Biodiversity Science ›› 2019, Vol. 27 ›› Issue (8): 911-918.doi: 10.17520/biods.2019237

Previous Article    

Community structure and diversity of soil bacteria in different habitats of Da Liangzihe National Forest Park in the Lesser Khinggan Mountains

Jun Liu1, Ning Wang2, Daizong Cui2, Lei Lu2, Min Zhao2, *()   

  1. 1. Inner Mongolia Daxing’anling Forestry Science and Technology Research Institute, Yakeshi, Inner Mongolia 022150;
    2. College of Life Sciences, Northeast Forestry University, Harbin 150040
  • Received:2019-07-25 Accepted:2019-09-19 Online:2019-09-25
  • Zhao Min E-mail:82191513@163.com

Soil bacteria are important participants in the material cycling and energy flows in forest ecosystems. Therefore, the composition and biodiversity of bacterial communities are major indicators of soil ecological function. The aim of this study was to investigate the structure and diversity of bacterial communities across seven different habitats (i.e. Pinus koraiensis, Larix gmelinii, Quercus mongolica, Betula costata, coniferous-broad-leaved mixed forests, shrubs and meadows) in Da liangzihe National Forest Park by using high throughput sequencing technology. At the phylum level, the bacterial community composition was basically the same in all habitats, with Proteobacteria, Actinobacteria, Acidobacteria and Verrucomicrobia dominating the bacterial phyla by having relative abundance of more than 10%. At the genus level, 245 genera were identified, with 118 common genera accounting for 48.2% of all genera and 97.8% of the total relative abundance. The dominant genera, Spartobacteria_genera_incertae_sedis, Gaiella, Gp16 and Gp4, made up 47.0% of the total relative abundance. Spartobacteria_genera_incertae_sedis was the most abundant genus in every habitat. In addition, the soil bacterial diversity and the soil physicochemical factors differed significantly among the habitats. Both the diversity and richness of the soil bacterial community were higher in Pinus koraiensis than the other habitats. Soil pH was found to be a key factor affecting soil bacterial community diversity in Da Liangzihe National Forest Park.

Key words: the Lesser Khinggan Mountains, high throughput sequencing, different habitats, bacterial diversity, soil pH

Fig. 1

Rarefaction curves of OTUs clustered at 97% sequence similarity across different habitats"

Table 1

Soil physicochemical properties and soil bacterial diversity in seven habitats (Means ± SD)"

样地
Sample
有机碳
Organic C (g/kg)
有效氮
Available N (g/kg)
有效磷
Available P (g/kg)
碳氮比
C/N
pH OTUs Shannon指数 Shannon index 丰富度指数
Chao1 index
红松林 HS 117.64 ± 2.9a 4.09 ± 0.02a 1.18 ± 0.038a 28.77 ± 1.24a 5.93 ± 0.13a 1897 ± 23.33a 9.05 ± 0.0013a 2082.56 ± 5.97a
落叶松林 LY 159.16 ± 6.1b 6.09 ± 0.234bd 1.44 ± 0.016bd 26.13 ± 0.74b 5.46 ± 0.12b 1613 ± 12.02b 8.43 ± 0.0013b 1955.04 ± 10.35b
蒙古栎林 MG 127.53 ± 5.9c 5.31 ± 0.085c 1.30 ± 0.031ab 24.02 ± 0.74c 5.38 ± 0.39bd 1376 ± 14.85c 7.78 ± 0.0008c 1652.53 ± 8.77c
枫桦林 FH 127.53 ± 5.0c 5.28 ± 0.158c 1.24 ± 0.021a 24.14 ± 2.16c 5.41 ± 0.18cd 1366 ± 24.04c 7.96 ± 0.0021d 1598.54 ± 9.76c
灌木林 GM 120.81 ± 2.7ac 5.98 ± 0.062d 1.44 ± 0.060bd 20.19 ± 1.48d 5.35 ± 0.35cd 1692 ± 15.56d 8.74 ± 0.0013e 1901.82 ± 10.74b
草地 CD 146.49 ± 4.5d 6.31 ± 0.506d 2.26 ± 0.024c 23.27 ± 1.14c 5.33 ± 0.22bd 1485 ± 13.26e 8.25 ± 0.0017f 1781.80 ± 8.66d
针阔混交林 ZK 122.25 ± 1.8ac 5.15 ± 0.124c 1.51 ± 0.024d 23.74 ± 0.85c 6.05 ± 0.25e 1799 ± 28.21a 9.16 ± 0.0015a 1928.39 ± 4.12b

Fig. 2

Analysis of beta diversity of soil bacteria in seven habitats (weighted)"

Fig. 3

Bacterial community composition of phyla (a) and genus (b) derived from the different habitats. HS, Pinus koraiensis forest; LY, Larix gmelinii forest; MG, Quercus mongolica forest; FH, Betula costata forest; GM, Shrub forest; CD, Grassland; ZK, Coniferous-broad-leaved mixed forest."

Fig. 4

The cluster tree based of community structure of different habitats. HS, Pinus koraiensis forest; LY, Larix gmelinii forest; MG, Quercus mongolica forest; FH, Betula costata forest; GM, Shrub forest; CD, Grassland; ZK, Coniferous-broad-leaved mixed forest."

Table 2

Analysis of correlation between soil physical and chemical properties and bacterial diversity"

有机碳 Organic carbon 有效氮 Available N 有效磷 Available P 碳氮比 C/N pH
OTUs -0.390 -0.466 -0.185 0.331 0.768*
Shannon指数 Shannon index -0.349 -0.371 -0.082 0.182 0.782*
丰富度指数 Chao1 index -0.052 -0.297 -0.086 0.416 0.608
Simpson指数 Simpson index -0.303 -0.490 -0.067 0.382 0.839*

Fig. 5

Canonical correlation analysis of the top 10 dominant bacterial genera and soil environmental factors"

1 Berg G, Grube M, Schloter M, Smalla K ( 2014) Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5, 1-7.
2 Chabrerie O, Laval K, Puget P, Desaire S, Alard D ( 2003) Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Applied Soil Ecology, 24, 43-56.
3 Colombo F, Macdonald CA, Jeffries TC, Powell JR, Singh BK ( 2016) Impact of forest management practices on soil bacterial diversity and consequences for soil processes. Soil Biology & Biochemistry, 94, 200-210.
4 Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2017) Bacterial structure and diversity of rhizosphere and bulk soil of Robinia pseudoacacia forests in Yellow River Delta. Acta Pedologica Sinica, 54, 1293-1298.(in Chinese with English abstract)
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2017) 黄河三角洲刺槐根际与非根际细菌结构及多样性. 土壤学报, 54, 1293-1302.]
5 Ding XJ, Jing RY, Huang YL, Chen BJ, Ma FY ( 2018) Bacterial structure and diversity of rhizosphere soil of four tree species in Yellow River Delta based on high-throughput sequencing. Scientia Silvae Sinicae, 54, 81-89.(in Chinese with English abstract)
[ 丁新景, 敬如岩, 黄雅丽, 陈博杰, 马风云 ( 2018) 基于高通量测序的 4 种不同树种人工林根际土壤细菌结构及多样性. 林业科学, 54, 81-89.]
6 Djukic I, Zehetner F, Mentler A, Gerzabek MH ( 2010) Microbial community composition and activity in different alpine vegetation zones. Soil Biology & Biochemistry, 42, 155-161.
7 Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC ( 2009) Global patterns in belowground communities. Ecology Letters, 12, 1238-1249.
8 Gömöryoá E, Hrivnák R, Janišová M, Ujházy K, Gömöry D ( 2009) Changes of the functional diversity of soil microbial community during the colonization of abandoned grassland by a forest. Applied Soil Ecology, 43, 191-199.
9 Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS ( 2011) The bacterial biogeography of British soils. Environmental Microbiology, 13, 1642-1654.
10 Lauber CL, Hamady M, Knight R, Fierer N ( 2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 75, 5111-5120.
11 Lan GY, Li YW, Wu Z, Xie GS ( 2017) Impact of tropical forest conversion on soil bacterial diversity in tropical region of China. European Journal of Soil Biology, 83, 91-97.
12 Lin YT, Huang YJ, Tang SL, Whitman WB, Coleman DC, Chiu CY ( 2010) Bacterial community diversity in undisturbed perhumid montane forest soils in Taiwan. Microbial Ecology, 59, 369-378.
13 Li ZZ, Zhu LB, Lin YC, Hu YG, Zeng ZH ( 2010) Seasonal variation of soil bacterial community under different degrees of degradation of Hulunbeier grassland. Acta Ecologica Sinica, 30, 2883-2889.(in Chinese with English abstract)
[ 李梓正, 朱立博, 林叶春, 胡跃高, 曾昭海 ( 2010) 呼伦贝尔草原不同退化梯度土壤细菌多样性季节变化. 生态学报, 30, 2883-2889.]
14 Liu CL, Zuo WY, Zhao ZY, Qiu LH ( 2012) Bacterial diversity of different successional stage forest soils in Dinghushan. Acta Microbiologica Sinica, 52, 1489-1496.(in Chinese with English abstract)
[ 柳春林, 左伟英, 赵增阳, 邱礼鸿 ( 2012) 鼎湖山不同演替阶段森林土壤细菌多样性. 微生物学报, 52, 1489-1496.]
15 Lu RK ( 2000) The Method of Soil Agricultural Chemical Analysis. China Agriculture Science & Technology Press, Beijing.(in Chinese)
[ 鲁如坤 ( 2000) 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
16 Margesin R, Jud M, Tscherko D, Schinner F ( 2009) Microbial communities and activities in alpine and subalpine soils. FEMS Microbiology Ecology, 67, 208-218.
17 Prescott CE, Grayston SJ ( 2013) Tree species influence on microbial communities in litter and soil: Current knowledge and research needs. Forest Ecology and Management, 309, 19-27.
18 Ren CJ, Liu WC, Zhao FZ, Zhong ZK, Deng J, Han XH, Yang GH, FengYZ, Ren GX ( 2019) Soil bacterial and fungal diversity and compositions respond differently to forest development. CATENA, 181, 104071.
19 Sáenz de Miera LE, Arroyo P, Calabuig EDL, Falagán J, Ansola G ( 2014) High-throughput sequencing of 16s RNA genes of soil bacterial communities from a naturally occurring CO2 gas vent. International Journal of Greenhouse Gas Control, 29, 176-184.
20 Santonja M, Foucault Q, Rancon A, Gauquelin T, Fernandez C, Baldy V, Mirleau P ( 2018) Contrasting responses of bacterial and fungal communities to plant litter diversity in a Mediterranean oak forest. Soil Biology & Biochemistry, 125, 27-36.
21 Shen CC, Xiong JB, Zhang HY, Feng YZ, Lin XG, Li XY, Liang WJ, Chu HY ( 2013) Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology & Biochemistry, 57, 204-211.
22 Singh D, Takahashi K, Kim M, Chun J, Adams JM ( 2012) A hump-backed trend in bacterial diversity with elevation on Mount Fuji, Japan. Microbial Ecology, 63, 429-437.
23 Song HJ, Ye J, Shi S, Zhang ZC, Kuang X, Xing DL, Yuan ZQ, Lin F, Cai CJ, Wang XG, Hao ZQ ( 2014) Woody plant species composition and community structure in residual fragments of broadleaved Korean pine mixed forests in Changbai Mountains area. Chinese Journal of Applied Ecology, 25, 1239-1249.(in Chinese with English abstract)
[ 宋厚娟, 叶吉, 师帅, 张昭臣, 匡旭, 邢丁亮, 原作强, 蔺菲, 蔡成军, 王绪高, 郝占庆 ( 2014) 长白山区阔叶红松林残留片段木本植物物种组成与群落结构. 应用生态学报, 25, 1239-1249.]
24 Stone MM, Kan JJ, Plante AF ( 2015) Parent material and vegetation influence bacterial community structure and nitrogen functional genes along deep tropical soil profiles at the Luquillo Critical Zone Observatory. Soil Biology & Biochemistry, 80, 273-282.
25 Sui X, Zhang RT, Zhong HX, Xu N, Wang JF, Liu YZ, Yuan HF, Ni HW ( 2015) Study on bacterial diversity of Deyeuxia angustifolia wetland by application of high-throughput sequencing technology in Sanjiang Plain. Soil, 47, 919-925.(in Chinese with English abstract)
[ 隋心, 张荣涛, 钟海秀, 许楠, 王继丰, 刘应竹, 袁海峰, 倪红伟 ( 2015) 利用高通量测序对三江平原小叶章湿地土壤细菌多样性的研究. 土壤, 47, 919-925.]
26 Wang GH, Liu JJ, Yu ZH, Wang XZ, Jin J, Liu XB ( 2016) Research progress of Acidobacteria ecology in soils. Biotechnology Bulletin, 32, 14-20.(in Chinese with English abstract )
[ 王光华, 刘俊杰, 于镇华, 王新珍, 金剑, 刘晓冰 ( 2016) 土壤酸杆菌门细菌生态学研究进展. 生物技术通报, 32, 14-20.]
27 Wang QB, Zhang SL, Zhang HJ, Wang CB, Qi XL, Song GH, Zhang SP ( 2015) Analysis of plant species composition at different levels in the Da Liangzi River National Forest Park. Auhui Agricultural Science Bulletin, 21(3/4), 24-26.(in Chinese )
[ 王全波, 张淑兰, 张海军, 王长宝, 戚晓利, 宋国华, 张守平 ( 2015) 大亮子河国家森林公园林乔灌草不同层次植物物种组成分析 . 安徽农学通报, 21(3/4), 24-26.]
28 Zhang HJ, Wang CB, Liu YH, Zhang SL, Zhang SP ( 2011) Vascular plant resources and their diversity in Daliangzihe National Forest Park. Hubei Agricultural Sciences, 50, 2217-2224.(in Chinese with English abstract )
[ 张海军, 王长宝, 刘玉红, 张淑兰, 张守平 ( 2011) 大亮子河国家森林公园林乔灌草不同层次植物物种组成分析. 湖北农业科学, 50, 2217-2224.]
29 Zhang YG, Cong J, Lu H, Li GL, Xue YD, Deng Y, Li H, Zhou JZ, Li DQ ( 2015) Soil bacterial diversity patterns and drivers along an elevational gradient on Shennongjia Mountain, China. Microbial Biotechnology, 8, 739-746.
30 Zhu S, Vivanco JM, Manter DK ( 2016) Nitrogen fertilizer rate affects root exudation the rhizosphere microbiome and nitrogen-use efficiency of maize. Applied Soil Ecology, 107, 324-333.
[1] CHEN Xu, LIU Hong-Kai, ZHAO Chun-Zhou, WANG Qiang, WANG Yan-Ping. (2019) Responses of foliar anatomical traits to soil conditions in 11 tree species on coastal saline-alkali sites of Shandong, China . Chin J Plant Ecol, 43(8): 697-708.
[2] Jun Liu, Ning Wang, Daizong Cui, Lei Lu, Min Zhao. (2019) Diversity of bacterial resources in the Greater and Lesser Khinggan Mountains . Biodiv Sci, 27(8): 903-910.
[3] Zhang Zhe, Wang Shaojun, Chen Minkun, Cao Run, Li Shaohui. (2019) Effect of ant colonization on spatiotemporal dynamics of readily oxidizable soil carbon across different restoration stages of tropical forests . Biodiv Sci, 27(6): 658-666.
[4] Liu Shanlin. (2019) DNA barcoding and emerging reference construction and data analysis technologies . Biodiv Sci, 27(5): 526-533.
[5] Mei Zhang,Mashui Lin,Xiuxiu Cao,Shumin Zhao,Daqing Jiang,Bingxuan Wang,Shiying Wang,Yandi Fan,Ming Guo,Haiping Lin. (2018) Difference in pH value and nutrient and bacterial diversity in the Carya cathayensis forest soil under different management models . Biodiv Sci, 26(6): 611-619.
[6] MENG Zhen-Si, XIANG Wei, SU Guo-Kui, LI Da-Dong, DONG Ting-Fa, PENG Jin-You, LI Xiao-Dong, GONG Xiao-Ping, LIANG Ning, XU Xiao. (2018) Spatial distribution of male and female Populus cathayana populations and its drivers in Xiaowutai Mountains, Hebei, China . Chin J Plant Ecol, 42(12): 1145-1153.
[7] DENG Chuan-Yuan,ZHENG Jun-Ming,ZHANG Wan-Chao,GUO Su-Zhi,XUE Qiu-Hua,YE Lu-Ying,SUN Jian-Wen. (2015) Ecological wood anatomy of Rhizophora stylosa . Chin J Plan Ecolo, 39(6): 604-615.
[8] Xunzhi Zhu,Qiang Li,Yangping Li,Hongbo Han,Keping Ma. (2015) Eupatorium adenophorum invasion alters soil bacterial community and diversity . Biodiv Sci, 23(5): 665-672.
[9] Aihua Zhao,Xiaojun Du,Jing Zang,Shouren Zhang,Zhihua Jiao. (2015) Soil bacterial diversity in the Baotianman deciduous broad-leaved forest . Biodiv Sci, 23(5): 649-657.
[10] Fang Liu,Qi Li,Congcong Shen,Haiyan Chu,Wenju Liang. (2014) Distribution of gymnamoebae communities along an elevational gradient in Changbai Mountains . Biodiv Sci, 22(5): 608-617.
[11] Ru Huang, Jing Cang, Jing Yu, Baowei Lu, Lijie Liu, Jianfei Wang, Renming Guo, Chen Xu. (2014) Solexa Sequencing and Bioinformatics Analysis of Small RNA in Winter Wheat . Chin Bull Bot, 49(1): 8-18.
[12] Jia Ding, Qian Wu, Hui Yan, Shouren Zhang. (2011) Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest . Biodiv Sci, 19(2): 158-167.
[13] Jianping Zhang, Naiyuan Dong, Haobin Yu, Yongjun Zhou, Yongliang Lu, Ruimei Geng, Liuqing Yu. (2008) Bacteria diversity in paddy field soil by 16S rDNA-RFLP analysis in Ningxia . Biodiv Sci, 16(6): 586-592.
[14] Shaojun Wang, Qiujin Cai, Honghua Ruan. (2007) Soil nematode community response to vegetation restoration in northern Fujian . Biodiv Sci, 15(4): 356-364.
[15] Qihui Teng, Hui Cao, Zhongli Cui, Ying Wang, Bo Sun, Hongtao Hao, Shunpeng Li. (2006) PCR-RFLP analysis of bacterial 16S rDNA from a typical garden soil in Taihu region . Biodiv Sci, 14(4): 345-351.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed