Biodiversity Science ›› 2020, Vol. 28 ›› Issue (3): 277-288.doi: 10.17520/biods.2019118

• Original Papers • Previous Article     Next Article

Impacts of microhabitats on leaf functional traits of the wild population of Sinojackia huangmeiensis

Shitong Wang1, 2, 3, Yaozhan Xu1, 2, 3, Teng Yang1, 2, 3, 4, 5, Xinzeng Wei1, 2, 3, *(), Mingxi Jiang1, 2, 3   

  1. 1. Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074
    2. Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074
    3. University of Chinese Academy of Sciences, Beijing 100049
    4. Research Center for Ecology and Environment of Qinghai-Tibetan Plateau, Tibet University, Lhasa 850000
    5. College of Science, Tibet University, Lhasa 850000
  • Received:2019-04-04 Accepted:2019-08-02 Online:2019-12-13
  • Xinzeng Wei E-mail:xzwei@wbgcas.cn

Plant functional traits and stoichiometry characteristics can reflect differences in plant strategies to microenvironmental changes. In this study, we used a one-way ANOVA and Bayesian ANOVA to compare leaf functional traits, intraspecific variation, and leaf stoichiometry of Sinojackia huangmeiensis at three microhabitats (lakeside, population center, and cropland side) next to Longgan Lake, central China. Our results showed that: (1) There were no significant differences in soil C, N and P concentrations among the three microhabitats (P > 0.05), but soil C : N and C : P were significantly different (P < 0.05). (2) The results of one-way ANOVA and Bayesian ANOVA were similar when we compared mean values of leaf functional traits of S. huangmeiensis among the three microhabitats. Leaf length, leaf area, and specific leaf area were all significantly higher at population center than those at lakeside (P < 0.05), while the three leaf traits at cropland side were not different with those at lakeside or population center (P > 0.05); The leaf N content at lakeside was significantly higher than that at population center and cropland side (P < 0.05), but it was not different between population center and cropland side (P > 0.05); Leaf width, ratio of leaf length to leaf width, leaf dry matter content, leaf C content, and leaf P content were not significantly different among the three microhabitats (P > 0.05). (3) Leaf N : P of S. huangmeiensis at lakeside was significantly higher than that at population center and cropland side (P < 0.05). Leaf C : N at lakeside was significantly smaller than that at population center and cropland side (P < 0.05). Both leaf N : P and C : N were not different between population center and cropland side (P > 0.05). Leaf C : P was not different among the three microhabitats (P > 0.05). (4) The overall variation of leaf functional traits of S. huangmeiensis was between 0.02 and 0.28. Bayesian ANOVA showed that both leaf C and N contents had low degrees of intraspecific variation in lakeside and population center. (5) Sinojackia huangmeiensis’ growth was promoted by different factors at the varying microhabitats. Our results indicate that S. huangmeiensis strategies at three microhabitats were different and not single-trait dependent, but trade-off dependent to achieve a better adaptive effect.

Key words: plant functional traits, ecological stoichiometry, Wild Plant with Extremely Small Populations, Sinojackia huangmeiensis, Bayesian ANOVA, lakeshore zone

Fig. 1

Location of the study site (a) and distribution maps (b) of the three kinds of microhabitats"

Table 1

Chemical properties of soil and Sinojackia huangmeiensis leaves in three microhabitats (Mean ± SD)"

化学性质
Chemical property
土壤 Soil 叶片 Leaf
湖边 Lakeside 中心区域 Center 耕地边 Cropland side 湖边 Lakeside 中心区域 Center 耕地边 Cropland side
pH 4.11 ± 0.09a 3.91 ± 0.15a 4.06 ± 0.02a - - -
碳 C (g/kg) 70.68 ± 10.12a 44.70 ± 15.67a 54.91 ± 12.79a 442.78 ± 6.56A 442.20 ± 7.42A 443.71 ± 16.46A
氮 N (g/kg) 6.15 ± 0.89a 4.70 ± 1.66a 2.86 ± 1.38a 27.05 ± 2.00A 19.24 ± 1.62B 19.89 ± 4.78B
磷 P (g/kg) 2.34 ± 0.53a 2.41 ± 0.43a 1.56 ± 0.43a 1.69 ± 0.39A 2.07 ± 0.60A 1.85 ± 0.54A
碳/氮 C∶N 11.49 ± 0.37b 9.51 ± 0.16b 20.57 ± 4.47a 16.45 ± 1.14B 23.11 ± 1.72A 23.27 ± 4.38A
碳/磷 C∶P 30.84 ± 4.84a 18.25 ± 3.71b 36.00 ± 6.55a 273.91 ± 53.71A 227.53 ± 53.43A 254.46 ± 55.63A
氮/磷 N∶P 2.68 ± 0.34a 1.92 ± 0.40a 1.84 ± 0.64a 16.60 ± 2.86A 9.89 ± 2.47B 11.50 ± 4.16B

Table 2

General characteristics of Sinojackia huangmeiensis leaf functional traits"

叶片功能性状
Leaf functional traits
最小值
Minimum
最大值
Maximum
倍数差异
Fold range
变异系数
Coefficient of variation
叶面积 Leaf area (cm2) 10.77 29.25 2.72 0.17
叶长 Leaf length (cm) 5.27 9.50 1.80 0.11
叶宽 Leaf width (cm) 3.01 5.11 1.70 0.10
叶长/叶宽 Ratio of leaf length to leaf width 1.55 2.07 1.34 0.06
比叶面积 Specific leaf area (cm2/g) 19.63 38.47 1.96 0.14
叶干物质含量 Leaf dry matter content (mg/g) 223.35 403.24 1.81 0.12
叶片碳含量 Leaf carbon content (g/kg) 393.69 459.47 1.17 0.02
叶片氮含量 Leaf nitrogen content (g/kg) 12.26 31.29 2.55 0.21
叶片磷含量 Leaf phosphorus content (g/kg) 1.27 3.78 2.98 0.28

Fig. 2

Mean value (± SD) and coefficients of variation (CV) for leaf functional trait of Sinojackia huangmeiensis in three microhabitats. Different lowercase letters indicate significant differences of leaf functional trait values among different microhabitats (P < 0.05). LA, Leaf area; LL, Leaf length; LW, Leaf width; LL/LW, Leaf length/ Leaf width; SLA, Specific leaf area; LDMC, Leaf dry matter content; LCC, Leaf carbon content; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; L, Lakeside; C, Center; CS, Cropland side."

Fig. 3

Bayesian point estimates and 95% confidence intervals for the mean and standard deviation for leaf functional traits of Sinojackia huangmeiensis in three microhabitats. For the same trait, if the 95% confidence intervals of different microhabitats do not overlap, the trait is significantly different among microhabitats; if they overlap, however, the differences are not significant. LA, Leaf area; LL, Leaf length; LW, Leaf width; LL/LW, Leaf length/ Leaf width; SLA, Specific leaf area; LDMC, Leaf dry matter content; LCC, Leaf carbon content; LNC, Leaf nitrogen content; LPC, Leaf phosphorus content; L, Lakeside; C, Center; CS, Cropland side."

1 Aerts R, Chapin FS ( 2000) The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1-67.
2 Agashe D ( 2009) The stabilizing effect of intraspecific genetic variation on population dynamics in novel and ancestral habitats. The American Naturalist, 174, 255-267.
doi: 10.1086/600085
3 Ågren GI ( 2008) Stoichiometr.and nutrition of plant growth in natural communities. Annual Review of Ecology, Evolution and Systematics, 39, 153-170.
doi: 10.1146/annurev.ecolsys.39.110707.173515
4 Albert C, Grassein F, Schurr FM, Vieilledent G, Violle C ( 2011) Whe. and how should intraspecific variability be considered in trait-based plant ecology? Perspectives in Plant Ecology, Evolution & Systematics, 13, 217-225.
5 Albert CH ( 2015) Intraspecific trait variability matters. Journal of Vegetation Science, 26, 7-8.
doi: 10.1111/jvs.12240
6 Albert CH, Thuiller W, Yoccoz NG, Douzet R, Aubert S, Lavorel S ( 2010) A multi-trait approach reveals the structure and the relative importance of intra-versus interspecific variability in plant traits. Functional Ecology, 24, 1192-1201.
doi: 10.1111/j.1365-2435.2010.01727.x
7 Bolnick DI, Amarasekare P, Araújo MS, Bürger R, Levine JM, Novak M, Rudolf VHW, Schreiber SJ, Urban MC, Vasseur DA ( 2011) Why intraspecific trait variation matters in community ecology. Trends in Ecology & Evolution, 26, 183-192.
doi: 10.1016/j.tree.2011.01.009
8 Chen CF, Qin L, Duan YX, He YT, Wang P, Feng QY, Wang YF, He YJ ( 2018) Effects of different management models on leaf functional traits and soil physical and chemical properties of natural secondary forest of Quercus mongolica. Acta Ecologica Sinica, 38, 8371-8382. (in Chinese with English abstract)
[ 陈超凡, 覃林, 段艺璇, 何亚婷, 王鹏, 冯琦雅, 王雅菲, 何友均 ( 2018) 不同经营模式对蒙古栎次生林叶功能性状和土壤理化性质的影响. 生态学报, 38, 8371-8382.]
9 Chen W, Wang JH, Ma RJ, Qi W, Liu K, Zhang LN, Chen XL ( 2016) Variance in leaf functional traits of 89 species from the eastern Guangdong of China. Chinese Journal of Ecology, 35, 2101-2109. (in Chinese with English abstract)
[ 陈文, 王桔红, 马瑞君, 齐威, 刘坤, 张丽娜, 陈学林 ( 2016) 粤东89种常见植物叶功能性状变异特征. 生态学杂志, 35, 2101-2109.]
10 Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
doi: 10.1071/BT02124
11 D’Antraccoli M, Roma-Marzio F, Astuti G, Bedini G, Ciccarelli D, Peruzzi L, Carta A ( 2018) Variation of vegetative and reproductive traits in Cistus laurifolius: Evidences of a response to contrasting habitat conditions. Flora, 248, 22-27.
doi: 10.1016/j.flora.2018.08.009
12 De Smedt P, Ottaviani G, Wardell-Johnson G, Sykora KV, Mucina L ( 2018) Habitat heterogeneity promotes intraspecific trait variability of shrub species in Australian granite inselbergs. Folia Geobot, 53, 133-145.
doi: 10.1007/s12224-018-9311-x
13 Ding J, Wu Q, Yan H, Zhang SR ( 2011) Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest. Biodiversity Science, 19, 158-167. (in Chinese with English abstract)
doi: 10.3724/SP.J.1003.2011.10312
[ 丁佳, 吴茜, 闫慧, 张守仁 ( 2011) 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响. 生物多样性, 19, 158-167.]
doi: 10.3724/SP.J.1003.2011.10312
14 Ding Y, Zang RG, Letcher SG, Liu SR, He FL ( 2012) Disturbance regime changes the trait distribution, phylogenetic structure, and community assembly of tropical rain forests. Oikos, 121, 1263-1270.
doi: 10.1111/j.1600-0706.2011.19992.x
15 Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE ( 2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters, 10, 1135-1142.
doi: 10.1111/ele.2007.10.issue-12
16 Field C, Mooney HA ( 1986) The photosynthesis-nitrogen relationship in wild plants. In: On the Economy of Form and Function (ed. Givnish TJ), pp. 25-55. Cambridge University Press, Cambridge, UK.
17 Frenne PD, Graae BJ, Kolb A, Shevtsova A, Baeten L, Brunet J, Chabrerie O, Cousins SAO, Decocq G, Dhondt R, Diekmann M, Gruwez R, Heinken T, Hermy M, Öster M, Saguez R, Stanton S, Tack W, Vanhellemont M, Verheyen K ( 2011) An intraspecific application of the leaf-height-seed ecology strategy scheme to forest herbs along a latitudinal gradient. Ecography, 34, 132-140.
doi: 10.1111/j.1600-0587.2010.06399.x
18 Fridley JD, Grime JP ( 2010) Community and ecosystem effects of intraspecific genetic diversity in grassland microcosms of varying species diversity. Ecology, 91, 2272-2283.
doi: 10.1890/09-1240.1
19 Ge NN, Shi Y, Yang XL, Zhang QY, Li XZ, Jia XX, Shao MA, Wei XR ( 2017) Distribution of soil organic carbon, total nitrogen, total phosphorus and water stable aggregates of cropland with different soil textures on the Loess Plateau, Northwest China. Chinese Journal of Applied Ecology, 28, 1626-1632. (in Chinese with English abstract)
[ 葛楠楠, 石芸, 杨宪龙, 张庆印, 李学章, 贾小旭, 邵明安, 魏孝荣 ( 2017) 黄土高原不同土壤质地农田土壤碳、氮、磷及团聚体分布特征. 应用生态学报, 28, 1626-1632.]
20 Gómez-Rey MX, Madeira M, Gonzalez-Prieto SJ, Coutinho J ( 2010) Soil C and N dynamics within a precipitation gradient in Mediterranean eucalypt plantations. Plant Soil, 336, 157-171.
doi: 10.1007/s11104-010-0456-5
21 Gu DX, Chen SL, Huang YQ ( 2011) Effects of soil nitrogen and phosphonium on leaf nitrogen and phosphonium stoichiometric characteristics and chlorophyll content of Oligostachyum lubricum. Chinese Journal of Plant Ecology, 35, 1219-1225. (in Chinese with English abstract)
doi: 10.3724/SP.J.1258.2011.01219
[ 顾大形, 陈双林, 黄玉清 ( 2011) 土壤氮磷对四季竹叶片氮磷化学计量特征和叶绿素含量的影响. 植物生态学报, 35, 1219-1225.]
doi: 10.3724/SP.J.1258.2011.01219
22 Güsewell S ( 2004) N : P ratios in terrestrial plants: Variation and functional significance. New Phytologist, 164, 243-266.
doi: 10.1111/j.1469-8137.2004.01192.x
23 Herbert DA, Williams M, Rastetter EB ( 2003) A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry, 65, 121-150.
doi: 10.1023/A:1026020210887
24 Koerselman W, Meuleman AFM ( 1996) The vegetation N : P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology, 33, 1441-1450.
doi: 10.2307/2404783
25 Kołodziejek J ( 2014) Effects in leaf traits on microhabitat of Digitalis grandiflora L. (Veronicaceae) growing at forest edge and interior. Archives of Biological Sciences, 66, 615-627.
doi: 10.2298/ABS1402615K
26 Kraft NJB, Valencia R, Ackerly DD ( 2008) Functional traits and niche-based tree community assembly in an Amazonian forest. Science, 322, 580-582.
doi: 10.1126/science.1160662
27 Lavorel S, Garnier E ( 2002) Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Functional Ecology, 16, 545-556.
doi: 10.1046/j.1365-2435.2002.00664.x
28 Li MJ, Yu LF, Du MF, Huang ZS, Shi JH ( 2018) C, N, and P stoichiometry and their interaction with plants, litter, and soil in a Cunninghamia lanceolata plantation with different ages. Acta Ecologica Sinica, 38, 7772-7781. (in Chinese with English abstract)
[ 李明军, 喻理飞, 杜明凤, 黄宗胜, 石建华 ( 2018) 不同林龄杉木人工林植物-凋落叶-土.C、N、P化学计量特征及互作关系. 生态学报, 38, 7772-7781.]
29 Li YH, Lu Q, Wu B, Zhu YJ, Liu DJ, Zhang JX, Jin ZH ( 2012) A review of leaf morphology plasticity linked to plant response and adaptation characteristics in arid ecosystems. Chinese Journal of Plant Ecology, 36, 88-98. (in Chinese with English abstract)
[ 李永华, 卢琦, 吴波, 朱雅娟, 刘殿君, 张金鑫, 靳占虎 ( 2012) 干旱区叶片形态特征与植物响应和适应的关系. 植物生态学报, 36, 88-98.]
30 Liu L, Liu HB, Wang T, Zhu B, Jiang SW ( 2018) Phosphorus loss from sloping cropland in water fluctuation zone of the Three Gorges Reservoir. Resources and Environment in the Yangtze Basin, 27, 2609-2618. (in Chinese with English abstract)
[ 刘莲, 刘红兵, 汪涛, 朱波, 姜世伟 ( 2018) 三峡库区消落带农用坡地磷素径流流失特征. 长江流域资源与环境, 27, 2609-2618.]
31 Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA ( 2001) Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science, 294, 804-808.
32 Ma RT, Fang Y, An SS, Zhao JF, Xiao L ( 2016) Ecological stoichiometric characteristics of leaves and litter of plants dominant in Heidaigou opencast coal mining area. Acta Pedologica Sinica, 53, 1003-1014. (in Chinese with English abstract)
[ 马任甜, 方瑛, 安韶山, 赵俊峰, 肖礼 ( 2016) 黑岱沟露天煤矿优势植物叶片及枯落物生态化学计量特征. 土壤学报, 53, 1003-1014.]
33 Messier J, McGill BJ, Lechowicz MJ ( 2010) How do traits vary across ecological scales? A case for trait-based ecology. Ecology Letters, 13, 838-848.
34 Mitchell RM, Bakker JD ( 2014) Quantifying and comparing intraspecific functional trait variability: A case study with Hypochaeris radicata. Functional Ecology, 28, 258-269.
35 Moreira B, Tavsanoglu C, Pausas JG ( 2012) Local versus regional intraspecific variability in regeneration traits. Oecologia, 168, 671-677.
36 Nakaji T, Fukami M, Dokiya Y, Izuta T ( 2001) Effects of high nitrogen load on growth, photosynthesis and nutrient status of Cryptomeria japonica and Pinus densiflora seedlings. Trees, 15, 453-461.
37 Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, Vos AC, Buchmann N, Funes G, Quétier F, Hodgson JG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC ( 2013) New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
38 Picotte JJ, Rosenthal DM, Rhode JM, Cruzan MB ( 2007) Plastic responses to temporal variation in moisture availability: Consequences for water use efficiency and plant performance. Oecologia, 153, 821-832.
39 Poorter H, Remkes C ( 1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia, 83, 553-559.
40 Reich PB, Oleksyn J ( 2004) Globa. patterns of plant leaf N and P in relation to temperature and latitude . Proceedings of the National Academy of Sciences, USA, 101, 11001-11006.
41 Ruan YM, Zhang JJ, Yao XH, Ye QG ( 2012) Genetic diversity and fine-scale spatial genetic structure of different lifehistory stages in a small, isolated population of Sinojackia huangmeiensis (Styracaceae). Biodiversity Science, 20, 460-469. (in Chinese with English abstract)
[ 阮咏梅, 张金菊, 姚小洪, 叶其刚 ( 2012) 黄梅秤锤树孤立居群的遗传多样性及其小尺度空间遗传结构. 生物多样性, 20, 460-469.]
42 Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VD, de Bello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchi M, Kembel SW, Kichenin E, Kraft NJB, Lagerström A, Le Bagousse-Pinguet Y, Li Y, Mason N, Messier J, Nakashizuka T, McC Overton J, Peltzer DA, Pérez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Schöb C, Shipley B, Sundqvist M, Sykes MT, Vandewalle M, Wardle DA ( 2015) A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecology Letters, 18, 1406-1419.
43 Swenson NG, Enquist BJ ( 2009) Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170.
44 Tang QQ, Huang YT, Ding Y, Zang RG ( 2016) Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests. Biodiversity Science, 24, 262-270. (in Chinese with English abstract)
doi: 10.17520/biods.2015200
[ 唐青青, 黄永涛, 丁易, 臧润国 ( 2016) 亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异. 生物多样性, 24, 262-270.]
doi: 10.17520/biods.2015200
45 Tian H, Chen G, Zhang C, Melillo JM, Hall CAS ( 2010) Pattern and variation of C : N : P ratios in China’s soils: A synthesis of observational data. Biogeochemistry, 98, 139-151.
doi: 10.1007/s10533-009-9382-0
46 Vance CP, Uhde-Stone C, Allan DL ( 2003) Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource. New Phytologist, 157, 423-447.
47 Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007) Let the concept of trait be functional. Oikos, 116, 882-892.
48 Violle C, Enquist BJ, Mcgill BJ, Jiang L, Albert CH, Hulshof C, Jung V, Messier J ( 2012) The return of the variance: Intraspecific variability in community ecology. Trends in Ecology & Evolution, 27, 244-252.
49 Wang SQ, Yu GR ( 2008) Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements. Acta Ecologica Sinica, 28, 3937-3947. (in Chinese with English abstract)
[ 王绍强, 于贵瑞 ( 2008) 生态系统碳氮磷元素的生态化学计量学特征. 生态学报, 28, 3937-3947.]
50 Wang ST, Wu H, Liu MT, Zhang JX, Liu JM, Meng HJ, Xu YZ, Qiao XJ, Wei XZ, Lu ZJ, Jiang MX ( 2018) Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China. Biodiversity Science, 26, 749-759. (in Chinese with English abstract)
doi: 10.17520/biods.2018055
[ 王世彤, 吴浩, 刘梦婷, 张佳鑫, 刘检明, 孟红杰, 徐耀粘, 乔秀娟, 魏新增, 卢志军, 江明喜 ( 2018) 极小种群野生植物黄梅秤锤树群落结构与动态. 生物多样性, 26, 749-759.]
doi: 10.17520/biods.2018055
51 Wei XZ, Liu MT, Wang ST, Jiang MX ( 2018) Seed morphological traits and seed element concentrations of an endangered tree species displayed contrasting responses to waterlogging induced by extreme precipitation. Flora, 246, 19-25.
52 Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002) Plant ecological strategies: Some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159.
doi: 10.1146/annurev.ecolsys.33.010802.150452
53 Wright IJ, Reich PB, Westoby M ( 2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology, 15, 423-434.
54 Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R ( 2004) The worldwide leaf economics spectrum. Nature, 428, 821-827.
55 Xu QY, Liu H, Ye Q ( 2017) Intraspecific variability of ecophysiological traits of four Magnoliaceae species growing in two climatic regions in China. Plant Ecology, 218, 407-415.
56 Yan S, Zhang L, Jing YS, He HL, Yu GR ( 2014) Variations in the relationship between maximum leaf carboxylation rate and leaf nitrogen concentration. Chinese Journal of Plant Ecology, 38, 640-652. (in Chinese with English abstract)
[ 闫霜, 张黎, 景元书, 何洪林, 于贵瑞 ( 2014) 植物叶片最大羧化速率与叶氮含量关系的变异性. 植物生态学报, 38, 640-652.]
57 Yang HM, Wang DM ( 2011) Advances in the study on ecological stoichiometry in grass-environment system and its response to environmental factors. Acta Prataculturae Sinica, 20, 244-252. (in Chinese with English abstract)
[ 杨惠敏, 王冬梅 ( 2011) 草—环境系统植物碳氮磷生态化学计量学及其对环境因子的响应研究进展. 草业学报, 20, 244-252.]
58 Yao XH, Ye QG, Fritsch PW, Cruz BC, Huang HW ( 2008) Phylogeny of Sinojackia (Styracaceae) based on DNA sequence and microsatellite data: Implications for taxonomy and conservation. Annals of Botany, 101, 651-659.
doi: 10.1093/aob/mcm332
59 Yates MJ, Verboom GA, Rebelo AG, Cramer MD ( 2010) Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Functional Ecology, 24, 485-492.
60 Yu YF, Peng WX, Song TQ, Zeng FP, Wang KL, Wen L, Fan FJ ( 2014) Stoichiometric characteristics of plant and soil C, N, and P in different forest types in depressions between karst hills, Southwest China. Chinese Journal of Applied Ecology, 25, 947-954. (in Chinese with English abstract)
[ 俞月凤, 彭晚霞, 宋同清, 曾馥平, 王克林, 文丽, 范夫静 ( 2014) 喀斯特峰丛洼地不同森林类型植物和土壤C、N、P化学计量特征. 应用生态学报, 25, 947-954.]
61 Yue T, Li YF, Xiao YH, Li YC, He J, Jiang PK, Zhou GM, Liu J ( 2016) Effects of conversion of evergreen broad-leaved forest to Chinese chestnut plantation on soil organic carbon pools. Chinese Journal of Applied Ecology, 27, 2181-2188. (in Chinese with English abstract)
[ 岳天, 李永夫, 肖永恒, 李永春, 何洁, 姜培坤, 周国模, 刘娟 ( 2016) 天然常绿阔叶林改造为板栗林对土壤有机碳库的影响. 应用生态学报, 27, 2181-2188.]
62 Zhang JJ, Ye QG, Gao PX, Yao XH ( 2012) Genetic footprints of habitat fragmentation in the extant populations of Sinojackia (Styracaceae): Implications for conservation. Botanical Journal of the Linnean Society, 170, 232-242.
doi: 10.1111/j.1095-8339.2012.01277.x
63 Zhao FZ, Sun J, Ren CJ, Kang D, Deng J, Han XH, Yang GH, Feng YZ, Ren GX ( 2015) Land use change influences soil C, N, and P stoichiometry under ‘Grain-to-Green Program’ in China. Scientific Reports, 5, 1-10.
64 Zhao SY, Li JT, Sun XK, Zeng DH, Hu YL ( 2018) Responses of soil and plant stoichiometric characteristics along rainfall gradients in Mongolian pine plantations in native and introduced regions. Acta Ecologica Sinica, 38, 7189-7197. (in Chinese with English abstract)
[ 赵姗宇, 黎锦涛, 孙学凯, 曾德慧, 胡亚林 ( 2018) 樟子松人工林原产地与不同自然降水梯度引种地土壤和植物叶片生态化学计量特征. 生态学报, 38, 7189-7197.]
65 Zhong QL, Liu LB, Xu X, Yang Y, Guo YM, Xu HY, Cai XL, Ni J ( 2018) Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 42, 562-572. (in Chinese with English abstract)
[ 钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健 ( 2018) 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 42, 562-572.]
[1] Yaobin Song,Li Xu,Junpeng Duan,Weijun Zhang,Xiaolu Shentu,Tianxiang Li,Runguo Zang,Ming Dong. (2020) Sex ratio and spatial pattern of Taxus fuana, a Wild Plant with Extremely Small Populations in Tibet . Biodiv Sci, 28(3): 269-276.
[2] Jinyuan Su,Yu Yan,Chong Li,Dan Li,Fang K. Du. (2020) Informing conservation strategies with genetic diversity in Wild Plant with Extremely Small Populations: A review on gymnosperms . Biodiv Sci, 28(3): 376-384.
[3] Dongdong Chen,Zhenqing Li. (2020) Population viability analysis of Wild Plant with Extremely Small Populations (WPESP): Methods, problems and prospects . Biodiv Sci, 28(3): 358-366.
[4] Sha Deng,Yanni Wu,Kunlin Wu,Lin Fang,Lin Li,Songjun Zeng. (2020) Breeding characteristics and artificial propagation of 14 species of Wild Plant with Extremely Small Populations (WPESP) in China . Biodiv Sci, 28(3): 385-400.
[5] Zhixia Zhao,Changming Zhao,Shuyu Deng,Guozhen Shen,Zongqiang Xie,Gaoming Xiong,Junqing Li. (2020) Community structure and dynamics of a remnant forest dominated by Thuja sutchuenensis after deforestation . Biodiv Sci, 28(3): 333-339.
[6] Xinghui Lu,Runguo Zang,Yi Ding,Jihong Huang,Yue Xu. (2020) Habitat characteristics and its effects on seedling abundance of Hopea hainanensis, a Wild Plant with Extremely Small Populations . Biodiv Sci, 28(3): 289-295.
[7] JIA Bing-Rui. (2019) Litter decomposition and its underlying mechanisms . Chin J Plant Ecol, 43(8): 648-657.
[8] ZHAO Dan-Dan, MA Hong-Yuan, LI Yang, WEI Ji-Ping, WANG Zhi-Chun. (2019) Effects of water and nutrient additions on functional traits and aboveground biomass of Leymus chinensis . Chin J Plant Ecol, 43(6): 501-511.
[9] WANG Pan, ZHU Wan-Wan, NIU Yu-Bin, FAN Jin, YU Hai-Long, LAI Jiang-Shan, HUANG Ju-Ying. (2019) Effects of nitrogen addition on plant community composition and microbial biomass ecological stoichiometry in a desert steppe in China . Chin J Plant Ecol, 43(5): 427-436.
[10] YANG Wen-Gao, ZI Hong-Biao, CHEN Ke-Yu, ADE Lu-Ji, HU Lei, WANG Xin, WANG Gen-Xu, WANG Chang-Ting. (2019) Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China . Chin J Plant Ecol, 43(4): 352-364.
[11] GAO Yu-Qiu, DAI Xiao-Qin, WANG Jian-Lei, FU Xiao-Li, KOU Liang, WANG Hui-Min. (2019) Characteristics of soil enzymes stoichiometry in rhizosphere of understory vegetation in subtropical forest plantations . Chin J Plant Ecol, 43(3): 258-272.
[12] TANG Dan-Dan, WU Yi, LIU Wen-Yao, HU Tao, HUANG Jun-Biao, ZHANG Ting-Ting. (2019) Ecological stoichiometry of two common hemiparasite plants and their relationship with host trees in Ailao Mountain, Yunnan, China . Chin J Plant Ecol, 43(3): 245-257.
[13] GAO Si-Han, GE Yu-Xi, ZHOU Li-Yi, ZHU Bao-Lin, GE Xing-Yu, LI Kai, NI Jian. (2018) What is the optimal number of leaves when measuring leaf area of tree species in a forest community? . Chin J Plan Ecolo, 42(9): 917-925.
[14] SHEN Fang-Fang, LI Yan-Yan, LIU Wen-Fei, DUAN Hong-Lang, FAN Hou-Bao, HU Liang, MENG Qing-Yin. (2018) Responses of nitrogen and phosphorus resorption from leaves and branches to long-term nitrogen deposition in a Chinese fir plantation . Chin J Plan Ecolo, 42(9): 926-937.
[15] Wang Shitong, Wu Hao, Liu Mengting, Zhang Jiaxin, Liu Jianming, Meng Hongjie, Xu Yaozhan, Qiao Xiujuan, Wei Xinzeng, Lu Zhijun, Jiang Mingxi. (2018) Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China . Biodiv Sci, 26(7): 749-759.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed