richard AH, Soto D, Stiassny MLJ (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81, 163-182.
4 Gaston KJ, Williams PH (1996) Spatial patterns in taxonomic diversity. In: Biodiversity: A Biology of Numbers and Difference (ed. Gaston KJ), pp. 202-229. Blackwell Science, Oxford.
5 Grenouillet G, Brosse S, Tudesque L, Lek S, Baraillé Y, Loot G (2008) Concordance among stream assemblages and spatial autocorrelation along a fragmented gradient. Diversity and Distributions, 14, 592-603.
6 Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecological Indicators, 10, 112-117.
7 Heino J (2002) Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation, 11, 137-147.
8 Heino J, Paavola R, Virtanen R, Muotka T (2005) Searching for biodiversity indicators in running waters: do bryophytes, macroinvertebrates, and fish show congruent diversity patterns? Biodiversity and Conservation, 14, 415-428.
9 Heino J, Tolonen KT, Kotanen J, Paasivirta L (2009) Indicator groups and congruence of assemblage similarity, species richness and environmental relationships in littoral macroinvertebrates. Biodiversity and Conservation, 18, 3085-3098.
10 Hering D, Johnson RK, Kramm S, Schmutz S, Szoszkiewicz K, Verdonschot PFM (2006) Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology, 51, 1757-1785.
11 Kati V, Devillers P, Dufrene M, Legakis A, Vokou D, Lebrun P (2004) Testing the value of six taxonomic groups as biodiversity indicators at a local scale. Conservation Biology, 18, 667-675.
12 Kondolf GM (1997) Application of the pebble count notes on purpose, method, and variants. Journal of the American Water Resources Association, 33, 79-87.
13 Li JG (李金国), Wang QC (王庆成), Yan SC (严善春), Yao Q (姚琴), Qiao SL (乔树亮), Lü YD (吕跃东), Han ZX (韩壮行) (2007) Community characteristics of aquatic insects and bioassessment for water quality in lower order streams in Liangshui and Maoershan watersheds, Heilongjiang, China. Acta Ecologica Sinica(生态学报), 27, 5008-5018. (in Chinese with English abstract)
14 Margules CR, Pressey RL (2000) Systematic conservation planning. Nature, 405, 243-253.
15 Ministry of Environmental Protection of the People’s Republic of China(中华人民共和国环境保护部) (2002) Standard Methods for the Analysis of Water and Wastewater(水和废水监测分析方法). Science Press, Beijing(in Chinese)
16 Morse JC,Yang LF,Tian LX(1994) Aquatic Insects of China Useful for Monitoring Water Quality. Hohai University Press, China
17 Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent K (2000) Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
18 Noss RF (1990) Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, 4, 355-364.
19 Oksanen J,Blanchet FG,Kindt R,Legendre P,Minchin PR,O’Hara RB,Simpson GL,Solymos P,Stevens MH,Wagner H (2012) Vegan: Community Ecology Package. R package version 2.0-5. .
20 Paavola R, Muotka T, Virtanen R, Heino J, Jackson D, Mäki-Petäys A (2006) Spatial scale affects community concordance among fishes, benthic macroinvertebrates, and bryophytes in streams. Ecological Applications, 16, 368-379.
21 Passy SI, Bode RW, Carlson DM, Novak MA (2004) Comparative environmental assessment in the studies of
22 benthic diatom, macroinvertebrate, and fish communities. International Review of Hydrobiology, 89, 121-138.
23 Pearson DL (1994) Selecting indicator taxa for the quantitative assessment of biodiversity. Biological Sciences, 345, 75-79.
24 Rodrigues ASL, Brooks TM (2007) Shortcuts for biodiversity conservation planning: the effectiveness of surrogates. Annual Review of Ecology, Evolution and Systematics, 38, 713-737.
25 Sánchez-Fernández D, Abellán P, Mellado A, Velasco J, Millan A (2006) Are water beetles good indicators of biodiversity in Mediterranean aquatic ecosystems? The case of the Segura river basin (SE Spain). Biodiversity and Conservation, 15, 4507-4520.
26 Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A (2000) Global biodiversity scenarios for the year 2100. Science, 287, 1770-1774.
27 Sauberer N, Zulka KP, Abensperg-Traun M, Berg HM, Bier- inger G, Milasowszky N, Moser D, Plutzar C, Pollheimer M, Storch C (2004) Surrogate taxa for biodiversity in agricultural landscapes of eastern Austria. Biological Conservation, 117, 181-190.
28 Soininen J, Paavola R, Kwandrans J, Muotka T (2009) Diatoms: unicellular surrogates for macroalgal community structure in streams? Biodiversity and Conservation, 18, 79-89.
29 Su JC, Debinski DM, Jakubauskas ME, Kindscher K (2004) Beyond species richness: community similarity as a measure of cross-taxon congruence for coarse-filter conservation. Conservation Biology, 18, 167-173.
30 Suren AM (1994) Macroinvertebrate communities of streams in western Nepal: effects of altitude and land use. Freshwater Biology, 32, 323-336.
31 Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Canadian Journal of Fisheries and Aquatic Science, 37, 130-137.
32 Vellend M, Lilley PL, Starzomski BM (2008) Using subsets of species in biodiversity surveys. Journal of Applied Ecology, 45, 161-169.
33 Wang BX (王备新), Yang LF (杨莲芳) (2003) Bioassessment of Qinhuai River using a river biological index. Acta Ecologica Sinica(生态学报), 23, 2082-2091. (in Chinese with English abstract)
34 Williams P, Gibbons D, Margules C, Rebelo A, Humphries C, Pressey R (2002) A comparison of richness hotspots, rarity hotspots, and complementary areas for conserving diversity of British birds. Conservation Biology, 10, 155-174.
35 Wolman MG (1954) A method of sampling coarse river-bed material. Transactions of the American Geophysical Union, 35, 951-956.
36 Yang ZC (颜忠诚), Zhong H (2004) Aquatic insects. Bulletin of Biology(生物学通报), 39, 15-17. (in Chinese)
[1] Xiaqiu Tao,Shaopeng Cui,Zhigang Jiang,Hongjun Chu,Na Li,Daode Yang,Chunwang Li. Reptilian fauna and elevational patterns of the reptile species diversity in Altay Prefecture in Xinjiang, China [J]. Biodiv Sci, 2018, 26(6): 578-589.
[2] CHEN Li-Xin, ZHANG Zhi-Qiang, LI Zhan-Dong, ZHANG Wen-Juan, ZHANG Xiao-Fang, DONG Ke-Yu, WANG Guo-Yu. Nocturnal sap flow of four urban greening tree species in Dalian, Liaoning Province, China [J]. Chin J Plan Ecolo, 2010, 34(5): 535-546.
[3] Xin Lin, Zhiheng Wang, Zhiyao Tang, Shuqing Zhao, Jingyun Fang. Geographic patterns and environmental correlates of terrestrial mammal species richness in China [J]. Biodiv Sci, 2009, 17(6): 652-663.
Full text



[1] Hui Liu, Yu-Jun Liu, Ming-Feng Yang, and Shi-Hua Shen. A Comparative Analysis of Embryo and Endosperm Proteome from Seeds of Jatropha curcas[J]. J Integr Plant Biol, 2009, 51(9): 850 -857 .
[2] Margherita Gioria, Bruce Osborne. The impact of Gunnera tinctoria (Molina) Mirbel invasions on soil seed bank communities[J]. J Plant Ecol, 2009, 2(3): 153 -167 .
[3] XI Hou-Cheng, SUN Yao, XUE Chun-Ying. Molecular Phylogeny of Swertiinae (GentianaceaeGentianeae) Based on Sequence Data of ITS and matK[J]. Plant Diversity, 2014, 36(02): 145 -156 .
[4] Silvas J. Prince, Mackensie Murphy, Raymond N. Mutava, Zhengzhi Zhang, Na Nguyen, Yoon Ha Kim, Safiullah M. Pathan, Grover J. Shannon, Babu Valliyodan and Henry T. Nguyen. Evaluation of high yielding soybean germplasm under water limitation[J]. J Integr Plant Biol, 2016, 58(5): 475 -491 .
[5] Wu Qi-gen, Liao Jing-ping, Wu Te-lin. A New Combination of the genus Zingiber—Z. ellipticum (S. Q. Tong et Y. M. Xia) Q. G. Wu et T. L. Wu and the Systematic Evidence[J]. J Syst Evol, 1996, 34(4): 415 -420 .
[6] LI Yan WANG Rong LI Guan GOU Ping. Purification and Properties of Alliinase from Fresh Garlic (Allium sativum)[J]. Chin Bull Bot, 2005, 22(05): 579 -583 .
[7] LIU Wei-Wei-, CHEN Cui-, HE Rong-Hua-, XU Kun. Photosynthesis Characteristics of Four Paris (Trilliaceae) Species[J]. Plant Diversity, 2013, 35(5): 594 -600 .
[8] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[9] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[10] LIU Xiang-Yu, HE Dong, TIAN Wen-Bin, SONG Yan-Jun, YIN Fang, XU Ming-Shan, CHENG Jun-Yang, YAN En-Rong. Patterns of species associations in woody plants in forest communities of Putuoshan Island, Zhejiang, China[J]. Chin J Plan Ecolo, 2017, 41(12): 1219 -1227 .