Biodiversity Science ›› 2019, Vol. 27 ›› Issue (10): 1132-1137.doi: 10.17520/biods.2019208

• Original Papers • Previous Article     Next Article

Determination of key species in the food web and their impact on the robustness

Wang Fengzhen1, Tang Yi1, 2, *()   

  1. 1 School of Life Sciences, Liaoning University, Shenyang 110036
    2 Institute of Statistics and Data Science, Liaoning University, Shenyang 110036
  • Received:2019-07-01 Accepted:2019-09-29 Online:2019-10-20
  • Tang Yi E-mail:tangyi@lnu.edu.cn

Understanding key species and their roles and impacts within communities plays a vital role in protecting key species within communities. Species relationship indicators, i.e., betweenness centrality (BC), closeness centrality (CC), and degree centrality (DC) measured food web connectivity among a community of 49 species. Once indicators were calculated, a clustering analysis analyzed species influences on connectivity robustness among different species classes. In addition to clustering analysis, node removal was tested to measure connectivity robustness under removal modes. Based off of clustering results, species were divided into three food web classes: (1) Class I species have relatively higher BC, CC, and DC values. (2) Class II species have relatively lower BC, CC, and DC values while (3) Class III species are intermediate between Class I and Class II species. In our analyses, it appeared that Class I species are more important for food web processes and are therefore considered key species, contributing to our understanding of how to quantify key food web species. Besides, the connectivity robustness decreased along with the increase in removed nodes under the ascending order removal mode. In the descending order and random removal modes, the connectivity robustness slightly increased after a continuous decrease along with the increase in removed nodes. It indicates that removal modes significantly affect the connectivity robustness. Moreover, under the three removal methods, the significant change in the connectivity robustness corresponds to almost the same number of removed nodes. It suggests key species play an essential role in maintaining the connectivity robustness of the food web.

Key words: cluster analysis, complex network, ecological network, node degree, connectivity robustness

Fig. 1

Nodes clustering visualization"

Table 1

The summary of degree centrality (DC), betweenness centrality (BC) and closeness centrality (CC) of nodes in classes"

类别 Cluster 指标 Indices 均值 Mean 方差 Variance 中位数 Median 最大值 Maximum 最小值 Minimum
Ⅰ类 点度中心度 DC 0.394 0.027 0.383 0.575 0.234
中介中心度 BC 0.216 0.028 0.180 0.428 0.078
紧密中心度 CC 0.538 0.012 0.528 0.662 0.435
Ⅱ类 点度中心度 DC 0.047 0.001 0.043 0.106 0.021
中介中心度 BC 0.003 0.000 0.001 0.011 0.000
紧密中心度 CC 0.386 0.002 0.398 0.465 0.305
Ⅲ类 点度中心度 DC 0.116 0.001 0.106 0.170 0.064
中介中心度 BC 0.036 0.001 0.031 0.083 0.003
紧密中心度 CC 0.469 0.000 0.470 0.500 0.431

Fig. 2

The relationship between the connectivity robustness and the number of removed nodes"

Fig. 3

The relationship between the robustness and the number of removed nodes under different removal modes"

[1] Aguilar R, Ashworth L, Galetto L, Aizen MA ( 2006) Plant reproductive susceptibility to habitat fragmentation: Review and synthesis through a meta-analysis. Ecology Letters, 9, 968-980.
[2] Du W, Cai M, Du HF ( 2010) Study on indices of network structure robustness and their application. Journal of Xi’an Jiaotong University, 44(4), 93-97. (in Chinese with English abstract)
[ 杜巍, 蔡萌, 杜海峰 ( 2010) 网络结构鲁棒性指标及应用研究. 西安交通大学学报, 44(4), 93-97.]
[3] Dunne JA, Williams RJ, Martinez ND ( 2002) Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558-567.
[4] Elton CS ( 1958) The Ecology of Invasions by Animals and Plants. Chapman and Hall, London.
[5] Han XG, Huang JH, Lou ZP ( 1995) The significance and problems of key concepts in biodiversity conservation. Chinese Bulletin of Botany, 12(S2), 168-184. (in Chinese)
[ 韩兴国, 黄建辉, 娄治平 ( 1995) 关键种概念在生物多样性保护中的意义与存在的问题. 植物学通报, 12(S2), 168-184.]
[6] Hastings A, Mccann KS, De Ruiter PC ( 2016) Introduction to the special issue: Theory of food webs. Theoretical Ecology, 9, 1-2.
[7] Kadoya T, Gellner G, McCann KS ( 2018) Potential oscillators and keystone modules in food webs. Ecology Letters, 21, 1330-1340.
[8] Kitano H ( 2007) Towards a theory of biological robustness. Molecular Systems Biology, 3, 137.
[9] Li YM, Li X, Hua J ( 2014) Ecosystem stability and ecological diversity based on complex networks. Chinese Journal of Ecology, 33, 1700-1706. (in Chinese with English abstract)
[ 李医民, 李鑫, 华静 ( 2014) 基于复杂网络的生态系统稳定性与生态多样性. 生态学杂志, 33, 1700-1706.]
[10] Liao J, Bearup D, Wang Y, Nijs I, Bonte D, Li Y, Brose U, Wang S, Blasius B ( 2017) Robustness of metacommunities with omnivory to habitat destruction: Disentangling patch fragmentation from patch loss. Ecology, 98, 1631-1639.
[11] MacArthur R ( 1955) Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533-536.
[12] Memmott J, Waser NM, Price MV ( 2004) Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 271, 2605-2611.
[13] Paine RT ( 1966) Food web complexity and species diversity. The American Naturalist, 100, 65-75.
[14] Paine RT ( 1969) A note on trophic complexity and community stability. The American Naturalist, 103, 91-93.
[15] Saint-Béat B, Baird D, Asmus H, Asmus R, Bacher C, Pacella SR, Johnson GA, David V, Vézina AF, Niquil N ( 2015) Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458-471.
[16] Scrucca L, Fop M, Murphy TB, Raftery AE ( 2016) mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8, 289-317.
[17] Solé RV, Montoya JM ( 2001) Complexity and fragility in ecological networks. Proceedings of the Royal Society B: Biological Sciences, 268, 2039-2045.
[18] Stelling J, Sauer U, Szallasi Z, Doyle FJ, Doyle J ( 2004) Robustness of cellular functions. Cell, 118, 675-685.
[19] Stone R ( 2010) Home, home outside the range? Science, 329, 1592-1594.
[20] Sun G, Sheng LX ( 2000) Key species theory of ecosystem: New ideas, new mechanisms, new ways. Journal of Northeast Normal University (Natural Science Edition), 32(3), 73-77. (in Chinese with English abstract)
[ 孙刚, 盛连喜 ( 2000) 生态系统关键种理论: 新思想、新机制、新途径. 东北师大学报(自然科学版), 32(3), 73-77.]
[21] Sun LQ, Lin YS, Chen LX, Cao WQ, Zheng LM ( 2016) Study on the structure and function of ecosystem in Northern Beibu Gulf VII: Nutrition structure construction and key screening based on ecopath model. Journal of Tropical Oceanography, 35(4), 51-62. (in Chinese with English abstract)
[ 孙龙启, 林元烧, 陈俐骁, 曹文清, 郑连明 ( 2016) 北部湾北部生态系统结构与功能研究VII: 基于Ecopath模型的营养结构构建和关键种筛选. 热带海洋学报, 35(4), 51-62.]
[22] Taffi M, Paoletti N, Liò P, Pucciarelli S, Marini M ( 2015) Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea. Ecological Modelling, 306, 205-215.
[23] Tang Y ( 2017) Research on traffic node setting in Northeast China under the background of “Belt and Road”. Economy Forum, ( 7), 4-9. (in Chinese)
[ 唐毅 ( 2017) “一带一路”背景下东北地区交通节点设置研究. 经济论坛, ( 7), 4-9.]
[24] Thompson RM, Townsend CR ( 2005) Energy availability, spatial heterogeneity and ecosystem size predict food-web structure in streams. Oikos, 108, 137-148.
[25] Wang S, Loreau M ( 2016) Biodiversity and ecosystem stability across scales in metacommunities. Ecology Letters, 19, 510-518.
[26] Yu Q, Yang L, Yue DP, Wang YH, Su K, Zhang QB ( 2018) Research on spatial ecological network structure based on complex network analysis. Transactions of the Chinese Society for Agricultural Machinery, 49(3), 214-224. (in Chinese with English abstract)
[ 于强, 杨斓, 岳德鹏, 王宇航, 苏凯, 张启斌 ( 2018) 基于复杂网络分析法的空间生态网络结构研究. 农业机械学报, 49(3), 214-224.]
[27] Zhang HY, Zhao L, Tian W, Huang H ( 2016) Stability of food webs to biodiversity loss: Comparing the roles of biomass and node degree. Ecological Indicators, 67, 723-729.
[28] Zhang Y, Bao Y, Zhao S, Chen J, Tang J ( 2015) Identifying node importance by combining betweenness centrality and Katz centrality. In: 2015 International Conference on Cloud Computing & Big Data, IEEE, pp. 354-357.
[29] Zhao L, Zhang H, O’Gorman EJ, Tian W, Ma A, Moore JC, Borrett SR, Woodward G ( 2016) Weighting and indirect effects identify keystone species in food webs. Ecology Letters, 19, 1032-1040.
[1] Xiaozhi Lin,Dongmei Li,Huanzhang Liu,Hongsheng Lin,Shaorong Yang,Hanjin Fan,Rushu Wen. Fish species diversity and its seasonal variations in the Chaozhou section of Hanjiang River, Guangdong Province [J]. Biodiv Sci, 2016, 24(2): 185-194.
[2] Kunchi Lai, Youhua Cheng, Yuehchih Chen, Yousheng Li, Kwangtsao Shao. Applying cluster analysis and Google Maps in the study of large-scale species occurrence data [J]. Biodiv Sci, 2012, 20(1): 76-85.
[3] Bo Zhou, Haidong Jiang, Xiuxin Zhang, Jingqi Xue, Yantong Shi. Morphological diversity of some introduced tree peony cultivars [J]. Biodiv Sci, 2011, 19(5): 543-550.
[4] Chunnan Li, Hairui Cui, Weibo Wang. Genetic diversity in rhizosphere soil microbes detected with SRAP markers [J]. Biodiv Sci, 2011, 19(4): 485-493.
[5] Furong Xu, Enlai Zhang, Chao Dong, Luyuan Dai, Hongsheng Zhang. Comparison of phenotypic traits of rice landraces, grown in two different periods in Hani’s terraced fields in Yuanyang County, Yunnan [J]. Biodiv Sci, 2010, 18(4): 365-372.
[6] Yuduan Ou, Zhiyao Su, Zhenkui Li, Fuchun Tong, Zexin Liu. Soil arthropod diversity following an ice storm in a montane evergreen broadleaved forest in Chebaling National Nature Reserve, China [J]. Biodiv Sci, 2009, 17(5): 440-447.
[7] Lichuan Dai, Minglong Zhang, Jiye Liu, Xiaobai Li, Hairui Cui. Genetic diversity in Chinese rapeseed (Brassica napus) cultivars based on EST-SSR markers [J]. Biodiv Sci, 2009, 17(5): 482-489.
[8] Youyu Zhang, Lizhi Zhou, Qishan Wang, Xinjian Wang, Yajun Xing. Distribution pattern and hotspot analysis of breeding birds in Anhui Province [J]. Biodiv Sci, 2008, 16(3): 305-312.
[9] Zhengda Gong, Houyong Wu, Xingde Duan, Xiguang Feng, Yunzhi Zhang, Quan Liu . Species richness and vertical distribution pattern of flea fauna in Heng-duan Mountains of western Yunnan, China [J]. Biodiv Sci, 2005, 13(4): 279-289.
[10] Mingfu Gong, Gehong Wei, Jianghua Liu, Peng Su, Peng Cao. Numerical taxonomy of rhizobia isolated from the nodules of Sophora alopecuroides from Xinjiang [J]. Biodiv Sci, 2005, 13(1): 75-80.
[11] GENG Bao-Rong. Evaluation of amphibian species diversity in Fujian [J]. Biodiv Sci, 2004, 12(6): 618-625.
[12] WANG Li-Xia, LI Ying-Hui, LI Wei, ZHU Li, GUAN Yuan, NING Xue-Cheng, GUAN Rong-Xia, LIU Zhang-Xiong, CHANG Ru-Zhen, QIU Li-Juan. Establishment of a core collection of Changjiang spring sowing soybean [J]. Biodiv Sci, 2004, 12(6): 578-585.
[13] ZHANG Da-Ming, Aniwar, JIANG Tao, JIAN You-Li. Analysis of the rodent community diversity and species variation in the Junggar Basin [J]. Biodiv Sci, 1998, 06(2): 92-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhao Zhi-li Liu Ke-zhi Zhou Nai-jian Zeng Bi-tao Tian Li-xie Zhou Gu-yu. Correlative Heritability and Its Application in Setaria italica Breeding[J]. Chin Bull Bot, 1994, 11(01): 59 -63 .
[2] Wang Ting;Su Ying-juan and C.R. Parkas. Progress in the Molecular Systematics of the Magnollidae[J]. Chin Bull Bot, 1994, 11(04): 1 -7 .
[3] . [J]. Chin Bull Bot, 1994, 11(专辑): 77 .
[4] Zhao GOng-peng Fang Ji-you Jiang Ji-quan Yang Hui-jian Su Shu-xin Wang Zhan-wen Yu Guang-xue. A Preliminary Results of the Cold-Resister CR-4 Applied to Spring-maize in the Cold Mountain Areas[J]. Chin Bull Bot, 1994, 11(特辑): 132 -136 .
[5] Hui Chen;Yuan Zhao;Kang Chong . Improved High-efficiency System for Rice Transformation Using Mature Embryo-derived Calli[J]. Chin Bull Bot, 2008, 25(03): 322 -331 .
[6] Yanling Zeng;Xiaofeng Tan *;Dangquan Zhang;Xiugen Li;Xiaofeng Zeng. Identification of S-genotypes of Pear Cultivars and Cloning of S34-allele[J]. Chin Bull Bot, 2008, 25(03): 292 -297 .
[7] Bai Ke-zhi Li Shi-yi. Preliminary Study on the Bioregulation of Gutta Content in the Leaves of Eucommia Ulmoides Oliv.[J]. Chin Bull Bot, 1995, 12(专辑3): 128 -130 .
[8] Chen Zhen-ge and Feng Dong-sheng. Changes of Nitrate and Nitrite Contents and Their Chemical Regulation of Leafy Vegetables[J]. Chin Bull Bot, 1994, 11(03): 25 -26 .
[9] . [J]. Chin Bull Bot, 1994, 11(专辑): 1 .
[10] SUN Qin-Miao LENG Jing LI Liang-Bi KUANG Ting-Yun. Recent Advances of Studies on the Structure and Function of the Light_harvesting Chlorophyll A/B-Protein Complex[J]. Chin Bull Bot, 2000, 17(04): 289 -301 .