Biodiversity Science ›› 2018, Vol. 26 ›› Issue (12): 1289-1295.doi: 10.17520/biods.2018121

• Original Papers • Previous Article     Next Article

Genetic diversity and population demographic history of Ochetobius elongatus in the middle and lower reaches of the Xijiang River

Jiping Yang1, Ce Li1, 2, Weitao Chen1, Yuefei Li1, Xinhui Li1, *()   

  1. 1 Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380
    2 College of Marine Sciences, Shanghai Ocean University, Shanghai 201306
  • Received:2018-04-16 Accepted:2018-04-16 Online:2019-02-11
  • Li Xinhui
  • About author:# 同等贡献作者 Contributed equally to this work

Ochetobius elongatus used to be an economically important fish species in many rivers of China. However, due to environmental destruction and human disturbance the resources of this fish species have reduced rapidly, and its populations are in a critically endangered condition. At present, it is very difficult to obtain specimens of O. elongatus, which limits research on this species. We obtained specimens of O. elongatus via larva and adult fish collection. Two mitochondrial genes and two nuclear genes were used to explore the genetic diversity and population demography of O. elongatus in middle and lower Xijiang River. Results showed that the genetic diversity of O. elongatus was low and is in recession, suggesting that O. elongatus might have undergone a genetic bottleneck event. Additionally, population demographic analyses revealed that O. elongatus population expanded during the Late Pleistocene (0.06 and 0.13 Million years ago), following the glacial retreat of the Middle Pleistocene glaciations (0.78-0.126 Million years ago). The results also revealed that Pleistocene climatic fluctuations have influenced the population demography of O. elongatus. Due to its potential as an important spawning ground for O. elongatus, sections of middle and lower Xijiang River should be considered as candidates for creating nature reserves to conserve and restore its genetic resources.

Key words: Ochetobius elongatus, larva fish collection, mitochondrial and nuclear genes, population expansion, conservation

Table 1

Sample information of the present study"

采样点 Sample site 采样日期 Sampling time 样本量 Sample size 经度 Longitude 纬度 Latitude
广西桂平 Guiping 2017.09 1 110°05°54.78°° E 23°24°08.25°° N
广西梧州 Wuzhou 2017.09 1 111°17°15.32°° E 23°28°07.94°° N
广东肇庆 Zhaoqing 2011.05 22 112°23°40.13°° E 23°05°06.24°° N
广东肇庆 Zhaoqing 2013.05 28 112°23°40.13°° E 23°05°06.24°° N

Table 2

Primer information used in the present study"

引物名 Primer 引物序列 Primer sequence (5′-3′) 退火温度 Annealed temperature (℃) 参考文献 Reference
Cytb L14724 GACTTGAAA AACCACCGTTG 58-64 Xiao et al, 2001
myh6 myh6_F459 CATMTTYTCCATCTCAGATAATGC 53 Chen et al, 2008
RAG2 RAG2-f2a AARCGCTCMTGTCCMACTGG 55 Lovejoy & Collette, 2001

Fig. 1

Median-joining networks of haplotype and allele based on different genes and gene groups. White circles indicate missing haplotype."

Table 3

Genetic diversity indices, neutrality tests and optimal nucleotide substitution model of Ochetobius elongatus"

Number of haplotype/ sample size
Current nucleotide
diversity (θπ, %)
Historical nucleotide
diversity (θw, %)
D 检验
Tajima’s D test
Fu’s Fs检验
Fu’s Fs test
Cytb 13/52 0.784 0.197 0.470 -1.83** -5.43** HKY+I
ND2 17/52 0.869 0.239 0.272 -0.35 -8.16*** F81+I+G
Cytb + ND2 26/52 0.940 0.219 0.366 -1.33 -14.54*** -
myh6 2/52 0.462 0.060 0.029 - - HKY
RAG2 3/52 0.147 0.022 0.077 - - F81
myh6 + RAG2 5/52 0.546 0.040 0.055 - - -

Fig. 2

Mismatch distribution analysis based on different genes and gene groups. Red and purple lines represent observed value and expected values, respectively."

Fig. 3

Extended Bayesian Skyline plots. Black lines represent mean values of effective population size, gray lines represent median values of effective population size, and dashed lines represent 95% confidence interval of effective population size."

1 Araujo-Lima CARM, Oliveira EC (1998) Transport of larval fish in the Amazon. Journal of Fish Biology, 53, 297-306.
2 Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16, 37-48.
3 Chen WJ, Miya M, Saitoh K, Mayden RL (2008) Phylogenetic utility of two existing and four novel nuclear gene loci in reconstructing Tree of Life of ray-finned fishes: The order Cypriniformes (Ostariophysi) as a case study. Gene, 423, 125-134.
4 Chen YY, Cao WX, Zheng CY (1986) Ichthyofauna of the Zhujiang River with a discussion on zoogeographical divisions for freshwater fishes. Acta Hydrobiologica Sinica, 10, 228-234. (in Chinese with English abstract)
[陈宜瑜, 曹文宣, 郑慈英 (1986) 珠江的鱼类区系及其动物地理区划的讨论. 水生生物学报, 10, 228-234.]
5 Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.
6 Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185-1192.
7 Durand JD, Tsigenopoulos CS, Unlu E, Berrebi P (2002) Phylogeny and biogeography of the family Cyprinidae in the Middle East inferred from cytochrome b DNA—Evolutionary significance of this region. Molecular Phylogenetics and Evolution, 25, 91-100.
8 Edgar RC (2004) MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792-1797.
9 Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564-567.
10 Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915-925.
11 Gascoyne M, Benjamin GJ, Schwarcz HP, Ford DC (1979) Sea-level lowering during the Illinoian glaciation: Evidence from a Bahama “blue hole”. Science, 205, 806-808.
12 Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: Insights from sardines and anchovies and lessons for conservation. Journal of Heredity, 89, 415-426.
13 Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philosophical Transactions of the Royal Society B-Biological Sciences, 359, 183-195.
14 Jiang ZG, Jiang JP, Wang YZ, Zhang E, Zhang YY, Li LL, Xie F, Cai B, Cao L, Zheng GM, Dong L, Zhang ZW, Ding P, Luo ZH, Ding CQ, Ma ZJ, Tang SH, Cao WX, Li CW, Hu HJ, Ma Y, Wu Y, Wang YX, Zhou KY, Liu SY, Chen YY, Li JT, Feng ZJ, Wang Y, Wang B, Li C, Song XL, Cai L, Zang CX, Zeng Y, Meng ZB, Fang HX, Ping XG (2016) Red List of China’s Vertebrates. Biodiversidy Science, 24, 500-551.
[蒋志刚, 江建平, 王跃招, 张鹗, 张雁云, 李立立, 谢锋, 蔡波, 曹亮, 郑光美, 董路, 张正旺, 丁平, 罗振华, 丁长青, 马志军, 汤宋华, 曹文宣, 李春旺, 胡慧建, 马勇, 吴毅, 王应祥, 周开亚, 刘少英, 陈跃英, 李家堂冯祚建, 王燕, 王斌, 李成, 宋雪琳, 蔡蕾, 臧春鑫, 曾岩, 孟智斌, 方红霞, 平晓鸽 (2016) 中国脊椎动物红色名录. 生物多样性, 24, 500-551.]
15 Ketmaier V, Bianco PG, Cobollia M, Krivokapic M, Caniglia R, De Matthaeis E (2004) Molecular phylogeny of two lineages of Leuciscinae cyprinids (Telestes and Scardinius) from the peri-Mediterranean area based on cytochrome b data. Molecular Phylogenetics and Evolution, 32, 1061-1071.
16 Li J, Li XH, Jia XP, Li YF, He MF, Tan XC, Wang C, Jiang WX (2010) Evolvement and diversity of fish community in Xijiang River. Journal of Fishery Sciences of China, 17, 298-311. (in Chinese with English abstract)
[李捷, 李新辉, 贾晓平, 李跃飞, 何美峰, 谭细畅, 王超, 蒋万祥 (2010) 西江鱼类群落多样性及其演变. 中国水产科学, 17, 298-311.]
17 Li SF, Lü GQ, Bernatchez L (1998) Diversity of mitochondrial DNA in the populations of silver carp, bighead carp, grass carp and black carp in the middle- and lower reaches of the Yangtze River. Acta Zoologica Sinica, 44, 82-93. (in Chinese with English abstract)
[李思发, 吕国庆, Bernatchez L (1998) 长江中下游鲢鳙草青四大家鱼线粒体DNA多样性分析. 动物学报, 44, 82-93.]
18 Li YF, Li XH, Tan XC, Li J, Wang C (2012) Occurrence of larval Elopichthys bambusa and its relationship with hydrological conditions in the middle and lower reaches of Pearl River. Journal of Fisheries of China, 36(4), 15-22. (in Chinese with English abstract)
[李跃飞, 李新辉, 谭细畅, 李捷, 王超 (2012) 珠江中下游鳡鱼苗的发生及其与水文环境的关系. 水产学报, 36, 15-22.]
19 Liang ZS, Mo RL, Chen FC (1985) Species identification and spawning type of common fish species in Xijiang River during early phase. In: The Report of Fishery Research in Pearl River Basin. Compilation Committee of Fishery Resources Survey of Pearl River Basin, Guangzhou. (in Chinese)
[梁秩燊, 莫瑞林, 陈福才 (1985) 西江常见鱼类早期发育的分类鉴定及其产卵类型. 见: 珠江水系渔业资源调查研究报告. 珠江水系渔业资源调查编委会, 广州.]
20 Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452.
21 Lovejoy NR, Collette BB (2001) Phylogenetic relationships of new world needlefishes (Teleostei: Belonidae) and the biogeography of transitions between marine and freshwater habitats. Copeia, 2001, 324-338.
22 Meyer A (1993) Evolution of Mitochondrial DNA in Fishes. Elsevier, The Hague.
23 Nesler TP, Muth RT, Wasowicz AF (1988) Evidence for baseline flow spikes as spawning cues for Colorado squawfish in the Yampa River, Colorado. In: American Fisheries Society Symposium, pp. 68-79. Bethesda, Maryland.
24 Nylander JAA (2004) MrModeltest v2. Evolutionary Biology Centre, Uppsala University, Uppsala.
25 Rambaut A, Drummond A (2007) Tracer v1.4.. (accessed on 2018-3-2).
26 Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569.
27 Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics, 123, 597-601.
28 Tao W, Zou M, Wang X, Gan X, Mayden RL, He S (2010) Phylogenomic analysis resolves the formerly intractable adaptive diversification of the endemic clade of east Asian Cyprinidae (Cypriniformes). PLoS ONE, 5, e13508.
29 Tyus HM, Haines GB (1991) Distribution, habitat use, and growth of age-0 Colorado squawfish in the Green River basin, Colorado and Utah. Transactions of the American Fisheries Society, 120, 79-89.
30 Wang X, Li J, He S (2007) Molecular evidence for the monophyly of East Asian groups of Cyprinidae (Teleostei: Cypriniformes) derived from the nuclear recombination activating gene 2 sequences. Molecular Phylogenetics and Evolution, 42, 157-170.
31 Wu WJ, Peng M, Wang DP, Shi J, Li YS, Han YQ, Lei JJ, He AY (2015) Comparison of mitochondrial D-Loop and Cyt b sequences of Hypophthalmichthys molitrix. Open Journal of Fisheries Research, 2(4), 67-73. (in Chinese with English abstract)
[吴伟军, 彭敏, 王大鹏, 施军, 李育森, 韩耀全, 雷建军, 何安尤 (2015) 红水河鲢线粒体D-Loop和Cyt b基因序列分析. 水产研究, 2(4), 67-73.]
32 Xiao W, Zhang Y, Liu H (2001) Molecular systematics of Xenocyprinae (Teleostei: Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in East Asia. Molecular Phylogenetics and Evolution, 18, 163-173.
33 Yue PQ (2000) Fauna Sinica, Osteichthyes, Cypriniformes II Science Press, Beijing. (in Chinese)
[乐佩琦 (2000) 中国动物志. 硬骨鱼纲, 鲤形目, 中卷. 科学出版社, 北京.]
34 Zheng CY (1989) The Ichthyography of the Pearl River. Science Press, Beijing. (in Chinese)
[郑慈英 (1989) 珠江鱼类志. 科学出版社. 北京.]
35 Zitek A, Schmutz S, Unfer G, Ploner A (2004) Fish drift in a Danube sidearm-system: I. Site-, inter- and intraspecific patterns. Journal of Fish Biology, 65, 1319-1338.
[1] Jiang Zhigang. China’s key protected species lists, their criteria and management [J]. Biodiv Sci, 2019, 27(6): 698-703.
[2] Zhang Xiaoling, Li Yichao, Wang Yunyun, Cai Hongyu, Zeng Hui, Wang Zhiheng. Influence of future climate change in suitable habitats of tea in different countries [J]. Biodiv Sci, 2019, 27(6): 595-606.
[3] Mo Zhangqin. Re-legalizing China’s ecological conservation redline: The position, dilemma and path [J]. Biodiv Sci, 2019, 27(3): 347-352.
[4] Zhao Yang,Wen Yuanyuan. Development of Convention on Biological Diversity’s Global Platform for Business & Biodiversity: Policy suggestion for China [J]. Biodiv Sci, 2019, 27(3): 339-346.
[5] Lü Zhongmei. Systematic legislation for nature conservation with national parks as the main body [J]. Biodiv Sci, 2019, 27(2): 128-136.
[6] Xian Yang, Dong Xin, Xie Xiaoman, Wu Dan, Han Biao, Wang Yan. Effect of Conservation Conditions on Restricting Conservation of Acer rubrum cv. ‘Somerset’ [J]. Chin Bull Bot, 2019, 54(1): 64-71.
[7] Wang Yufei,Su Hongqiao,Zhao Xinrui,Su Yang,Luo Min. Conservation easement-inspired adaptive management methods for natural protected areas: A case study on Qianjiangyuan National Park pilot [J]. Biodiv Sci, 2019, 27(1): 88-96.
[8] Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China [J]. Chin J Plant Ecol, 2019, 43(1): 1-15.
[9] Zhiyao Tang, Minwei Jiang, Jian Zhang, Xinyue Zhang. Applications of satellite and air-borne remote sensing in biodiversity research and conservation [J]. Biodiv Sci, 2018, 26(8): 807-818.
[10] Xuehua Liu, Pengfeng Wu, Xiangbo He, Xiangyu Zhao. Application and data mining of infra-red camera in the monitoring of species [J]. Biodiv Sci, 2018, 26(8): 850-861.
[11] Wang Shitong, Wu Hao, Liu Mengting, Zhang Jiaxin, Liu Jianming, Meng Hongjie, Xu Yaozhan, Qiao Xiujuan, Wei Xinzeng, Lu Zhijun, Jiang Mingxi. Community structure and dynamics of a remnant forest dominated by a plant species with extremely small population (Sinojackia huangmeiensis) in central China [J]. Biodiv Sci, 2018, 26(7): 749-759.
[12] Pei Yang,Yanqiong Peng,Ronghua Zhao,Darong Yang. Biological characteristics, threat factors and conservation strategies for the giant honey bee Apis dorsata [J]. Biodiv Sci, 2018, 26(5): 476-485.
[13] Jiaxing Huang,Jiandong An. Species diversity, pollination application and strategy for conservation of the bumblebees of China [J]. Biodiv Sci, 2018, 26(5): 486-497.
[14] Xiangyu Jia,Bin Bai,Jieqing Zhang,Yi Huang. The effects of IPBES deliverables on global biodiversity conservation strategy—an analysis based on the U. S. pollinator protection policy [J]. Biodiv Sci, 2018, 26(5): 527-534.
[15] Yao Zhao,Gengyun Li,Ji Yang. Conservation and utilization of wild relatives of cultivated plants [J]. Biodiv Sci, 2018, 26(4): 414-426.
Full text



[1] Shufa Xu, Jie Chen, Lixing Liu, Xiaofei Wang, Xiuli Huang and Yuhong Zhai. Proteomics Associated with Virulence Differentiation of Curvularia lunata in Maize in China[J]. J Integr Plant Biol, 2007, 49(4): .
[2] . The research status on Ammopiptanthus mongolicus,a rare and endangered plant species[J]. Biodiv Sci, 1995, 03(3): 153 -156 .
[3] . [J]. Chin J Plan Ecolo, 1963, (2): 142 .
[4] Jie Liu, Mengjie Li, Qi Zhang, Xin Wei and Xuehui Huang. Exploring the molecular basis of heterosis for plant breeding[J]. J Integr Plant Biol, 0, (): 0 .
[5] ZHANG Xiao-Ying;YANG Shi-Jie. Plasmodesmata and Intercellular Trafficking of Macromolecules[J]. Chin Bull Bot, 1999, 16(02): 150 -156 .
[6] Fan Zi-Teng Wu Yu-Ling Wang Xin-Ju Li Tai-Qiang Jiang-Yun GAO. Effects of symbiotic fungi on seed germination of interspecific hybrid progenies in Orchidaceae[J]. , , (): 0 .
[7] . [J]. Chin J Plan Ecolo, 2013, 37(12): 1173 .
[8] JIANG Gao-Ming. On the Restoration and Management of Degraded Ecosystems: with Special Reference of Protected Areas in the Restoration of Degraded Lands[J]. Chin Bull Bot, 2003, 20(03): 373 -382 .
[9] LI Shun-Lin DING Jing-Kai. THE FLAVONOLS FROM LAGGERA PTERODONTA[J]. Plant Diversity, 1994, 16(04): 1 -3 .
[10] BI Zhi-Ming, WANG Zheng-Tao, XU Luo-Shan. Chemical Constituents of Dendrobium moniliforme[J]. J Integr Plant Biol, 2004, 46(1): 124 -126 .