Biodiversity Science ›› 2012, Vol. 20 ›› Issue (4): 495-504.doi: 10.3724/SP.J.1003.2012.10224

• Original Papers • Previous Article     Next Article

Population diversity and phylogeny of halophiles in the Qinghai Lake

Derui Zhu1, 2*, Jian Liu1, Rui Han3, Guoping Shen2, Fang Yang2, Qifu Long2, Deli Liu1   

  1. 1Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Science, Central China Normal University, Wuhan 430079

    2Medical College of Qinghai University, Xining 810016

    3Qinghai Academy of Agricultural Forestry Sciences, Xining 810016
  • Received:2011-12-06 Revised:2012-05-03 Online:2012-09-12
  • Derui Zhu E-mail:zhuderui2005@126.com

Qinghai Lake is the largest inland saline lake in China, but the diversity of halophiles within the lake remains unknown. We isolated 35 bacterial strains from different water samples in Qinghai Lake using an Oesterhelt-Stoeckenius medium (OSM). The majority of halophiles in this lake were moderate halophiles (grew at 0.4 to 3.5 M NaCl), accounting for about 62.9% (22 strains) of total bacteria, followed by the slight halophiles (22.9%, 8 strains) which could grow at 0 to 1.0 M NaCl, whereas the halotolerant (grew at 0 to more than 1.0 M NaCl) and nonhalophile (grew at 0 to 1.0 M NaCl) represented 11.4% (4 strains) and 2.9% (1 strain) of total bacteria, respectively. We investigated and analyzed the population diversity and evolutionary relationship based on the 16S rDNA sequences. A total of 35 bacterial strains were sequenced, and homology analysis showed that a majority was affiliated with γ-Proteobacteria and Bacilli, which accounted for 68.6% (24 strains) and 17.1% (6 strains) of total bacteria, respectively, whereas Actinobacteridae (3 strains), α-Proteobacteria (1 strain) and Eurotiomycetidae (1 strain) represented a small portion of total bacteria. Based on phylogenetics, 35 strains belonged to 14 different genera. Ten strains of Halomonas in the Oceanospirillales were the most dominant species, whereas 4 strains of Marinomonas represented a minor species component. Overall, Halomonas was the dominant group of moderate halophile, which can likely be attributed to its ability to adapt to relatively low salinity environments.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhi-Duan Chen, Tuo Yang, Li Lin, Li-Min Lu, Hong-Lei Li, Miao Sun, Bing Liu, Min Chen, Yan-Ting Niu, Jian-Fei Ye, Zhi-Yong Cao, Hong-Mei Liu, Xiao-Ming Wang, Wei Wang, Jing-Bo Zhang, Zhen Meng, Wei Cao, Jian-Hui Li, Sheng-Dan Wu, Hui-Ling Zhao, Zhong-Jian Liu, Zhi-Yuan Du, Qing-Feng Wang, Jing Guo, Xin-Xin Tan, Jun-Xia Su, Lin-Jing Zhang, Lei-Lei Yang, Yi-Ying Liao, Ming-He Li, Guo-Qiang Zhang, Shih-Wen Chung, Jian Zhang, Kun-Li Xiang, Rui-Qi Li, Douglas E. Soltis, Pamela S. Soltis, Shi-Liang Zhou, Jin-Hua Ran, Xiao-Quan Wang, Xiao-Hua Jin, You-Sheng Chen, Tian-Gang Gao, Jian-Hua Li, Shou-Zhou Zhang, An-Ming Lu, China Phylogeny Consortium. Tree of life for the genera of Chinese vascular plants[J]. J Syst Evol, 2016, 54(4): 277 -306 .
[2] Zhi-Cheng ZHU, Yin HUANG, Feng-Wei XU, Wen XING, Shu-Xia ZHENG, Yong-Fei BAI. Effects of precipitation intensity and temporal pattern on soil nitrogen mineralization in a typical steppe of Nei Mongol grassland[J]. Chin J Plan Ecolo, 2017, 41(9): 938 -952 .
[3] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[4] SHI Wei, WANG Zheng-Quan, LIU Jin-Liang, GU Jia-Cun, GUO Da-Li. FINE ROOT MORPHOLOGY OF TWENTY HARDWOOD SPECIES IN MAOERSHAN NATURAL SECONDARY FOREST IN NORTHEASTERN CHINA[J]. Chin J Plan Ecolo, 2008, 32(6): 1217 -1226 .
[5] MOU Jing, BIN Zhen-Jun, LI Qiu-Xia, BU Hai-Yan, ZHANG Ren-Yi, XU Dang-Hui. Effects of nitrogen and silicon addition on soil nitrogen mineralization in alpine meadows of Qinghai-Xizang Plateau[J]. Chin J Plant Ecol, 2019, 43(1): 77 -84 .
[6] Wei Hao, Mei-Zhen Zhu, Ji-Ping Gao, Shi-Yong Sun and Hong-Xuan Lin. Identification of Quantitative Trait Loci for Rice Quality in a Population of Chromosome Segment Substitution Lines[J]. J Integr Plant Biol, 2009, 51(5): 500 -512 .
[7] Pengfei Jiang, Shiliang Wang, Aziz Ul Ikram, Zuntao Xu, Haiyang Jiang, Beijiu Cheng and Yong Ding. SDG721 and SDG705 are required for rice growth[J]. J Integr Plant Biol, 2018, 60(7): 530 -535 .
[8] LIU Guang-Cai, YANG Qi-Feng, LI Long, SUN Jian-Hao. INTERCROPPING ADVANTAGE AND CONTRIBUTION OF ABOVE- AND BELOW-GROUND INTERACTIONS IN WHEAT-MAIZE INTERCROPPING[J]. Chin J Plan Ecolo, 2008, 32(2): 477 -484 .
[9] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[10] Yongjun Chen,Jing Zhang,Puqing Song,Ran Zhang,Yuan Li,Zhihui Zhong,Longshan Lin. Composition of the Taiwan Strait fish fauna[J]. Biodiv Sci, 2014, 22(4): 525 -531 .